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Universal divisors for Hardy spa
es in the polydiskby Michał Jasiczak (Pozna«)Abstra
t. We show that for an interpolating sequen
e in the polydisk one 
an 
on-stru
t a universal divisor for Hardy spa
es.1. Introdu
tion. It is a remarkable fa
t in one variable Hardy spa
etheory that given a fun
tion f ∈ Hp(D), one 
an �nd another fun
tion
g ∈ Hp with no zeros in D su
h that f = Bg. Here B stands for the Blas
hkeprodu
t for the zero set of f . What is important here is that B depends onlyon the zeros of f , not on f itself. That is why the Blas
hke produ
ts are
alled universal divisors for the Hardy spa
e. Let us emphasize that theBlas
hke produ
t is a produ
t of automorphisms of the unit disk.The situation in several variables is more involved. No su
h result isknown for a general domain D ⊂ C

n. However, in some 
ases one 
an try toobtain similar results. Importantly, for this idea to work one needs the groupof automorphisms of D to a
t transitively on D. In C
n, n > 1, there is onlyone domain with this property and C2 boundary�the unit ball B (
f. [9℄).The question of existen
e of universal divisors in Hardy spa
es in the 
aseof the unit ball was investigated in [3℄. It was shown that one 
an 
onstru
tsu
h divisors for a dis
rete set Z ⊂ B, under the assumption that Z is aninterpolating sequen
e for Hardy spa
es.In this paper we study another standard domain in C

n, the polydisk. Weprove the following fa
t:Theorem 1. If Z is an interpolating sequen
e for H∞(Dn) in the poly-disk , then there is a universal divisor (of dimension n + 2) for Z and any
Hp with 2 < p < ∞.The next de�nition spe
i�es what we mean by a universal divisor.Definition 1. We shall say that B = (B1, . . . , BN ) ∈ (H∞)N is auniversal divisor (of dimension N) for Z and the spa
e Hp if B|Z = 0 and2000 Mathemati
s Subje
t Classi�
ation: Primary 32A35; Se
ondary 32A10, 32A60.Key words and phrases: Hardy spa
e, polydisk, interpolating sequen
e, universal di-visor, Carleson measure. [71℄ 
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72 M. Jasi
zakfor any fun
tion f ∈ Hp with f |Z = 0, there is F ∈ (Hp)N su
h that(1) f =

N∑

j=1

FjBj .The polydisk has a transitive group of automorphisms. Let Φz, z =
(z1, . . . , zn) ∈ D

n, denote the biholomorphism
Φz(ζ) =

(
z1 − ζ1

1 − z1ζ1
, . . . ,

zn − ζn

1 − znζn

)
.We shall use the terminology from [3℄.Definition 2. Let Z be a sequen
e of points in D
n. We shall say thata C

N -valued bounded holomorphi
 fun
tion B = (B1, . . . , BN ) is an N -strongly de�ning fun
tion for Z if(i) B|Z = 0,(ii) there are n fun
tions among the Bi, B̃ := (B1, . . . , Bn) say, su
hthat for all z ∈ Z, B̃ = Mz · Φz for some Mz ∈ H∞ ⊗ Mn su
h that
‖Mz‖ ≤ δ−1 on D

n,

‖M−1
z ‖ ≤ δ−1 on {‖Φz‖ < δ},(iii) for ea
h ε > 0 there is η > 0 su
h that

ζ ∈
⋂

z∈Z

{|Φz| ≥ ε} ⇒ |B(ζ)| ≥ η.

One says that B̃ is equivalent to Φz near ea
h z ∈ Z. The meaning ofuniform equivalen
e is 
lear.Theorem 1 will be proved on
e we show that:Theorem 2. If B is an N -strongly de�ning fun
tion for Z in D
n, then

B is a universal divisor for Z in Hp(Dn) for 2 < p < ∞.Theorem 3. If Z is an interpolating sequen
e in D
n, then there existsan (n + 2)-strongly de�ning fun
tion for Z.Denote by I(Z) the ideal of all holomorphi
 fun
tions f in D

n with
f |Z = 0. Observe that 
ondition (1) means that Hp ∩ I(Z) = Hp · B.Corollary 1. Assume that Z1,Z2 are interpolating sequen
es in D

n.The following 
onditions are equivalent :(i) Z1 ⊂ Z2,(ii) I(Z2) ∩ Hp ⊂ I(Z1) ∩ Hp for all 2 < p < ∞,(iii) I(Z2) ∩ Hp ⊂ I(Z1) ∩ Hp for some 2 < p < ∞,(iv) |B2(z)| ≤ CK |B1(z)|, where B1, B2 are the divisors asso
iated with
Z1,Z2, respe
tively. The 
onstant CK is the same for all z from the
ompa
t subset K ⊂ D

n.



Hardy spa
es in the polydisk 73Proof. The impli
ations (i)⇒(ii)⇒(iii) are obvious. To prove (iii)⇒(iv)observe that if B2 is the divisor for Z2, then B2 ∈ Hp for any 1 < p < ∞and 
onsequently B2|Z1
= 0. Therefore B2 = FB1 for some F ∈ Hp⊗Mn+2.Sin
e evaluation at a point is 
ontinuous on Hp, we have (iv).Observe now that if we assume (iv), then B2(ζ) = 0 for any ζ ∈ Z1.Consequently, we have

ζ ∈ D
n ∩

⋂

ε>0

⋃

z∈Z2

{|Φz(ζ)| ≤ ε} = Z2.Corollary 2. If I(Z1)∩Hp = I(Z2)∩Hp for some p with 2 < p < ∞,then Z1 = Z2 whenever Z1,Z2 are interpolating sequen
es in D
n.2. Notation

• Z = {zk}k∈N � a sequen
e in D
3,

• dA = dA1dA2dA3 � the area measure in D
3,

• dm = dm1dm2dm3 � the normalized Lebesgue measure on T
3,

• dΩ = dΩ1dΩ2dΩ3,
• dΩi = log 1

|zi|
dAi, i = 1, 2, 3,

• E � the spa
e of all di�erential forms with 
oe�
ients from C∞(D3),
• Eq � the spa
e of all (0, q)-di�erential forms with 
oe�
ients from

C∞(D3),
• Λl � the exterior algebra generated by e1, . . . , el,
• ∩ � denotes also the produ
t in Λl,
• Λl

1 � the linear subspa
e of Λl spanned by e1, . . . , el,
• Λl

2 � the linear subspa
e of Λl spanned by ei ∩ ej, 1 ≤ i, j ≤ l,
• Hp = Hp(Dn) � the Hardy spa
e in the polydisk,
• C(A, B) � a 
onstant whi
h depends only on A and B and sometimeson n,
• A . B � means that there exists a 
onstant C su
h that A ≤ CBand the 
on
rete value of C is of no importan
e for the proof.3. Methods and proofs. Observe that if Z = ∅, then the problem isa
tually the Hp 
orona problem. On the other hand, the Gleason problem,i.e. the problem of �nding, for a given fun
tion f ∈ Hp with f(0) = 0,fun
tions F1, . . . , Fn ∈ Hp su
h that f = z1F1 + · · · + znFn, has a trivialsolution in the polidysk (and the standard solution in the 
ase of the unitball). The main idea behind the proof in [3℄ is to make use of these twoobservations. We adapt this 
onstru
tion to the setting of the polydisk.More spe
i�
ally, the �rst step is to solve the Hp 
orona problem o�some neighbourhood of Z. What is important here is that we have to dealessentially with the problem for H∞ fun
tions. Then we solve the Gleasonproblem at 0 ∈ D

n and use the fa
t that the automorphisms of D
n a
t



74 M. Jasi
zaktransitively to obtain the solution in a neighbourhood of Z. The next stepis to glue these two solutions together in a standard way. Analysis of the
orresponding Koszul 
omplex leads to some ∂-problem in D
n. The s
hemeof solving the equations whi
h one en
ounters here was des
ribed in [7℄. Thisinvolves solving higher order ∂-equations in the spirit of Wol�'s proof of the
orona theorem and the te
hnique whi
h is sometimes 
alled the proje
tionmethod for the polydisk.As for the �language� of the proof, we keep the notation introdu
ed in [4℄.This makes the proofs not only mu
h more transparent, but also easy togeneralize to higher dimensions. The style of the paper is rather 
on
ise, dueto the fa
t that the 
ore of the 
onstru
tion is the same as in [3℄. The readeris invited to 
onsult the papers [1℄, [3℄, [4℄, [5℄, [7℄ for the details omittedhere.

E ⊗ Λl is an algebra under the multipli
ation
(∑

I

γIe
I
)
∩

(∑

J

δJeJ
)

:=
∑

I,J

γI ∧ δJeI ∩ eJ ,where ∩ on the right hand side stands for the produ
t in the exterior al-gebra Λl, while ∧ is the wedge produ
t in E . Assume now that B is an N -strongly de�ning fun
tion for Z. We write B = B1e1+ · · ·+BNeN and intro-du
e the operator δB on E⊗ΛN by δBf = B∪f . The bilinear operator ∪, theinner multipli
ation in Λl, is de�ned on the generators in the following way:
ei ∪ (ei1 ∩ · · · ∩ eim)

=

{
(−1)ij+1ei1 ∩ · · · ∩ êij ∩ · · · ∩ em if ij = i,
0 if ij 6= i for 1 ≤ j ≤ m,and is extended in an obvious way to E ⊗Λl. Similarly, we extend ∂ to E ⊗Λ(
f. [4℄).The Koszul 
omplex, i.e. E ⊗ Λ equipped with ∂ and δB, is a doubledi�erential 
omplex. This means that ∂2 = δ2

B = 0 and ∂δB = δB∂, sin
e
B = B1e1 + · · · + BNeN is holomorphi
.Apart from ∂ we also use the operators ∂1, ∂2, ∂3 : Eq ⊗ Λ → Eq+1 ⊗ Λ.First we prove the existen
e of a strongly de�ning fun
tion for Z. A
tu-ally, it is enough to mimi
 the argument from [3℄. This is the reason why weonly sket
h it. However, at some point we will be slightly more 
areful.Proof of Theorem 3. Assume that Z is an interpolating sequen
e in thepolydisk. To prove the existen
e of a strongly de�ning fun
tion for Z onehas to 
he
k whether the 
onstru
tion from [3℄ works in the setting of thepolydisk.The �rst step is to show that for any �nite interpolating sequen
e S ⊂ D

nwith |S| = m, there exist fun
tions βm
j ∈ H∞(Dn), j = 1, . . . , m, su
h that
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βm

j (zk) = δjk and
m∑

j=1

|βm
j (z)|2 ≤ C2,with a 
onstant C independent of n, z and m. The argument is the same asin [1℄ and is independent of the domain.This implies that if Z is an interpolating sequen
e in D

n, then thereexists a sequen
e (βj)j∈N of H∞ fun
tions with βj(zk) = δjk su
h that(2) ∞∑

j=1

|βj(z)|2 ≤ C2,with the same 
onstant. To show this one 
onsiders the Bana
h spa
e
H∞(Dn, l2) 
onsisting of bounded holomorphi
 fun
tions on D

n with val-ues in l2 and the norm
‖f‖H∞(Dn,l2) := sup

z∈Dn

( ∞∑

k=1

|fk(z)|2
)1/2

.Sin
e this is a dual spa
e, the sequen
e (β1
1 , 0, 0, . . . ), (β2

1 , β
2
2 , 0, . . . ), . . . hasa weak-∗ 
onvergent subsequen
e. Denote by β = (βj)j∈N the weak-∗ limit ofthis subsequen
e. Naturally, β satis�es (2) and βj(zk) = δjk for j, k ∈ N. In-deed, weak-∗ 
onvergen
e implies that for ea
h j, the sequen
e βn

j 
onvergespointwise.To 
on
lude the proof of the theorem, it is enough to de�ne
Hk = βk

∏

i6=k

(1 − βi), Bi =
∑

k

HkΦ
i
zk

, 1 ≤ i ≤ n,

Bn+1 =
∏

k

(1 − βk), Bn+2 =
∏

k

(1 − Hk).Observe that ∑∞
k=1 |Hk(z)| ≤ C, with the 
onstant independent of z. Theproof of Theorem 2.2 in [3℄ will show that we have 
onstru
ted a stronglyde�ning fun
tion for Z of dimension n+2, on
e we prove the next lemma.Lemma 1. Let H ∈ H∞(Dn, l1) and assume that H(z) = 0 for some

z ∈ D
n. Then there exists α ∈ H∞(Dn, l1) ⊗ ΛN

1 su
h that H = α ∪ Φz and
‖α‖H∞(Dn,l1)⊗Λn

1
≤ C‖H‖H∞(Dn,l1).Proof. Write H = (H1, H2, . . . ). When z = 0 we may write, for ea
h k,

Hk(z) = zn
Hk(z1, . . . , zn) − Hk(z1, . . . , zn−1, 0)

zn
+ · · · + z1

Hk(z1, 0, . . . , 0)

z1

= z1αk1 + · · · + znαkn,with trivial estimates showing that indeed ‖α‖H∞(Dn,l1)⊗ΛN
1
≤C‖H‖H∞(Dn,l1).The general 
ase follows by 
omposition with automorphisms of D

n.
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zakThe same argument would a
tually show that for an Hp fun
tion f ,
1 < p < ∞, with f(z) = 0 for some z ∈ D

n there exists Fz ∈ Hp ⊗ Λn
1 su
hthat f = Fz ∪Φz and ‖Fz‖Hp⊗Λn

1
. ‖f‖Hp . However, we need Fz with theseproperties to be de�ned in a di�erent manner (
f. Proposition 4.2 in [3℄ andLemma 6 below).Fix now a number δ > 0. Its value follows from the proofs below. Let

χ : R+ → [0, 1] be a smooth 
ut-o� fun
tion satisfying χ(t) = 1 for t < 1/2and χ(t) = 0 if t > 1. De�ne γ := G + (1 − χZ)H, where H = fb and
b =

N∑

j=1

Bj

|B|2
ejis de�ned only on the set {|B| > 0}, and

G =
∑

z∈Z

χ

(
|Φz|

2

δ2

)
Gz, Gz =

n∑

j=1

(tM−1
z Fz)jej .De�ne χZ to be the fun
tion

∑

z∈Z

χz(·) :=
∑

z∈Z

χ

(
|Φz(·)|

2

δ2

)
.

Observe that for ea
h ε > 0, b is bounded in {|B| > ε}. Let ω0 = γ and
ωr = b ∩ ∂ωr−1 = b ∩ (∂b)r−1 ∩ ∂γfor r > 0. Observe that ωr is well-de�ned in D

n. Indeed, in the set⋃
z∈Z{|Φz|

2 < δ2/2} we have ∂γ = 0. By 
ondition (iii) of the de�nitionof the de�ning fun
tion, this implies that the support of ωr is 
ontained inthe set {|B| > ε} for some non-zero ε. Furthermore, taking γs(z) := γ(sz)and bs for s < 1, we may assume that ωr belongs to Er−1 ⊗ Λr+1.Lemma 2. Let K be any (not ne
essarily linear) ∂-solving operator. De-�ne
η = ω0 − δBK(ω1 − δBK(ω2 − · · ·))

= ω0 − δBK(ω1 − δBK(ω2 − · · · − δBK(ωn−1 − δBKωn) . . .)).Then ∂η = 0 and δBη = f .Proof. First of all observe that δBη = δBω0 = f . As for the �rst propertynoti
e that
∂η = ∂ω0 − δB∂K(ω1 − δBK(ω2 − · · · ))

= ∂ω0 − δBω1 + δ2
BK(ω2 − · · · )

= ∂ω0 − δB(b ∩ ∂ω0) = 0,
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e δB∂γ = ∂δBγ = ∂f = 0. For this argument to work we must show that
ω1 − δBK(ω2 − · · · ) is ∂-
losed. Observe that
∂(ω1 − δBK(ω2 − · · · )) = ∂ω1 − δB∂K(ω2 − δBK(. . . )) = ∂ω1 − δBω2 = 0if ω2 − δBK(. . . ) is ∂-
losed. Thus, an indu
tion argument 
ompletes theproof.In other words, η is holomorphi
 and satis�es B1η1 + · · · + BNηN = f .What still has to be proved is that η may be 
hosen to belong to Hp⊗Λl

1. Toshow this, one �rst solves the problem for Bs, with s < 1, �nding appropriate
ηs satisfying ‖ηs‖Hp ≤ C with bound independent of s. A normal familyargument gives the existen
e of η ∈ Hp ⊗ Λl

1 su
h that δBη = f .We will restri
t our attention to the 
ase n = 3. The general 
ase 
anbe proved analogously. Lemma 2 shows that the problem in D
3 amounts tosolving the following equations in C

3:
∂η3 = ω3,(3)
∂η2 = ω2 − δBη3,(4)
∂η1 = ω1 − δBη2.(5) Let us re
all the 
on
ept of a Carleson measure in the polydisk [5℄. For

z = reiθ0 , let Iz denote the ar
 {eiθ : |θ − θ0| < 1 − r}. Let U be anyopen 
onne
ted subset of T
n. Set S(U) := {z ∈ D

n : Iz1
× · · · × Izn ⊂ U}.Equivalently, S(U) =

⋃
I1×···×In⊂U S(I1) × · · · × S(In). We shall 
onsiderpositive measures µ on D
n satisfying µ(S(U)) . |U |. It was indi
ated in [5℄that this is the 
orre
t generalization of the notion of Carleson measure forthe polydisk. This means for instan
e that su
h a measure is bounded onthe Lp(Tn) spa
e [5℄, i.e.(6) ( \

Dn

|F |p dµ
)1/p

≤
( \

Tn

|f |p dm
)1/p

,for any f ∈ Lp, 1 < p < ∞. Here F stands for the n-harmoni
 extensionof f . Therefore, su
h measures are 
alled Carleson measures on D
n.Additionally, we 
onsider positive measures on D

n satisfying µ(S(U)) .

|U |α for some 0 < α ≤ 1 and 
all them Carleson measures of order α, orsimply α-Carleson measures (
f. [2℄).If f is an Lp(Tn) fun
tion, then f̃ stands for the Poisson extension of |f |.We abuse the notation in an a

epted manner and write f̃ also if f ∈ Hp.Proposition 1.(i) There exists η3 ∈ E2 ⊗ ΛN satisfying
∂η3 = ω3
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zaksu
h that
η3 = ∂1∂2u12 + ∂1∂3u13 + ∂2∂3u23and ‖u12‖Lp , ‖u13‖Lp , ‖u23‖Lp ≤ C, with a 
onstant whi
h dependson ‖B‖H∞⊗ΛN

1
, ‖f‖Lp and ‖f̃‖Lp but not on s.(ii) There exists η2 ∈ E1 ⊗ ΛN satisfying

∂η2 = ω2 − δBη3su
h that
η2 = ∂1u1 + ∂2u2 + ∂3u3with ‖u1‖Lp , ‖u2‖Lp , ‖u3‖Lp ≤ C(δ, ‖B‖H∞⊗ΛN

1
, ‖f‖Lp , ‖f̃‖Lp).(iii) There exists η1 ∈ E0 ⊗ ΛN satisfying

∂η1 = ω1 − δBη2with ‖η1‖Lp . C(δ, ‖B‖H∞⊗ΛN
1

, ‖f‖Lp, ‖f̃‖Lp).Observe that Proposition 1(iii) together with a normal family argumentgives the proof of Theorem 2.Proof of Proposition 1(i). It is enough to solve the equation ∂1∂2∂3u =
ω3 and de�ne u12 = u, u13 = 0, u23 = 0. Thus, Proposition 1(i) is a 
onse-quen
e of the following lemma:Lemma 3. Suppose g ∈ C3(D3) satis�es :(i) |g|2dΩ is an α = 1 − 2/p-Carleson measure,(ii) \

D3

|h| · |∂1∂2∂3g| dΩ . 1,

(iii) ∑

i6=j, j 6=k, i6=k

\
D3

|∂ih| · |∂j∂kg| dΩ . 1,

(iv) ∑

i6=j, j 6=k, i6=k

\
D3

|∂i∂jh| · |∂kg| dΩ . 1,

for any h ∈ Hq with ‖h‖Lq = 1. Then the equation(7) ∂3u

∂z1∂z2∂z3
= ghas a solution u ∈ C∞(D3) with ‖u‖Lp(T3) ≤ C.Proof. Let u be a C∞(D3) solution to (7). Any C∞(D3) solution is of theform u+v, where v belongs to C∞(D3) and is ∂1∂2∂3-
losed. By duality, wehave

inf
v∈Hp(D3)

‖u + v‖Lp ≤ sup
{∣∣∣
\

T3

uh dm
∣∣∣ : h ∈ Hq, ‖h‖Hq ≤ 1

}
.



Hardy spa
es in the polydisk 79For a �xed h, by Green's theorem, we have
∣∣∣
\

T3

uh dm
∣∣∣ = c

∣∣∣
\

D3

∆1∆2∆3(uh) dΩ
∣∣∣ = c

∣∣∣
\

D3

∂1∂2∂3(hg) dΩ
∣∣∣.It is enough to estimate the right-hand side of the above equality by ‖h‖Hq .It follows from assumptions (ii)�(iv) that we have to deal with the expressioninvolving |g|dΩ only. We will work in R

2
+ ×R

2
+ ×R

2
+. For x ∈ R

3 let Γ (x) =
Γ (x1)×Γ (x2)×Γ (x3) denote the produ
t 
one. For a fun
tion h ∈ H1 de�nethe fun
tion

Ah(x) =

( \
Γ (x)

∣∣∣∣
∂3h

∂z1∂z2∂z3

∣∣∣∣
2

dA

)1/2

and sets Oj = {x ∈ R
3 : Ah(x) > 2j}. Let Fj denote the set of all points

z ∈ R
2
+ × R

2
+ × R

2
+ su
h that |Rz ∩ Oj | > |Rz|/2 and |Rz ∩ Oj+1| ≤ |Rz|/2,where Rz is the re
tangle 
entred at (x1, x2, x3) with side lengths 2y1, 2y2and 2y3, respe
tively. De�ne also Ωj =

⋃
z∈Fj

Rz.Obviously (
f. [7℄ and [8℄), we have\
R2

+
×R2

+
×R2

+

∣∣∣∣
∂3h

∂z1∂z2∂z3

∣∣∣∣|g|y1y2y3 dx dy =
∑

j

\
Fj

∣∣∣∣
∂3h

∂z1∂z2∂z3

∣∣∣∣|g|y1y2y3 dx dy

≤
∑

j

( \
Fj

∣∣∣∣
∂3h

∂z1∂z2∂z3

∣∣∣∣
2

y1y2y3 dx dy

)1/2( \
Fj

|g|2y1y2y3 dx dy
)1/2

,

whi
h 
an be estimated by (re
all that 2 < p < ∞)
( \

R2
+
×R2

+
×R2

+

|g|2y1y2y3 dx dy
)1/p

×

(∑

j

|Oj|
q(1/2−1/p)

( \
Ωj\Oj+1

\
Γ (x)

∣∣∣∣
∂3h

∂z1∂z2∂z3

∣∣∣∣
2

dx dy

)q/2)1/q

≤
(∑

j

2q(j+1)|Oj |
q/2 · |Oj|

q(1/2−1/p)
)1/q

. ‖h‖Hq .

The last inequality is a 
onsequen
e of results in [10℄ (again 2 < p < ∞).Let us re
all that, by the results in [5℄, if both |g|2dΩ and |∂1∂2∂3g|dΩare Carleson measures, and the inequalities
∑

i6=j, j 6=k, i6=k

\
D3

|∂if | · |∂j∂kg| dΩ . 1,

∑

i6=j, j 6=k, i6=k

\
D3

|∂i∂jf | · |∂kg| dΩ . 1
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zakhold for any H1 fun
tion f of norm 1, then the equation (7) is solvable withsup-norm 
ontrol of the solution.The symbol D will denote any 
onstant 
oe�
ient di�erential operator(
.
.d.o.) (di�erentiation with respe
t to z1, z2, z3). We write D
i for a 
.
.d.o.of order ≤ i.Lemma 4. Assume that F1, F2, F3 are bounded , holomorphi
 fun
tionsin D

3. Measures of the form(8) |Di1F1D
i2F2D

i3F3|
2dΩsatisfy the Carleson 
ondition on D

3, provided 0 ≤ i1 + i2 + i3 ≤ 3.Proof. We will deal only with
|∂1F1|

2|∂2F2|
2|∂3F3|

2dΩ,where F1, F2, F3 are bounded and holomorphi
 in D
3.Let U be an open 
onne
ted subset of T

2. We will �rst show that themeasure
µ = |∂1F1|

2|∂2F2|
2 log

1

|z1|
log

1

|z2|
dAis a Carleson measure on D

2, i.e. µ(S(U)) . |U |. Let us re
all a de
omposi-tion from [5℄. Let I be the proje
tion of U onto the �rst variable, and J ontothe se
ond variable. Fix x1 ∈ I and 0 ≤ y1 ≤ d(x1, I
c). When y1 > 0, let

{Jx1,y1,l}l denote the 
olle
tion of maximal disjoint intervals 
ontained in Jsu
h that (x1−y1, x1 +y1)×Jx1,y1,l ⊂ U . To prove that µ is a Carleson mea-sure, it is enough to show that |∂1(F1∂2F2)|
2dΩ is a Carleson measure, sin
eby the results in [5℄ the measure |∂1∂2F2|

2dΩ has this property. Following [5℄(
f. also [6℄) one obtains\
S(U)

|∂2(F2∂1F1)|
2y2 dy2 dx2 y1 dy1 dx1

≤

(
2 +

C

α
1/2
0

+
∞∑

m=1

αm−1

(
2 +

C

α
1/2
m

))
|U | ‖F1‖

2
∞‖F2‖

2
∞,whi
h yields the 
on
lusion, if the sequen
e αm has been 
hosen properly.If U is an open 
onne
ted subset of T

3, then one 
onsiders a similarde
omposition. Namely, let V be the proje
tion of U onto the �rst two vari-ables. Then V is open and 
onne
ted. Let I be the proje
tion of V ontothe �rst variable. For ea
h 0 ≤ y1 ≤ d(x1, I
c) 
hoose a maximal family

{Jx1,y1,l}l of open intervals su
h that (x1−y1, x1+y1)×Jx1,y1,l ⊂ U . For any
x2 ∈

⋃
l Jx1,y1,l and 0 ≤ y2 ≤ d(x2, (J

x2

x1,y1,l)
c) 
hoose a maximal family of in-tervals su
h that (x1 − y1, x1 + y1)× (x2 − y2, x2 + y2)×Kx1,y1,x2,y2,l,m ⊂ U .



Hardy spa
es in the polydisk 81The proof 
an be 
ompleted as in [5℄. We omit the rather te
hni
al de-tails.Observe that
ω3 = fb ∩ (∂b)2 ∩ ∂((1 − χZ)b) + b ∩ (∂b)2 ∩ ∂G.Thus, there exists a ξ with ‖ξ‖L∞ . 1 su
h that ∂1∂2∂3ξ = b ∩ (∂b)2 ∩

∂((1 − χZ)b)�this follows from the results in [7℄, whi
h we have already
ited. Consequently, ∂1∂2∂3(fξ) = fb∩(∂b)2∩∂((1−χZ)b) and to 
ompletethe proof of Proposition 1(i) it is enough to show that b∩ (∂b)2 ∩ ∂G 
an bewritten as a sum of expressions satisfying the assumptions of Lemma 3.Before we show this fa
t, we formulate a 
ouple of observations.Lemma 5. There exists a fun
tion D ∈ H∞(D3), whi
h is equivalent to
Φz near ea
h z ∈ Z, su
h that(9) |DΦz| . |D′D|on the set {|Φz| < δ}, z ∈ Z. Consequently ,

∑

z∈Z

|Dχz| . |D′D|.

Here D
′ stands for a 
.
.d.o. of order not greater than the order of D.Proof. De�ne a fun
tion D by

D :=
∞∑

k=1

Φzk
β2

k .The fa
t that D is equivalent to Φz near z ∈ Z 
an be shown as in [1℄.Dire
t 
omputations show (9). Indeed, �rst one shows that |Dmz| . |DΦz| in
{|Φz| < δ}, and then uses the formula D = mzΦz, whi
h holds in {|Φz| < δ},to prove (9) indu
tively. Here mz stands for an H∞ matrix whi
h is uniformlyinvertible near z.The other inequality follows from the fa
t that the sets {|Φz1

| < δ} and
{|Φz2

| < δ} are disjoint provided z1 6= z2.Lemma 6. Denote by f̃ the Poisson extension of |f |. Then
|DFz(ζ)| . f̃(z) . f̃(ζ)for ζ ∈ {|Φz| < δ}.Proof. The proof is left to the reader (
f. [3℄).The fa
t that |b ∩ (∂b)2 ∩ ∂G|2dΩ is an (1 − 2/p)-Carleson measure isnow almost obvious. Indeed, ea
h term whi
h appears in |b∩ (∂b)2∩∂G|2dΩ
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zakis of the form (or 
an be estimated by)
|F∂1F1∂2F2∂3F3|

2dΩ,where F1, F2, F3 are bounded holomorphi
 fun
tions in D
3 and F is a Poissonextension of an Lp fun
tion with 2 < p < ∞.Take now any Hq fun
tion h and observe that\

D3

|∂2∂3h| |f̃ | |∂1D|2|∂2D| |∂3D| dΩ

.
\

D2

\
T

|∂2∂3h| |f̃ | |∂2D| |∂3D| dm1 dΩ2 dΩ3 =: I,

be
ause |∂1D|2 log 1
|z1|

dA1 is Carleson measure on the unit disk with a Car-leson norm bounded by ‖D‖2
L∞ and f̃∂2∂3h(·, z2, z3) belongs to h1 for ea
h�xed z2 and z3. Thus

I .
\
T

( \
T2

|h|q dm2 dm3

)1/q(\
D2

|f̃ |2|∂2D|2|∂3D|2 dΩ2 dΩ3

)1/p
dm1

.
\
T

(\
T2

|h|q dm2 dm3

)1/q(\
T2

|f̃ |2 dm2 dm3

)1/p
dm1 ≤ ‖h‖Hq‖f̃‖

2/p
L2 .

This follows from the fa
t that |∂2D|2|∂3D|2dΩ2dΩ3 is a Carleson measureon the bidisk with Carleson norm uniformly bounded for z1 ∈ D (see theproof of Lemma 3). Similar arguments also show that\
D3

|∂3h| |f̃ | |∂1D|2|∂2D|2|∂3D| dΩ . ‖h‖Hq ,\
D3

|∂1∂2∂3h| |f̃ | |∂1D| |∂2D| |∂3D| dΩ . ‖h‖Hq .

This 
ompletes the proof of Proposition 1(i).Proof of Proposition 1(ii). Observe that
δBη3 = δB(∂1∂2u12 + ∂1∂3u13 + ∂2∂3u23)

= ∂1∂2δBu12 + ∂1∂3δBu13 + ∂2∂3δBu23.As a result, to 
omplete the proof, it is enough to solve the equation(10) ∂1∂2v12 + ∂1∂3v13 + ∂2∂3v23 = ω2,with Lp 
ontrol of the solution.Lemma 7. Fix 1 ≤ i 6= j ≤ 3 and suppose that g ∈ C2(D
3
) satis�es :(i) |g|2dΩidΩj is an α = 1 − 2/p-Carleson measure,
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tions : \
D2

|h| |∂i∂jg| dΩi dΩj ,\
D2

(|∂ih| |∂jg| + |∂jh| |∂ig|) dΩi dΩj ,\
D2

|∂i∂jh| |g| dΩi dΩjbelong to L1(Tk) with the norm . ‖h‖Hq , where h is any Hq fun
tionin D
3. Then there exists v su
h that

∂2v

∂zi∂zj
= g,with ‖v‖Lp . C.Proof. Repeating the argument from Lemma 3 we are led to 
onsider∣∣∣

\
T3

hv dm
∣∣∣ =

∣∣∣
\
T

\
D2

∆i∆j(hv) dΩj dΩi dmk

∣∣∣

≤
\
T

∣∣∣
\

D2

∂i∂j(hg) dΩi dΩj

∣∣∣ dmk.The last expression 
an be estimated by assumptions and using similar ar-guments to those in the proof of Lemma 3 by ‖h‖Hq . This yields the 
on
lu-sion.Observe that ea
h term of ω2 satis�es the assumptions of the previouslemma. This 
an be shown as in the proof of Proposition 1(i). Consequently,we 
an solve the equation (10) with 
ontrol of the Lp norm. Lemma 3 in [7℄says that we 
an modify v12 − δBu12, v13 − δBu13, v23 − δBu23 with 
ontrolof the Lp norm to �nd a solution u12, u13, u23 to the equation
∂1∂2u12 + ∂1∂3u13 + ∂2∂3u23 = ω2 − δBη3satisfying

u12 − u13 + u23 = 0.One 
he
ks easily that for η2 = ∂2u12 + ∂3u13 we have ∂η2 = ω2 − δBη3.Proof of Proposition 1(iii). Again we have
δBη2 = δB(∂1u1 + ∂2u2 + ∂3u3)

= ∂1δBu1 + ∂2δBu2 + ∂3δBu3.Therefore, to solve the equation ∂η1 = ω1 − δBη2 one needs to solve theequations ∂η = ω1 only. This is a
hieved in two steps. First one pro
eeds asin the one variable 
ase, and then one 
orre
ts the solution making use ofLemma 2 in [7℄.
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