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w-pluripolar sets and subextension of
w-plurisubharmonic functions on compact Kihler manifolds

by LE MAU HAl, NGUYEN VAN KHUE and PuAM HOANG HIEP (Hanoi)

Abstract. We establish some results on w-pluripolarity and complete w-pluripolarity
for sets in a compact Kéhler manifold X with fundamental form w. Moreover, we study
subextension of w-psh functions on a hyperconvex domain in X and prove a comparison
principle for the class £(X,w) recently introduced and investigated by Guedj—Zeriahi.

1. Introduction. Plurisubharmonic (psh) and holomorphic functions
are very important objects of complex analysis. In order to study singularities
of psh functions Demailly, Lempert and Shiffman in [DLS] introduced the
notion of quasi-psh functions, which are locally a sum of a psh function
and a smooth function. Regarding this notion recently Kotodziej [Ko] and
Guedj—Zeriahi [GZ1], [GZ2] introduced and investigated w-psh functions on
a compact Kéhler manifold with fundamental form w. They studied some
problems of pluripotential theory in a local setting (for bounded hyperconvex
domains in C") for w-psh functions, in particular, the Dirichlet problem.

The aim of this paper is to study some other problems of pluripotential
theory of w-psh functions. Namely in Section 3 we study w-pluripolar and
complete w-pluripolar sets in a compact Kdhler manifold. In particular, we
prove that a subset S of a compact Kahler manifold X with fundamental
form w is locally pluripolar if and only if there exists a ¢ € £°(X,w) (see
Definition 2.3) such that ¢ = —oo on S. This result in a weaker form was
proved by Guedj—Zeriahi in [GZ2]. Section 4 is devoted to investigating com-
plete w-pluripolar sets in the projective space CP". We prove that a subset
S C CP" is complete w-pluripolar in CP" if and only if S N U; is complete
pluripolar in the coordinate neighbourhood U; = {[z0 : ... : 2,] € CP" :
zj # 0} for 0 < j < n. It is shown that a subset S C CP" is complete
w-pluripolar in CP" iff § = 71($) U {0} is complete pluripolar in C"+
where 7 : C"™1\ {0} — CP" denotes the canonical projection. Next in Sec-
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tion 5 we study the problem of subextension for w-psh functions. We show
that every psh function in the class F (see Definition 2.2) on a hyperconvex
domain in a compact Ké&hler manifold X can be subextended to an w-psh
function on X. Finally, in Section 6 we establish a comparison principle for
the class £(X,w) introduced and investigated recently by Guedj—Zeriahi (see
[GZ2]).

Acknowledgements. The authors would like to thank the referees for
valuable comments which improved the presentation of the paper.

2. Preliminaries. In this section we recall some elements of pluripo-
tential theory in the local setting that can be found in Bedford—Taylor [BT],
Klimek [KI|, and Cegrell [Cel], [Ce2].

2.1. Let {2 be a bounded domain in C". The C),-capacity in the sense of
Bedford and Taylor on {2 is the set function given by

Co(E) = Cp(E, Q) = sup{ [(dd“u)™ : w e PSH(R2), ~1 < u < 0}
E
for every Borel set E in (2. It is known [BT] that
Cu(B) = {(dd°h 0)",
n

where h}, (, is the relative extremal psh function for E (relative to {2) defined
as the smallest upper semicontinuous majorant of

hg.o(z) =sup{u(z) : w € PSH(£2), u <0, u < —1 on E}.

2.2. Let p > 1.In [Cel] and [Ce2] Cegrell introduced the following classes
of psh functions on a bounded hyperconvex domain (2 in C":

Eo=&(N2) = {gp € PSH(£2) N L*°(12) : Zl_iglggo(z) =0, S(ddcgo)” < oo},
Q

F=F(Q) = {gp € PSH(R2) : 360 3 ) \. o, sup J(ddopy) < oo},
7= 0

E=E() = {30 € PSH(£2) : Vzp € £2, there exists a neighbourhood
U 3> zpand & > ¢; \, ¢ on U with sup S(dd‘ipj)" < oo}.
i>1 )
Recently Btlocki [Bl] has proved that (belonging to) £ is a local property.
This result motivates the introduction of the following space:
D =D(2) ={p € PSH(?) : Vzy € £2, there is a neighbourhood U 3 2z
such that ¢|y € E(U) + R}.
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2.3. Let X be a compact Kéhler manifold with fundamental form w.
For example, X is a projective space with the Fubini-Study Kahler form
w = wpg. An upper semicontinuous function ¢ : X — [—o00, 00) is said to be
w-psh if ¢ € L'(X) and

w+ddp > 0.

We denote by PSH(X,w) the set of all w-psh functions on X. Along the
lines of [Cel], the following classes of w-psh functions were considered by
Guedj and Zeriahi in [GZ2]:

E(X,w) ={p € PSH(X,w) : Vzy € X, there is a neighbourhood U of z
and a potential 6 of w on U such that ¢ + 6|y € D(U)},

EP(X,w) = {gp € PSH(X,w) : 3 PSH(X,w) N L¥(X) 3 ¢; \, ¢,

su iPwl < oo}
j;f)x( |oiPw,
and
EX(X,w) = [ E"(X,w).
p>1
2.4. Following Bedford and Taylor [BT], Kotodziej [Ko| considered the

Cap,,-capacity on X given by
Cap,(FE) = sup{ S wy € PSH(X,w), 0 <p < 1}
E

for all Borel sets £ C X. In [Ko| (see also [GZ2]), it is proved that if {U,}
is a finite cover of X by strictly pseudoconvex open subsets U, = {z € X :
©va(2) < 0} where @, is a strictly psh smooth function on a neighbourhood
of U, then for every § > 0 there exists C' > 0 such that

1
& Cap, () < Cappr (1) < C Cap, (),

where

Cappr(E) = Y  Cu(ENUa,UY), Ul ={z€Us: palz) < -5}

The following equality was proved by Guedj and Zeriahi in [GZ1]:

Cap, (E) = | (~hip)hy
X

for all Borel sets £ C X, where
hEgw(z) =sup{p(z) : ¢ € PSH(X,w), ¢ <0and ¢ < —1on E}.

2.5. Let S C X. We say that S is w-pluripolar if there exists ¢ €
PSH(X,w) such that S C ¢~ (—oc) and ¢ # —oco. If ¢ can be chosen
such that S = ¢~ !(—c0) then S is said to be a complete w-pluripolar set.
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In [GZ1] the authors have shown that S is w-pluripolar if and only if S is
locally pluripolar.

2.6. Given a domain {2 in X and an w-psh function ¢ on (2, an w-psh
function ¢ on X is said to be a subezrtension of ¢ if ¥ < ¢ on 2.

2.7. In this paper we use Proposition 6.5 and Theorem 5.1 of [GZ2]. The
latter is claimed to hold for n > 2 (see Theorem 7.5 in [GZ2]). However, it is
not mentioned that Proposition 6.5 also holds for n > 2. We now prove that,
using the notation of [GZ2]. Namely we establish the following. Let u be a
probability measure on a compact connected K&hler manifold, dim¢ X = n,
equipped with the K&hler form w. Assume that there exist & > p/(p + 1)
and A > 0 such that

u(E) < ACap,(E)®

for all Borel sets E C X. Then EP(X,w) C LP(X).

First we recall that integration by parts on a compact manifold always
holds since there is no boundary. Now the above claim follows from the
following three results.

1) Let ¢ € PSH(X,w) N L*>(X). Then
(—opu < f(—pPw, At <o < [ (—p)Pul.
X X X
Indeed, let T be a closed positive current. Then

S (—p)Pw, NT = S (—p)Pw AT + S (—p)Pdd°@ AT

X X X
= S (—)Pw AT +p X (=P Ydp Nd°p AT
X X
> | (—p)Pw AT,
X

and 1) follows.
2) Let ¢ € EP(X,w). Then

Cap,,(p < —2t) < C(p)/tPHL.
Indeed,
Cap,, (¢ < —2t) = sup{ S wy tu € PSH(X,w), -1 <u < 0}

{p<—2t}

< sup{ S wy :u € PSH(X,w), —1§u§0}
{o/t<u—1}

< sup{ X wg/t:uePSH(X,w),—lgugO}
{e/t<u—1}



w-pluripolar sets on compact Kdhler manifolds 29

(wtwe/t)" < | f:og“;—fm

IN

{wo/t<-1} o<~} j=0
= - S wl, Aw" = S w”+zg S wl, Aw"™
j=0 {p<—t} {p<—t} Jj=1 {p<—t}
n - Cn P,,J n—j
< S w +th+pg(_(’0)w Aw
{p<—t} Jj=1 X
< n, 2=l Ch §x(—9)Pul
= S + ti+p
{p<—t}
1 2] Cle)
S “ )" +ZCJ X W}S L
X

Proof of Proposition 6.5 of |(GZ2] for n > 2. Let ¢ € EP(X,w) with
supy ¢ = —1. By the Fubini theorem we have

S(—@)p dp=p S P u(p < —t) dt + p(X)
X 1

< pA | 71 (Cap,,(p < —t))* dt + p(X).
1

From 2) it follows that

dt < oo

S( )pdu<1+c Sta +1)+1

X

1
because from the hypothesis we have a(p+1)+1—p > 1.

3. w-pluripolar and complete w-pluripolar sets. In this section we
investigate w-pluripolar and complete w-pluripolar sets on a compact Kahler
manifold with fundamental form w. Before stating the first result we would
like to explain its origin. In Theorem 6.2 of [GZ1] the authors proved that
every locally pluripolar set is an w-pluripolar set. Here we give another proof
of this fact by applying a recent result on solution of the Monge—Ampeére
equation presented in [GZ2].

3.1. THEOREM. Let S be a locally w-pluripolar set in X. Then there
exists ¢ € E%°(X,w) such that ¢ = —co on S and p # —oco.

In order to prove the theorem we need the following lemma.
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3.2. LEMMA. Let §2 be a domain in X which is biholomorphic to a ball
in C" and D € §2. Let p € Foo(82). Then there exists u € £ (X, aw) for
some a > 0 such that u < ¢ on D. Here

Foo = Fool2) = (] Fp(£2)

with pz1

Fp=Fp(02) = {go € PSH(2) : 3& 3 ¢; \\ ¥, Sl>1113 S(—goj)p(ddcgoj)” < oo}.
=00
Proof. By hypothesis, ¢ < 0 on 2. We can assume that ¢ # 0. Put
hp,y(2) = sup{u(z) : v € PSH({2), u < 0 and u|p < ¢}.

Since ¢ < hp,, and ¢ € Foo(£2) it follows that hp, , € Foo(£2) ([Cel]).
Moreover, hD w = ¢ on D and supp(dd°hp, ,)" C D. It is easy to see that
(dd°h7, ) # 0. Indeed, otherwise Lemma 3. 3 in [Ah] implies that A7,

on (2, hence ¢ =0, which is a contradiction. Consider the probability measure

p = a~t(dd°n, )" with a = §o(dd°hy, )" # 0. It follows from the Holder
inequality (see [Ko]) that for each p > 1 there exist A,, B, > 0 such that

p(B) = p(END) < {(~hy (AR, )"
2

< 2o ({7 (ddn, )"
2

) n/(p+n)

. - p/(p+n)
X ( (=Ppnp,0) (dd Ny )" )

+n —
> n/( )C’n(Eﬂ D, )P/ (tn)

< 22 ({(-hp ()"

< B, Cap,(EN D, X)P/Ptn)

for all Borel sets £ C X. Proposition 6.5 and Theorem 5.1 in [GZ2]| imply
that there exists v € £%°(X,w) with w]) = p. Let 6 be a negative potential
of won 2, w = dd®f. Since

C n C n 1 C1, % n
(dd°(v+0))" = (ddv + w)" = o (dd°hp )
on {2, by the comparison principle we have

/
on {2. Notice that £*°(X, Aw) = ASOO(X,w) for all A > 0, and hence for
u = a'/"(v+c) where ¢ = inf 0 it follows that u € £%°(X, a!/"w). Moreover,
u < tho on D, and therefore u < ¢ almost everywhere on D. Thus u < ¢
on D
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Proof of Theorem 3.1. Let S be a locally w-pluripolar set in X. Then by
[H] we can find hyperconvex subsets Vs € Us and s € Foo(Us) such that
ps = —ooon SNUs; and X = U§:1 Vs. We may assume that every Us is
biholomorphic to a ball in C". For each s = 1,...,k applying Lemma 3.2
we can find us € £°(X, asw) with as > 0 such that us < s on Vi. Hence
{ps = —o0}NVy={us = —oc0} NV for s=1,...,k Put

1 <nu
S s
U= k Z as
s=1
From the convexity of £%°(X,w), we infer that u € £>°(X,w) and u = —oc0
on S. This completes the proof of Theorem 3.1.
REMARK. Theorem 3.1 also follows from |[GZ2|. Indeed, by Example 6.3
in [GZ2], we can find ¢ € £'(X,w) such that ¢ = —occ on S. It is enough to
consider the function u := —log(—¢).

Next we investigate the completeness of w-pluripolar sets. Given a pluri-
polar set S C X, as in the local setting put

S*={z€ X :9(z) = —00, Vo € PSH(X,w), ¢|g = —oo}.

In the local setting (for pseudoconvex domains in C") Zeriahi [Ze| proved
that if S is an F, and Gy pluripolar set such that S = S* then S is com-
plete pluripolar. By a similar argument using the approximation theorem of
Demailly [De] for w-psh functions we also obtain

3.3. PROPOSITION. Let S be an F, and Gs w-pluripolar set such that
S = S5*. Then S is complete w-pluripolar.

Proof. Since S is F, and Gg, we can write S and X \ S as increasing
unions of compact subsets

S:GKj, X\S:GL]-.
j=1 j=1

Let a € L. Then a ¢ S*. Hence, there exists W) e PSH(X,w) such that
ugj)ls = —oo and u((f)(a) > —o0. Since cul) € PSH(X,w) for all 0 < e < 1,
we can assume that

ug = —o0, u(a)>-1, wY) <o.

a

By [De]| there exists a sequence {u,(g)} C PSHNC*™(X,w) that decreases
pointwise to ugj ) on X. Applying Dini’s theorem we find k, such that
ugl)mj < 27, ugl)(a) > —1, u,(ja) <0.
Let U, be a neighbourhood of a such that u,(g]a) > —1 on U,. Now a standard
argument using the compactness of L; implies that there exists a continuous
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function v; € PSH(X,w) such that
(i) vjlx, < —27.
(11) Uj|Lj > —1.
(iii) v; < 0.
Set

i .
v = Z 27 ;.
j=1
Then v € PSH(X,w) and S = {v = —oc}, and the proposition follows.

3.4. PROPOSITION. Let S be a closed complete locally w-pluripolar set in
X. Then S is complete w-pluripolar.

Proof. From the proof of Theorem 1 in [Co| it follows that there exist
finite open covers D) € D} € D;,1 < i < m, of X and negative psh functions
w; on Dj; such that

(i) SN D; = {g; = —oo}, X =2, D}.

(ii) ¢; — ¢; is bounded on D; N D; \ S.

(iii) w = ddf; on D; where 6; is a strictly psh function on D; and 6; < 0.
As in the proof of Theorem 1 in [Co| we can choose p; € C5°(X) with p; > 0
and supp p; C D} such that
(1) @i +pi <wj+p; on(dD;ND7)\S.

Set
1
#(2) = 37 swp {wi(2) +pil2) : z € Di}

1<i<m

where M > 0 is chosen such that p; /M +0; is psh on D, for 1 <4 < m. From
(1) we see that ¢ is upper semicontinuous on X. Moreover, (iii) implies that
¢ € PSH(X,w). It is easy to check that S = p~!(—0c0).

REMARK. Proposition 3.4 was in fact proved in [DLS]| by Demailly—
Lempert—Shiffman.

Now we investigate complete pluripolarity in the case dim X = 1. We
have the following result.

3.5. PROPOSITION. Letdim X =1 and S an w-pluripolar set in X . Then
(i) S = 5.

(ii) S is complete w-pluripolar if and only if S is a Gj.

Proof. (i) Take an w-psh function u on X such that u # —oo and S C

{u = —o0}. Let z ¢ S. Since dim X = 1, by [Lan]| there exists a decreasing
neighbourhood basis U; of z such that infsy, u > —oo. Take ¢; > 0 such
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that infsy; €ju > —1. Define
max{e;ju(z),—1} on Uj,
vi(z) =9 _. ‘
gju(z) on X \ Uj.
It follows that v; is w-psh on X with v; > —1 on U; and v; = —oo on S\ U;.
Let

o

— vj
v = Z 2—]
j=1
From the convexity of PSH(X, w) it follows that v is w-psh on X with v(z) >
—1 and v = —oo on S. Hence z ¢ S* and the desired conclusion follows.

(ii) The necessity is obvious. It remains to prove the sufficiency. Assume
that S is a G5 w-pluripolar set. Fix z € X. Take a coordinate neighbourhood
U, of z in X and a smooth subharmonic function 6, on a neighbourhood
of U, such that w = ddf,. Since SN U, is a Gs polar set, Deny’s theorem
(see [Lan]) implies that there exists a subharmonic function u, on U, such
that U, NS = {u, = —o0}. Let ¢ be an w-psh function on X such that
S C {p = —o0} and ¢ #Z —o0. As in the proof of (i) we can find an w-psh
function ¢, on X such that ¢, > —1 on U, and U.NS C {p, = —oo} where
U is some neighbourhood of z with U, € U,. Define

v, = max{u, — supg; u; — 1 — 0, +inf; 0., 0.} on UL,

T e on X \ U..
It follows that 1), is w-psh on X with U, NS = {¢, = —oc}. By the com-
pactness of X we can find a finite open cover U;],, j=1,...,m, of X. Put

1 m
7j=1
Then 9 is w-psh with S = {¢ = —o0}.

4. Complete w-pluripolar sets in CP". This section is devoted to
studying the complete w-pluripolarity of subsets in CP" equipped with the
Fubini-Study Kahler form w = wpg. First we prove the following

4.1. PROPOSITION. Let S C CP". Then S is complete w-pluripolar if
and only iof S NU; is complete pluripolar in U; for 0 < j < n where
Ui={z=1[20:...:2,) € CP": 2; # 0}

Proof. Necessity. Let S be a complete w-pluripolar subset in CP". Then
there exists an w-psh function ¢ on CP" such that ¢ # —oco and S =
{p = —oo}. Let 7 : C"*1\ {0} — CP" be the canonical projection. Then
7|y, : Vj — Uj is biholomorphic where

Vj = {(ZQ, Sy Zi—1, 1,Zj+1, .. .,Zn)} C cntt \ {O}
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The function ¢ (z) = ¢(m(2))+3 log(>-j_o |2k|?), # € Vj, is plurisubharmonic
on Vj and (7|y,) 1 (S)NV; = {¢ = —oo}. Hence (x|y;) "1 (S) NV} is complete
pluripolar in Vj. From SNU; = =]y, ((x]y;)~*(S) N'V;) it follows that SN U
is complete pluripolar in U; for 0 < j < mn.

Sufficiency. Assume that S N U; is complete pluripolar for 0 < j < n.
Since CP™ \ U; is complete w-pluripolar, we can find an w-psh function u;
on CP" such that

{uj = —oco} =CP" \ U;.
By [Si] there exists v; € £(U;) such that {v; = —oco} = SNUj. The example
1.2 in [GZ1] shows that the function

_ v;(2) — 3 log(1+ ||2[?) for z € Uj,
vj(2) = JHm (v(w) — Flog(1+ [wl?)  for = € CB"\ U,
jow—z
belongs to PSH(CP",w). Moreover {v; = —oo} NU; = S NUj. Let
uj + v;
p; = U ; i

Then
) ¢j € PSH(CP",w), {p;=-cc}nU;=S5NUj,
p; =—o0 on CP"\ Uj.

By (2) if ¢ = max{p; : 0 < j < n} then ¢ is w-psh on CP" and {¢ =
—oo} = S. The proof of Proposition 4.1 is complete.

Next we establish a result on complete w-pluripolarity of a subset in CP™.

4.2. PROPOSITION. Let 7 : C"™1\ {0} — CP" be the canonical projection
and S C CP". Then S is complete w-pluripolar if and only if S = 7~1(9)
U {0} is complete pluripolar in C"1,

Proof. Assume that S is complete w-pluripolar. Take an w-psh function
¢ on CP" with ¢ # —oo and S = {¢ = —oo}. Consider p(z) = ¢(7(z)) +
log ||z|| for z € C™*1\ {0}. Since ¢ is an w-psh function on CP" it follows
that @ is plurisubharmonic on C"*!\ {0}, and hence on C"*!. Because
$(0) = Tim,_o(p(m(2)) + log||z|) = —oco we infer that S = {§ = —oo}.
Hence S is complete pluripolar in C™+?,

Conversely, assume that S is complete pluripolar in C"*!. For each 0 <
j<n,let V;={(20,--,2j-1,1,2j41, .-, 2n)} C C""1\ {0} and U; = {z =
[z0 + ...t 2] € CP" : 2; # 0}. Then 7|y, : V; — Uj is biholomorphic
and SN V; = n71(S) NV} is complete pluripolar in V;. This implies that
SNUj is complete pluripolar in U;. Proposition 4.1 implies that S is complete
w-pluripolar in CP".
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4.3. PROPOSITION. Let S be an w-pluripolar set in CP™. Then
[S]CpnﬂUj—[SﬂU]]U] fO'f'j—O,...,n,

and hence
n

[STeen = IS N UG, -
=0
Proof. It is easy to see that [S N Ul C [S]gpn NUj. Hence, it remains
to show that [S]gp. NU; C [SN Uy, for 0 < j < n. Let 2o € [S]gpn NUj
and v € PSH(U;) with u = —oo on S N Uj. By [Si] we may assume that
u € L(U;). As in the proof of Proposition 4.1 the function

N u(i— $log(1+ [|z]?) for z € Uj,

u(z o (u(w) = §log(1 + [uwl?))  for = € CE"\ U,
is w-psh on CP" and u = —oo on SNUj. Let v be an w-psh function on CP"
such that {v = —oo} = CP" \ U}, and set ¢ = (u+ v)/2. Then ¢ is psh on
CP"™ and ¢ = —oo on S. Hence p(z9) = —oo. Thus u, and therefore w, is

equal to —o0 at zo. This shows that z € [S N Uj], .

4.4. PROPOSITION. Let S be a Gg set which is a countable union of

compact complete pluripolar sets in C™. Then S is complete w-pluripolar in
CP"=C"U Hy.

Proof. We write S = U;’il S;, where S; are compact complete pluripolar
sets in C". Proposition 3.4 implies that S; is complete w-pluripolar in CP".
On the other hand,

[e.e]

[Slepn = U[Sj]fkcuv” = U S;=5.
j=1

j=1
Now the desired conclusion follows from Proposition 3.3.

4.5. EXAMPLES. (a) Let f be an entire function on C and E = {(z, f(2)) :
z2€Cy={[1:2: f(2)]: 2z € C} C C?> C CP?. We have

[Elgpe NUo = [ENUo]y, = E,
(Bl N U1 = (BN UG, = ({12 F(2)/2) - 2 € C Yo
={(z2f(1/2)): 2 € C'}]ee = ENUL  (by [Wie]).
Let now f(z) = e*. We have
[Elgpe NU2 = [ENUa]p, = [{(e7%,2¢7%) : 2 € C}e
= [{(e*,—ze*) : z € C}]ro (by Corollary 2.6 in [Edi])
={(e*,—z2€) :z€ C} ={(e %, 2¢7): 2€ C} = ENU>.
Thus {(z,¢?) : z € C} is complete w-pluripolar in CP?,
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Now we give an example in which the pluripolar hull of a graph for
the class of w-psh functions may not coincide with the graph. Let P(t) =
cat® + - - - + ¢o be a polynomial of degree d > 1. Consider the graph

E={(\P\):AeC}={[1:X:P(\)]:XeC}cC?cCP?
We show that
[El¢

= BU{0:0:1]}

where [E]7,;» denotes the pluripolar envelope of E for the class PSH(CP?, w).
It is easy to see that E C [E|;,,. We show that {[0 : 0 : 1]} € [E]f..

Let u € PSH(CP? w) be such that u([1 : A : P(\)]) = —oo for A € C.
Define

pl€m) = wllE - 1)+ 5 log(1+ [l + [nl?)

for (¢,1) € C?. From the w-plurisubharmonicity of u it follows that ¢ is psh
on C? and

(ot 7m) =7 07°1]) * 51+ o)
—ulfts A POV + g1og(14 1z ’;,f) __

for A € C\ P71(0). Take R > 0 sufficiently large such that P(\) = 0 for all
A € C with |\| < R. Thus

1 1
o rapy ) =~ OV <R

and hence

1 1
W(P(l/)\)’ AP(l/A)) =—o00 for0< |\ <1/R.

Consider the function

)\d )\dfl
¢(A):¢< a4’ d)
g+ -+ oA cg+ -+ coA

for [A\| < 1/R. Then v is subharmonic on {|A| < 1/R} and ¢(\) = —oo for
0 < |A| < 1/R. Therefore ¢(0) = —oo, and consequently

u([0:0:1]) = ¢(0,0) = 9(0) = —oc0.
Thus {[0:0: 1]} € [E]*

Cp?*
Conversely, we show that [E]t.,, € EU{[0 : 0 : 1]}. Assume that

[20 : Yo : 20] € CP2\ EU{[0:0: 1]}. Consider the function
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u([z,y, 2])
1 2 2
gE—P Yy — = log 1+M for z # 0,
x x 2 ||
1
—log

o z/ y/ 1 ]y’|2+|z’|2
I = —P(5 )| - slog(l+——=— | forz=0.
[x/,yaz}fg[o,y,z]{d ' (x’>‘ 2 Og( " |2/ |2 e

Example 1.2 in [GZ1] implies that v € PSH(CP?,w). We have u|p = —oc.
Now we check that u([zo : yo : 2z0]) > —oo. First we assume that zo # 0
and u([zo : Yo : 20]) = —oo. Then d~1log|z0/x0 — P(yo/z0)| = —o0, and
consequently zo/zo = P(yo/xo). Hence [x¢ : yo : z0] € F, which is impossible.
In the case zo = 0 and yo # 0 we have

1
EIO

([0 : yo : 20])
(1 1
> g%{g log| 2 - P(@) — Lrog(laf? + a0l + Jz0f?) + log |x|}
1 1 |yol?
> ~loglcg| + = log — == > —o0.
d B leal 2 8 [yol? + [20]?

Finally, if yo = 0 then zp # 0 and [0 : 0 : 29] = [0 : 0 : 1], which is also
impossible. Thus [E]fp, = EU{[0:0:1]}.

(b) Let f(z) =e'/*, 240, and E = {(z,e"/?) : 2 £ 0} = {[1 : z: !/?] :
2z # 0} C C? Cc CP?. We have

Elp2 NUo = [ENUoli, = {(z,€"7) : 2 #£0}fe = ENUy  (by [Wie]),
EnUy, = [{(1/ze"7/2) : 2 # 0}

[
E(;;]P’Q NnNU; = [
=[{(z,2€%) : 2 # 0}t = (ENU) U{[0:1:0]},
[E](C]P’2 NU; =[EN U2]U2 [{(e 1/z UZ) tz F 0}]352

= [{(e*,—€7/2) : 2 # 0}]ce = [7(P)] 2
where 7 : C? — C?, 7(z,w) = (e*,w) and P = {(z,—€*/z) : 2 # 0}. Since P
is locally closed in C? and 7 is an A-covering map (see the precise definition
in [Edi]) and by Theorem 2.5 in [Edi] we have
[1(P)]ge = n(P*) =7n(P) = ENUs.
Thus [E]E]P‘? N Us; = E N Us. Therefore
[Elgpe = EU{[0:1:0]}.

5. Subextension of w-psh functions. Let X be a compact K&hler
manifold with fundamental form w, and {2 a hyperconvex domain in X.
Assume that ¢ € PSH(£2). In this section we investigate the existence of an
w-psh function ¢ on X such that ¢ < ¢ on 2. Such an w-psh function is
said to be a subextension of . Now we have
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5.1. THEOREM. Let {2 be a hyperconver domain in X such that w has a
negative potential 0 on (2. Assume that ¢ € F(§2). Then there exist a > 0
and ¢ € PSH(X, aw) such that ¢ # —o0 and @ < ¢ on (2.

Proof. Let £(£2) 3 ¢; \, ¢ be such that o = {,(dd°¢)™ < co. Take an
increasing exhaustion sequence {2} of {2 by relatively compact subdomains
2; € 2. For each j > 1, put

hj = hg,; =sup{v € PSH(§2) : v <0 and v|o, < ¢;}.
Then &(§2) 3 hj \, ¢ and
Q5 = X(ddch])n S S(ddch]’_;,_l)n =0541 7 &
0 0

(see Proposition 5.1 in [Ce2|). Consider the probability measure p; =
(1/c;)(ddhj)™ on X. Notice that supp(dd°h;)"® C £2;. Theorem 5.1 in
[Ko] and Proposition 2.10 in [GZ1] imply that for each j,p > 1 there exist
Ay, B), > 0 such that

(E) = 15 EN ;) < - (b V()"
J 0
< 22 ({(-hy)(ddn)") /W)(S( Ppna,)" (0" Reng,)"
) 2

/(p+n)
. )p P+

A
< Z2((§(=hy)(ddny)”
aj 0
< Bg Cap,,(E N 02;, X )P/ (Pn)
for all Borel sets £ C X. Proposition 6.5 and Theorem 5.1 in [GZ2| imply
that there exists v; € (X, w) such that

n +n _
) e (B0 3, 0)ple)

wl’}j = u; and s;p vj = —1.
Since "
(dd(vj +0))" = wy; = (ddc< ll/n hj >>
&
on {2, by the comparison principle in [BT] it follows that
vj+0 < 1/ hj

]

on 2. Thus for u; = ajl-/n(vj + ¢) with ¢ = infpf < 0 we have u; €
PSH(X,ajl-/nw) N L®(X) ¢ PSH(X,a'/"w) N L®(X) and supyu; =
1/n
@

ajl-/n(c —1) = a/"(¢—1) as j — oo, we have § # —oco and it is easy to

(c—1), u; < hj < p; on £2;. Define $ = (lim;_o0 u;)*. Since supy u; =
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see that ¢ € PSH(X,aw) with a = o'/ and @ < ¢ on 2. Theorem 5.1 is
completely proved.

5.2. COROLLARY. Let {2 be a bounded hyperconvex domain in C" and
© € F(82). Then there exists ¢ € L(C™) such that o < ¢ on (2. Here

= [Jiaror]™,

Q
L. ={u € PSH(C") : u(z) < elog™ ||z]| + O(1)}.
Proof. Consider (2 as a domain in CP" = C" U Hy,. By Theorem 5.1
there exists ¢ € PSH(CP", ew) such that 1) < ¢ on {2 and 1) # —o0. Define
- €
(2) = ¥(2) + 5 log(1 + [|[*) — ¢
with
€ 2
c = sup = log(1 + ||z]|7)-
)
It follows that ¢ € L.(C™) and ¢ < ¢ on {2.
REMARK. Corollary 5.2 was proved as Theorem 5.1 of [CKZ|.

6. Appendix: The comparison principle in the class £(X,w). In
[Ko] Kotodziej proved the comparison principle for bounded w-psh functions
by using the approximation theorem of Demailly [De|. The aim of this section
is to establish this principle in the class £(X,w). Notice that here we give
a direct proof without using Demailly’s theorem.

6.1. THEOREM. Let @, ¢, 01,...,n—1 € E(X,w) and T = wy, A -+ A
Wep,_1- Then
| wpnr< | wnT+ | wonT
{e<v} {e<y} {p=y¢p=—00}
Proof. We split the proof into the following two steps.

STEP 1. First we prove that

(3) S wy NT < S wy NT.
{e<y} {e<y}

For this, we establish the equality

(4) {(ddo+w) AT =wAT
X X

Assume for the moment that (4) is true. Put ¢, = max(p + ¢,%), € > 0.
From (4) it follows that

S(ddccp€+w)/\T: Sw": S(ddcg0+w)/\T.
X X X
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This equality together with the equality
(dd®pec +w) AT |p1esp) = (dd°p +w) AT |{prenyy  (see [KH])
implies that
| @doc+w)ynT< | (ddp+w)AT.
{pte<yp} {e<y}
On the other hand,

(dd°pe + W) AT |(pyecyy = (ddY + w) AT (precy)
so we obtain
| (v +wo)nT= | (dd.+w)AT< | (dd+w)AT.
{ote<y} {ote<y} {e<v}
Letting € tend to 0 we obtain
S wy NT < S wy AT,
{o<y} {e<y}

because {p +¢ < ¢} /" {p <9} as e — 0. Thus (3) follows.
To prove (4), we first observe that by Stokes’ formula, if ¢ is bounded
then

(5) \ddapo AT =0.
X

Next consider the case ¢ € £(X,w). Set ¢; = max(p,—j). Notice that
; € E(X,w) N L®(X) and ¢; \, . Therefore ddp; AT weakly converges
to dd®p A T. Using the above result we have { ddp; AT = 0 for all j, and
hence {, dd°¢o AT = 0.

STEP 2. Applying Step 1 to ¢ + ¢ and 1) we get
S wy AT < S wy NT.
{p+e<vp} {p+e<ey}
Letting ¢ tend to 0 we have
X wy NT < S we NT + S wy AT,
{e<v} {e<v} {p=tp=—00}
because {p +e¢ <9} /{p <y} U{p=19 =—-o0}ase— 0.
6.2. COROLLARY. Let p,9 € E(X,w). Then
[aps §ae | ow
{o<y} {o<y} {p=tp=—00}
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