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Universal divisors for Hardy spaces in the polydisk

by MicHAE JAsICzZAK (Poznan)

Abstract. We show that for an interpolating sequence in the polydisk one can con-
struct a universal divisor for Hardy spaces.

1. Introduction. It is a remarkable fact in one variable Hardy space
theory that given a function f € HP(D), one can find another function
g € HP with no zeros in D such that f = Bg. Here B stands for the Blaschke
product for the zero set of f. What is important here is that B depends only
on the zeros of f, not on f itself. That is why the Blaschke products are
called universal divisors for the Hardy space. Let us emphasize that the
Blaschke product is a product of automorphisms of the unit disk.

The situation in several variables is more involved. No such result is
known for a general domain D C C". However, in some cases one can try to
obtain similar results. Importantly, for this idea to work one needs the group
of automorphisms of D to act transitively on D. In C", n > 1, there is only
one domain with this property and C? boundary—the unit ball B (cf. [9]).
The question of existence of universal divisors in Hardy spaces in the case
of the unit ball was investigated in [3]. It was shown that one can construct
such divisors for a discrete set Z C B, under the assumption that Z is an
interpolating sequence for Hardy spaces.

In this paper we study another standard domain in C™, the polydisk. We
prove the following fact:

THEOREM 1. If Z is an interpolating sequence for H>(D™) in the poly-
disk, then there is a universal divisor (of dimension n + 2) for Z and any
H? with 2 < p < 0.

The next definition specifies what we mean by a universal divisor.
DEFINITION 1. We shall say that B = (By,...,By) € (H®)V is a
universal divisor (of dimension N) for Z and the space H? if B|z = 0 and

2000 Mathematics Subject Classification: Primary 32A35; Secondary 32A10, 32A60.
Key words and phrases: Hardy space, polydisk, interpolating sequence, universal di-
visor, Carleson measure.

[71] © Instytut Matematyczny PAN, 2007



72 M. Jasiczak

for any function f € HP with f|z = 0, there is F' € (HP)" such that
N

(1) f=Y FB
j=1

The polydisk has a transitive group of automorphisms. Let &,, z =
(21,...,2n) € D", denote the biholomorphism

21— G Zn —Gn >
b.(¢) = e, .
#0) (1 —Z1Q1 1 —ZnGn
We shall use the terminology from [3].

DEFINITION 2. Let Z be a sequence of points in D™. We shall say that
a CN-valued bounded holomorphic function B = (By,...,By) is an N-
strongly defining function for Z if
(i) Blz =0, ~
(ii) there are n functions among the B;, B := (Bjy,..., B,) say, such
that for all z € Z, B = M, - @, for some M, € H>® ® M, such that

|M.|| <61 onD",
MM <67t on {22 < a},
(iii) for each € > 0 there is > 0 such that

¢e ({12l =} = B =n.
z€Z
One says that B is equivalent to @, near each z € Z. The meaning of
uniform equivalence is clear.
Theorem 1 will be proved once we show that:

THEOREM 2. If B is an N-strongly defining function for Z in D", then
B is a universal divisor for Z in HP(D") for 2 < p < oco.

THEOREM 3. If Z is an interpolating sequence in D", then there exists
an (n + 2)-strongly defining function for Z.

Denote by I(Z) the ideal of all holomorphic functions f in D" with
flz = 0. Observe that condition (1) means that H? N I(Z) = H?P - B.

COROLLARY 1. Assume that Z1,Zy are interpolating sequences in D™.
The following conditions are equivalent:

() Z1 C ZQ,

(il) I(Z2) N HP C I(Z1) N HP for all 2 < p < o0,

(i) I(Z2) N HP C I(21) N HP for some 2 < p < 00,

(iv) |Ba(z)| < Ck|Bi(z)|, where By, Ba are the dwzsors associated with
Z1, Za, respectively. The constant Ck is the same for all z from the
compact subset K C D™,
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Proof. The implications (i)=-(ii)=-(iii) are obvious. To prove (iii)=(iv)
observe that if Bs is the divisor for Z5, then By € HP for any 1 < p < o0
and consequently Bs|z, = 0. Therefore By = F' B for some F' € HP @ M, ;9.
Since evaluation at a point is continuous on H?, we have (iv).

Observe now that if we assume (iv), then By(¢) = 0 for any ( € Z;.
Consequently, we have

¢ed"'n() J{2:(QI<e} =25 m
e>02z€29
COROLLARY 2. If I(Z1)NHP = I(22)NHP for some p with 2 < p < 00,
then Z1 = Zo whenever Z1, Zs are interpolating sequences in D".

2. Notation

Z = {zr}ren — a sequence in D3,

dA = dA1dAyd A3z — the area measure in D?,

dm = dmidmadms — the normalized Lebesgue measure on T3,
df) = dfdf2odS2s,

df2; = log ﬁdAi, i=1,2,3,

e & — the space of all differential forms with coefficients from C°°(D?),

e & — the space of all (0, ¢)-differential forms with coefficients from
(D),

o Al — the exterior algebra generated by ey, ..., e,

e N — denotes also the product in A’

° Al1 — the linear subspace of A’ spanned by ey, ..., e,

) Al2 — the linear subspace of A! spanned by e; N ej, 1 <i,7 <lI,

e HP = HP(D") — the Hardy space in the polydisk,

e C(A, B) — a constant which depends only on A and B and sometimes

on n,
e A < B — means that there exists a constant C' such that A < CB
and the concrete value of C is of no importance for the proof.

3. Methods and proofs. Observe that if Z = (), then the problem is
actually the HP corona problem. On the other hand, the Gleason problem,
i.e. the problem of finding, for a given function f € HP with f(0) = 0,
functions Fi,...,F, € HP such that f = 21 F} + --- + 2, F},, has a trivial
solution in the polidysk (and the standard solution in the case of the unit
ball). The main idea behind the proof in [3] is to make use of these two
observations. We adapt this construction to the setting of the polydisk.

More specifically, the first step is to solve the HP corona problem off
some neighbourhood of Z. What is important here is that we have to deal
essentially with the problem for H*® functions. Then we solve the Gleason
problem at 0 € D" and use the fact that the automorphisms of D" act
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transitively to obtain the solution in a neighbourhood of Z. The next step
is to glue these two solutions together in a standard way. Analysis of the
corresponding Koszul complex leads to some 0-problem in D". The scheme
of solving the equations which one encounters here was described in |7]. This
involves solving higher order d-equations in the spirit of Wolff’s proof of the
corona theorem and the technique which is sometimes called the projection
method for the polydisk.

As for the “language” of the proof, we keep the notation introduced in [4].
This makes the proofs not only much more transparent, but also easy to
generalize to higher dimensions. The style of the paper is rather concise, due
to the fact that the core of the construction is the same as in [3]. The reader
is invited to consult the papers [1], [3], [4], [5], [7] for the details omitted
here.

£ ® Al is an algebra under the multiplication

! JY) .= I~
(ZJ:’YJG>Q(ZJ:5J6>. %}:w/\(he Ne”,

where N on the right hand side stands for the product in the exterior al-
gebra A', while A is the wedge product in £. Assume now that B is an N-
strongly defining function for Z. We write B = Biei;+- - -+ Byen and intro-
duce the operator 65 on EQ AN by 6gf = BUf. The bilinear operator U, the
inner multiplication in A%, is defined on the generators in the following way:

e;U(e; N---Nejy,)
_{(—1)ij+16i1m...mgijm...mem if i; = 4,
0 if i £ifor 1 <j<m,

and is extended in an obvious way to £ ® A'. Similarly, we extend 0 to £€® A
(cf. [4]). 3

The Koszul complex, i.e. £ ® A equipped with 9 and dp, is a double
differential complex. This means that 0% = 5% = 0 and 00 = dp0, since
B = Bjey + - - + Byen is holomorphic.

Apart from 0 we also use the operators 9;,02,05: £ ® A — Eg1 @ A.

First we prove the existence of a strongly defining function for Z. Actu-
ally, it is enough to mimic the argument from [3]. This is the reason why we
only sketch it. However, at some point we will be slightly more careful.

Proof of Theorem 3. Assume that Z is an interpolating sequence in the
polydisk. To prove the existence of a strongly defining function for Z one
has to check whether the construction from [3] works in the setting of the
polydisk.

The first step is to show that for any finite interpolating sequence S C D"
with |S| = m, there exist functions Bt € H>*(D"), j =1,...,m, such that



Hardy spaces in the polydisk 75
B (z1) = 0 and
Z ’ ,Bm ’2 < CQ

with a constant C' independent of n, z and m. The argument is the same as
in [1] and is independent of the domain.

This implies that if Z is an interpolating sequence in D", then there
exists a sequence (3;);en of H* functions with (3;(z;) = d; such that

(2) Z 18i(2)]* < €2,

with the same constant. To show this one considers the Banach space
H®>(D",1?) consisting of bounded holomorphic functions on D" with val-
ues in /5 and the norm

> 1/2
fll groo(n g2y := sup fu(2)]? .
1l e g2 Zem(;r W)

Since this is a dual space, the sequence (3;,0,0,...),(5%,35,0,...),... has
a weak-* convergent subsequence. Denote by 3 = (f3;)jen the weak-* limit of
this subsequence. Naturally, 3 satisfies (2) and 3;(z;) = 0, for j, k € N. In-
deed, weak-* convergence implies that for each j, the sequence 5;1 converges
pointwise.

To conclude the proof of the theorem, it is enough to define

H.=p][1-8), Bi= Zﬂk% 1<i<n,
£k
Buyr=[[(1=Br),  Buya =] - Hp).
k k

Observe that Y 7, |Hy(z)| < C, with the constant independent of z. The
proof of Theorem 2.2 in [3]| will show that we have constructed a strongly
defining function for Z of dimension n + 2, once we prove the next lemma. =
LEMMA 1. Let H € H®(D", ') and assume that H(z) = 0 for some
z € D". Then there exists o € H®(D",1') @ AY such that H = a U ®, and
l[etll oo o 1)@ ar < CIH || oo (o g1y
Proof. Write H = (Hy, Ha,...). When z = 0 we may write, for each £k,
Hk(z) =2 Hk(zl,...,zn) - Hk(zl,.. .,Zn_l,O) Feitozy Hk(zl,O,...,O)
Zn Z1
= 2101 + -+ + ZnQgn,

with trivial estimates showing that indeed [|of| oo (pn MoaN SCIH| e pn 1)
The general case follows by composition with automorphisms of D”. =
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The same argument would actually show that for an H? function f,
1 < p < oo, with f(z) = 0 for some z € D" there exists F, € HP ® A} such
that f = F,U®, and || F,||grgar S || f| ge. However, we need F, with these
properties to be defined in a different manner (cf. Proposition 4.2 in [3] and
Lemma 6 below).

Fix now a number § > 0. Its value follows from the proofs below. Let
x: Ry — [0,1] be a smooth cut-off function satisfying x(¢) = 1 for ¢t < 1/2
and x(t) =01if ¢t > 1. Define v := G + (1 — xz)H, where H = fb and

N p—
B;
b= Z B2 €j
j=1
is defined only on the set {|B| > 0}, and

6. i
G= ZX( 52 G. G. = Z(th IFZ)jej'

2€2 j=1

Define yz to be the function
|2-()1?
> L),
2€Z z€Z
Observe that for each € > 0, b is bounded in {|B| > }. Let w” =~ and
Ww=bNow Tt =bn (0L Ndy

for r > 0. Observe that w” is well-defined in D”. Indeed, in the set
U,ez{|®-]* < 6%/2} we have §y = 0. By condition (iii) of the definition
of the defining function, this implies that the support of w” is contained in
the set {|B| > ¢} for some non-zero . Furthermore, taking ~v(z) := 7v(sz2)
and b, for s < 1, we may assume that w” belongs to £&_1 ® A,41.

LEMMA 2. Let K be any (not necessarily linear) 0-solving operator. De-
fine
—.,0 1 2
n=w —oipK(w —opK(w"—--"))
=’ — (5BK(w1 — (5BK(LU2 — = 5BK(w”*1 — (5BKwn) .. ))
Then On =0 and 6pn = f.

Proof. First of all observe that 6pn = dpw® = f. As for the first property
notice that

on = 0w’ — 6pOK (W' — 0pK(w? —---))
:5w0—53w1+5%[((w2_...)
= 0w’ —5B(bﬂgw0) =0,
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since g0y = 0dpy = 0 f = 0. For this argument to work we must show that
w! —dpK(w? —---) is O-closed. Observe that

I(w! = 0pK(w? —--+)) = Ow' — 60K (wg — 65K (...)) = 0w’ — 6pw? =0

if wy — 6pK(...) is O-closed. Thus, an induction argument completes the
proof. m

In other words, 7 is holomorphic and satisfies Bym + --- + Byny = f.
What still has to be proved is that n may be chosen to belong to Hp®/1l1. To
show this, one first solves the problem for B, with s < 1, finding appropriate
ns satisfying ||ns||g» < C with bound independent of s. A normal family
argument gives the existence of n € H? ® A} such that dpn = f.

We will restrict our attention to the case n = 3. The general case can
be proved analogously. Lemma 2 shows that the problem in D? amounts to
solving the following equations in C3:

(3) o =uw?,
(4) 5772 = w2 - 537737
(5) o' =w' —spn?.

Let us recall the concept of a Carleson measure in the polydisk [5]. For
z = 7€' let I, denote the arc {e: |§ — 6y < 1 —r}. Let U be any
open connected subset of T™. Set S(U) :={z € D": I, x ---x I, C U}.
Equivalently, S(U) = Uy, x..x1,coSU1) X --+ x S(I). We shall consider
positive measures p on D" satisfying p(S(U)) < |U|. It was indicated in [5]
that this is the correct generalization of the notion of Carleson measure for
the polydisk. This means for instance that such a measure is bounded on
the LP(T™) space [5], i.e.

(6) (§1Fran)” < (1sram)"”.
Dn T»
for any f € LP, 1 < p < oo. Here F' stands for the n-harmonic extension
of f. Therefore, such measures are called Carleson measures on D™.
Additionally, we consider positive measures on D" satisfying p(S(U)) <
|U|* for some 0 < o < 1 and call them Carleson measures of order «, or
simply a-Carleson measures (cf. [2]).
If f is an LP(T™) function, then f stands for the Poisson extension of |f].

We abuse the notation in an accepted manner and write falso if f e HP.
PROPOSITION 1.
(i) There exists 1 € & @ AN satisfying

o’ = W
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such that
n® = 910212 + 0103u13 + 203u23
and ||uizl| e, [|uis|| e, ||uzsllr < C, with a constant which depends
on HBHHOO@)A{V, I fllze and || f]lze but not on s.
(ii) There exists n* € £ @ AN satisfying
B =u? — b’
such that
n* = 01u1 + daug + Ozus
with [luy e, [[uzllze, [uslle < C(6, [|Bllgoogan s [ fllze, [ £ Le)-
(iii) There exists n' € & ® AN satisfying
o' =w' = épn’?
with [n'lle < CO 1Bl goegans 1 e, [ fllze)-

Observe that Proposition 1(iii) together with a normal family argument
gives the proof of Theorem 2.

Proof of Proposition 1(i). It is enough to solve the equation 0;0203u =
w3 and define ujs = u, u13 = 0, us3 = 0. Thus, Proposition 1(i) is a conse-
quence of the following lemma:

LEMMA 3. Suppose g € C3(D?) satisfies:

(i) |g|?df2 is an o = 1 — 2/p-Carleson measure,

(ii) | B+ 0102059] d02 S 1,
D3
(iii) > 1ol -10;0e91d02 S 1,
i#], j#k, ik D3
(iv) > {100kl -0kgld2 S 1,

i], jk, ik D3
for any h € H? with ||h||a = 1. Then the equation
Pu
(7) A - — 9
821822823
has a solution u € C>(D?) with 1wl pr3y < C.

Proof. Let u be a C°°(D?) solution to (7). Any C>°(D?) solution is of the

form u + v, where v belongs to C*°(D?) and is 0;0203-closed. By duality, we
have
inf  |u+o|r < sup{‘ S uhdm‘: he H ||hl|ge < 1}.

vEHP(D3) T3
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For a fixed h, by Green’s theorem, we have

‘ i uhdm‘ - c‘ | A14045(uh) dQ‘ - c‘ | 210204(hg) 22|,
T3 D3 D3

It is enough to estimate the right-hand side of the above equality by ||h|| ga-
It follows from assumptions (ii)—(iv) that we have to deal with the expression
involving |g|df2 only. We will work in R2 x R% x R%. For z € R3 let I'(z) =
I(z1) x I'(x9) x I'(x3) denote the product cone. For a function h € H! define
Ah(z) = < |
r

the function
2 1/2
dA)
()

and sets O; = {z € R3: Ah(x) > 27}. Let F; denote the set of all points
z € RZ x R% x R? such that |[R, N O,| > |R.|/2 and |R, N O,41] < |R.|/2,
where R, is the rectangle centred at (x1,x2,z3) with side lengths 2y, 2y,
and 2ys, respectively. Define also £2; = (.. F, R,.

Obviously (cf. [7] and [8]), we have
S O3h
Ri_xRixRQ 821822823

<> (]
which can be estimated by (recall that 2 < p < o)

( | 9% y1y2y3 da dy) w

R2 xR3 xR3
X(Zyoj\qﬂ/?—l/m( [
J

2;\Oj41 I'(x)

O3h
821822823

l9ly1y2ys d dy

0%h
glyyeysdrdy =Y | |55
I 82182’2823

1/2 ) 12
dr d dx d
32182282 Y1y2ys3 ax y> (1§ \91“y1y2y3 dx y) ,
J

0%h
82’1 822823

2 a/2\ 1/q
dx dy> )

. 1/
< (Z 90(+1)|0;[0/2 ’Oj‘q(l/Q_l/p)> Ry
J

The last inequality is a consequence of results in [10] (again 2 < p < c0). =

Let us recall that, by the results in [5], if both |g|?df2 and |010203g|df?

are Carleson measures, and the inequalities
> Vloifl-1050eg1d02 S 1,
i, j#k, ik D3

> [ 10:0f] - |okgld £ 1
i#], j£k, i#k D3
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hold for any H'! function f of norm 1, then the equation (7) is solvable with
sup-norm control of the solution.

The symbol © will denote any constant coefficient differential operator
(c.c.d.o.) (differentiation with respect to 21, 22, 23). We write D for a c.c.d.o.
of order < i.

LEMMA 4. Assume that Fy, Fo, F3 are bounded, holomorphic functions
in D3. Measures of the form

(8) 1D D2 D% F3)2dN
satisfy the Carleson condition on D3, provided 0 < i1 + iy + i3 < 3.
Proof. We will deal only with
|01 F1 |*|02 5|05 F3 |2 dS2,

where F, F5, F3 are bounded and holomorphic in D?.

Let U be an open connected subset of T2. We will first show that the

measure
1

n = ’81F1|2|82F2’2 log — log LdA

2] [z
is a Carleson measure on D?, i.e. u(S(U)) < |U|. Let us recall a decomposi-
tion from [5]. Let I be the projection of U onto the first variable, and J onto
the second variable. Fix x; € I and 0 < y; < d(z1,¢). When y; > 0, let
{Jz141,1}1 denote the collection of maximal disjoint intervals contained in J
such that (1 —y1,21+y1) X Jz, 4,1 C U. To prove that  is a Carleson mea-
sure, it is enough to show that |01 (F102F3)|?dS? is a Carleson measure, since
by the results in [5] the measure |0;95 F,|2df2 has this property. Following [5]
(cf. also [6]) one obtains

S |02 (Fa01 F1)|Pya dya dag 1 dyy day

SU) oo

C C

< (24 5+ X ana (24 55 ) O AL
Qg m=1 Qm

which yields the conclusion, if the sequence «,, has been chosen properly.
If U is an open connected subset of T3, then one considers a similar
decomposition. Namely, let V' be the projection of U onto the first two vari-
ables. Then V is open and connected. Let I be the projection of V' onto
the first variable. For each 0 < y; < d(x1,I¢) choose a maximal family
{Jz141,1}1 of open intervals such that (x1 —y1, 21 +y1) X Jg, 4,10 C U. For any
z2 € U, Jpy g0 and 0 < yo < d(z2, (J32, ;)°) choose a maximal family of in-

zl7y17l

tervals such that (x1 —y1, 21 +y1) X (22 — Y2, 22 +y2) X Ky 41 20.ys0m C U.
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The proof can be completed as in [5]. We omit the rather technical de-
tails. m

Observe that
w3 = fon (9b)2NI((1 — x2)b) + b N (9b)* N IG.
Thus, there exists a & with |||z~ < 1 such that 010203¢ = b (9b)%2 N

J((1 — xz)b)—this follows from the results in [7], which we have already

cited. Consequently, 9109203(f¢) = fbN(9b)2NA((1—xz)b) and to complete

the proof of Proposition 1(i) it is enough to show that bN (9b)2 N IG can be

written as a sum of expressions satisfying the assumptions of Lemma 3.
Before we show this fact, we formulate a couple of observations.

LEMMA 5. There exists a function D € H>®(D?), which is equivalent to
@, near each z € Z, such that

(9) 92| < |9'D|

on the set {|P,| <}, z € Z. Consequently,
> Px:l 519D
2€Z

Here ®' stands for a c.c.d.o. of order not greater than the order of .

Proof. Define a function D by
o0
D:=> .05
k=1

The fact that D is equivalent to ¢, near z € Z can be shown as in [1].
Direct computations show (9). Indeed, first one shows that [Dm,| < |[DP,|in
{|®.] < d§}, and then uses the formula D = m,®,, which holds in {|®.| < ¢},
to prove (9) inductively. Here m, stands for an H°° matrix which is uniformly
invertible near z.

The other inequality follows from the fact that the sets {|®.,| < 0} and
{|®.,| < &} are disjoint provided z; # z2. =

LEMMA 6. Denote by f the Poisson extension of |f|. Then

DEQ] S f(2) S f(C)
for ¢ € {|2,| < 6}.
Proof. The proof is left to the reader (cf. [3]). m

The fact that [b N (9b)2 N OG|*dS2 is an (1 — 2/p)-Carleson measure is
now almost obvious. Indeed, each term which appears in |bN (9b)2NOG|>d2
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is of the form (or can be estimated by)
|F O FL0o Fyd3F3%dS2,

where Fy, I, F3 are bounded holomorphic functions in D3 and F is a Poisson
extension of an LP function with 2 < p < oco.
Take now any HY function h and observe that

| 18205h] |f]101D|*|02D| |05 D| ds2
]D)S
< | V102051] | £1102D] 05D dmy d2 dS25 =: T,
D2T

because |0, D|? log B |dA1 is Carleson measure on the unit disk with a Car-

leson norm bounded by || D||%. and f0203h(-, 29, z3) belongs to h' for each
fixed 2z and z3. Thus

S ( S |darL2 dm;),)l/q(g |ﬂ2|82D’2|63D|2dQQ dﬂg) 1/p dm1
D2

T T2
< 98 i dm g ) (§ 171 )™ o < o 71
T T2 T2

This follows from the fact that |9 D|?|03D|2d22d (25 is a Carleson measure
on the bidisk with Carleson norm uniformly bounded for z; € D (see the
proof of Lemma 3). Similar arguments also show that

| 105k |f1101 DI?|02D (05 D] d2 < |11 15,
D3
| 1010:05h | £] 101D 18, D|85D| dS2 < ||| 1.
D3
This completes the proof of Proposition 1(i). m
Proof of Proposition 1(ii). Observe that
551° = 0p(9102u12 + 0103u13 + O203us3)
= 01020pu12 + 01036 pui3 + 02030 puss.
As a result, to complete the proof, it is enough to solve the equation
(10) 9102v12 + 9103v13 + 0203023 = W,
with LP control of the solution.

LEMMA 7. Fiz 1 <1i# j <3 and suppose that g € C’Q(ﬁg) satisfies:

(i) ]g|2inde is an a =1 — 2/p-Carleson measure,
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(ii) The functions:
| 1110:0;9] d2; ds2;,

D2
V (10:1]10;9] + 01| |0:g]) ds2i ds2;,
]D)Q

| 10:0;n] |g| ds2; ds2;

D2

belong to L*(T},) with the norm < ||h||ga, where h is any HY function
in D3. Then there exists v such that

v

8Ei8zj -

9,

with ||v]|r S C.
Proof. Repeating the argument from Lemma 3 we are led to consider

‘ [ hodm| = H | 2,4, (ho) de; de; dmk‘
T3 T D2

< ( [ 0,0 (hg) ds2; d;| dmy,.
T D2
The last expression can be estimated by assumptions and using similar ar-
guments to those in the proof of Lemma 3 by ||A|| 4. This yields the conclu-
sion. m

Observe that each term of w? satisfies the assumptions of the previous
lemma. This can be shown as in the proof of Proposition 1(i). Consequently,
we can solve the equation (10) with control of the L” norm. Lemma 3 in [7]
says that we can modify vio — dpuio,v13 — dpuis, 23 — dpues with control
of the LP norm to find a solution w12, 113, u23 to the equation

9102u1a + 0103u13 + 0203u23 = w? — dpn°
satisfying
u12 — u13 + ugz = 0.
One checks easily that for 172 = Oaui2 + O3uy3 we have 5772 =w?— 53773. n
Proof of Proposition 1(iii). Again we have
6pn* = 6(01uy + Daug + Ozu3)
= 016pu1 + 020pus + d38pus.
Therefore, to solve the equation on' = w!' — 6pn? one needs to solve the
equations 0n = wi only. This is achieved in two steps. First one proceeds as

in the one variable case, and then one corrects the solution making use of
Lemma 2 in [7].
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