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Continuous pluriharmonic boundary values

by PER AHAG (Sundsvall) and Rarat Czv7 (Krakow)

Abstract. Let D; be a bounded hyperconvex domain in C"/ and set D = D; x

X Dg, 5 =1,...,8, 8 > 3. Also let G,, be the symmetrized polydisc in C", n > 3.

We characterize those real-valued continuous functions defined on the boundary of D or

G, which can be extended to the inside to a pluriharmonic function. As an application a
complete characterization of the compliant functions is obtained.

1. Introduction. Let 2 C C™ be a bounded domain. The overdeter-
mined system of equations which defines pluriharmonic functions in 2,

2
% -0, jk=1,....,n,
has been considered by mathematicians for more than a century (see
e.g. [24]). It is well-known that for a continuous function f : 92 — R there
does not always exist a pluriharmonic function u which is continuous on {2
such that u|gpp = f. This Dirichlet problem has been extensively studied for
the case of smoothly bounded domains, like the unit ball, strictly pseudo-
convex domains or the unit polydisc. We refer to [5] and [17] for details and
references. We would especially like to draw attention to the article [4] and
the more recently published [6], [14], [22] and [23].

We will prove a complete characterization of the Dirichlet problem for
pluriharmonic functions defined on bounded hyperconvex product domains
and on the symmetrized polydisc in C", n > 3 (see e.g. Section 5 for the def-
inition of the symmetrized polydisc). Our methods rely purely on potential
theory. For an introduction to classical and pluripotential theory the mono-
graphs [3] and [21]| are recommended. The aim of this article is to prove the
following theorem:
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THEOREM A. Let D; be a bounded hyperconver domain in C", n; > 1.
Set D=D1x---xDg, 7=1,...,8 s> 3, and let G, be the symmetrized
polydisc in C", n > 3. If 2 € {D,G,} and f : 02 — R is a continuous
function, then the following assertions are equivalent:

(1) there exists a function u which is pluriharmonic on §2, continuous on
2 and u|pgn = f,

(2) the function f is pluriharmonic on 02 (see Definitions 3.1 and 5.1),

(3) the Perron—Bremermann envelope PBy is pluriharmonic on {2, i.e.,

PB_; =—-PBy,
(4) for every zy € 012 and every Jensen measure p with barycenter z
f(z0) = | fdu.
o

The proof of Theorem A is divided into two parts, Theorem 3.3 for the
case when (2 is a hyperconvex product domain D and Theorem 5.4 for
2 = G,. In Section 4 we will show, for s = n > 3, that the conditions
in Theorem A hold if and only if f is subharmonic on every analytic disc d
embedded in 0D, i.e., for every injective holomorphic function d : D — 9D
the function f o d is subharmonic on the unit disc D C C (Theorem 4.2;
see also Theorem 4.4). Theorem 4.2 will be used in the proof of Theorem A
for 2 = G,. If n = 2 the implication (2)=-(1) is, in general, not true (Ex-
ample 3.4 and Section 5). But (2) is equivalent to (4), (1) is equivalent to (3),
and (1) always implies (2). As an application of Theorem A, we obtain a full
characterization of the so called compliant functions (Corollary 3.6 and The-
orem 5.4). They first appeared in [10] where the so-called Cegrell classes
with boundary values given by a continuous function were introduced. For
further information about the Cegrell classes see e.g. [11] and the references
therein.

The authors would like to thank Jonas Andersson, Stawomir Kotodziej,
Evgeny A. Poletsky and Frank Wikstrém for their generous help and en-
couragement.

2. Definitions and basic facts. Throughout this article, D; is a
bounded domain in C™ and we set

(2.1) D =Dy x---x Dy,

where j =1,...,s. Let n =n; +--- 4+ ns. Then D is a bounded domain in
C™ with the (2n — 1)-real dimensional boundary 9D given by

S
GD:Ul_)lx---xl_)j_lxé)Djxl_)j+1><--~><Ds.
j=1
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The boundary 9D can also be expressed as

U D1X'--XD]'1_1X8D]'1XDj1+1X--~
1<j1<<jx<s
ke{l,....s}
X Djk—l X 8D]k X Djk-‘rl X oo X DS =: U AJ,

|J|=k
1<k<s

where J is the increasing multi-index, 1 < j; < --- < ji < s, of length k;

also we will use the notation A” for the open set in C*~™/ given by

D1><‘~-><Dj1_1><8Dj1XDjl_;,_lX‘--XDjk_lanjkXDjk+1><~-><DS,

where ny = nj, +---+n;,. The distinguished boundary ODT of D is defined
by 0Dt = 0Dy x --- x ODs, so DT = A7 when J = {1,...,s}.

Recall that a bounded domain {2 C C" is called hyperconvez if there
exists a plurisubharmonic ezhaustion function ¢ : 2 — (—o0,0) such that
the closure of {z € 2 : ¢(z) < ¢} is compact in (2 for every ¢ € (—o0,0).
A bounded hyperconvex domain 2, viewed as a domain in R?", is always
regular with respect to the Dirichlet problem for the Laplace operator. The
Hartogs triangle, {(21,22) € C? : |2z1] < |22| < 1}, shows that not every
regular, bounded pseudoconvex domain is hyperconvex.

PROPOSITION 2.1. Let D; be a bounded domain in C", j =1,...,s, and
setn=mn1+---+ns. Then D =Dy x --- x Dy CC" is hyperconvez if and
only if each Dj is hyperconvex in C"J.

Proof. Assume that D is hyperconvex in C", i.e., there exists a plurisub-
harmonic exhaustion function ¢ for D. Fix (29, ... 1 2y ,20) €Dy x ... %

~

Dj x ---x Ds,. Then

QOJ(C) = 90(2?7 R Z;')—lv C:Z?—i-l’ R 2’2)
is an exhaustion function for D;. Hence, D; is hyperconvex in C"i. For
the converse, assume that every D; is hyperconvex in C" and ¢; is an
exhaustion function for D;. Define ¢((1,...,(s) = max{¢i(¢i),...,s(¢s)}
for (¢1,...,(s) € D. Then ¢ is a plurisubharmonic exhaustion function for D
and thus D is hyperconvex in C". =

DEFINITION 2.2. Let 2 C C" be a bounded domain and let u be a
non-negative, regular Borel measure on 2. Then p is a Jensen measure with
barycenter at z € (2 if

u(z) < \udp

02

for every continuous function u : 2 — [~00,00), not identically —oo, such
that u € PSH({2). Here PSH(S2) is the class of all plurisubharmonic func-
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tions defined on (2. The set of all Jensen measures with barycenter at z will
be denoted by 7.

Definition 2.2 differs slightly from the classical definition of Jensen mea-
sure, since it allows the measure to have support in {2, and also since it
embraces Jensen measures for boundary points. If {2 is a bounded hypercon-
vex domain and p € J,, z € 042, then supp p C 912 (Theorem 3.4 in [30]).
The Perron—Bremermann envelope for a function f : 02 — R is defined by

PBf(z) = sup{w(z) : w € PSH(£2), limsup w(() < f(§) V€ € 042}.

¢—¢,¢e
THEOREM 2.3. Let £2 C C" be a bounded domain and let f : 0§2 — R be
a continuous function. If
liminf PBf(z) = limsup PB¢(z) = f(§)
z—E, €0 z—&,2€0

for every & € 012, then PBy € C({2).
Proof. See [29]. =

THEOREM 2.4. Assume that {2 C C" is a bounded domain and that
f : 002 — R is a continuous function. The following assertions are then
equivalent:

(1) for every & € 012,

2.2 li PBy+ PB_ =0
(22) i (PBy+ PB_5)(2) =0,
(2) there exists a continuous function F : 2 — R such that for every
20 € 012 and every p € Ty,

f(ZO) = SFd,U,,

(]

(3) the envelopes PBy and PB_; belong to C(£2); moreover, for every
z0 € 012 and every p € Ty,

(2.3) f(z0) = &PBf dpu and —f(z0) = SPB_f dpu.

2 Q
Proof. (3)=(2): Take F' = PBy.
(2)=(1): Lemma 3.3 in [30] implies that there exist u,v € PSH(£2) N
C(£2) such that
lim wu(z) = f(¢) and lim  wv(z) =—f(&)

z—(,z€0N z—&,z€(2

for all ¢,& € 042, hence (2.2) is satisfied.
(1)=-(3): First we will prove that assumption (2.2) implies that

lim _PBy(z) = f(¢) and Z_}EigleQPB—f(Z) =—f(§)

z—(, z€
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for all (,£ € 0f2. Assume now that this is not the case, for example there
exists § € 92 such that limsup,_ . PBy(2) < f(§). This yields

0= lim (PBf+ PB_y)(z)= limsup (PBy+ PB_y)(2)

z—E, 260 z—E,2€82
< limsup PBf(z) + limsup PB_¢(z)
z—E&, z€QN z—&, z€(2

< f(§) - f(§) =0,
a contradiction, hence limsup PB; = f and limsup PB_y = —f on 92. As-
sume now that there exists ¢ € 02 such that liminf, .. PB¢(z) < f(().

Then there exists a sequence [z;] in (2 which converges to ¢ such that
lim; .o PBy(2;) < f(C), hence

0= lim (PBy+ PB_y) (%;) = liminf (PBy + PB_¢)(z;)
j—o0 j—00

= lim PBf(Zj) + limianB_f(Zj) < f(C) — f(() =0,
j—oo j—oo
a contradiction once more. Now it follows by Theorem 2.3 that PBy, PB_; €

C(£2). Fix z9 € 02 and take u € J,,; then
f(20) = PBy(z0) < | PBydp.

9]
Thus

F(z0) < inf{ | PBydu:pe jzo}.

(9
Setting it = d,, shows that

F(z0) = inf{ | PBrdu:pe jzo}.
n
In a similar manner the corresponding formula can be obtained for — f and
therefore
sup{ X —PB_ydp:p € jz(,} = —inf{ S PB_jdp:pe jz(,} = f(20).
n n
The maximum principle for plurisubharmonic functions and assumption (2.2)
yield
inf{ | PBydu:pe jzo} = f(z0) > sup{ | PBydu:pe jzo}.
5 b
Thus, for every zy € 02 and every p € J,, we have
f(20) = | PBydp.
0
With the same methods the corresponding result can be proved for —f,

hence (2.3) is true and the proof is complete. m
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REMARK. Let 2 C C" be a bounded domain. The following are then
equivalent:

(1) £ is B-regular,

(2) property (2.2) holds for every continuous function f: 02 — R,

(3) Tz = {02} for every zy € 02, where ¢, denotes the Dirac measure
at zg.

(See e.g. Corollary 3.8 in [30] for the equivalence between (1) and (3)).

3. Pluriharmonic boundary values on hyperconvex product do-
mains. Let {2 be an open set in C". A function u : {2 — R is said to be pluri-
harmonic on (2 if u and —u are plurisubharmonic on 2. Let PH({2) denote
the class of all pluriharmonic functions on (2. Then PH(2) C PSH(S2) C
SH(2) and PH(L2) C H(2). If n = 1, then the inclusions are equalities,
and if n > 1, they are proper. We now define what it means for a function
to be plurisubharmonic and pluriharmonic on the boundary of a bounded
hyperconvex product domain.

DEFINITION 3.1. Let D C C™ be a bounded hyperconvex product do-
main as in (2.1). An upper semicontinuous function v : 0D — R U {—o0}
is plurisubharmonic if v is plurisubharmonic on every A7 , l.e., for all k£ €
{1,...,s=1},1<ji1 <--- <jy <sand (zj,,...,25) € 0Dj, x---x 0Dy,
the function defined by

(21 ey Zjis e By e es 2) P2 W21, ooy 2y ooy Zjpy v ey Zs)

is plurisubharmonic on the open set A C Cr~™ where ny = nj, +---+nj,.
The identically —oco function is by fiat not considered as plurisubharmonic.
In a similar manner a continuous function w : 9D — R is pluriharmonic if it
is pluriharmonic on each A

EXAMPLE 3.2. Let P be the unit polydisc in C*, n > 2, and consider
the function f : 9P — R defined by

0 if |z;| =1 for every j,

1 otherwise.

f(Z):f(Zl,...,Zn):{

Then f is harmonic on every analytic disc embedded in 0P, but it is not
pluriharmonic on P in the sense of Definition 3.1 since it is not continuous
on OP. Moreover, there does not exist a pluriharmonic function A such that

hlop = f.

THEOREM 3.3. Let D; be a bounded hyperconver domain in C"i, j =
1,...,8,8>3,setD=D1x---xXDg,n=n;+---+ng, and let f : 0D — R
be a continuous function. The following are then equivalent:



Continuous pluriharmonic boundary values 105

(1) there exists a function u which is pluriharmonic on D, continuous
on D and u|sp = f,

(2) f is pluriharmonic on OD in the sense of Definition 3.1,

(3) the Perron—Bremermann envelope PBy is pluriharmonic on D,

i.€.,
PB_; = —PBy,
(4) for every zop € OD and every Jensen measure pu with barycenter z,
f(z0) = | fdu.
oD

Proof. (1)=-(2): Let k € {1,...,s — 1}, J be an increasing multi-index,
1<ji<---<jp<s,andlet (§,,...,§) € 0Dj, x---x 9dDj,. Define the
function f¢, ¢, : A7 — R by

f€1,...,£k(217---7£j17"'7€jk7”'728) = f(Zh---7§j17"'7£jk7”'728)‘

Take zg € A7 and let Z0= (21, &1y s &y -1 %s) € A7 and in the same
way take X € C" "™ and let X = (X1,...,Xj,...,Xy), where X, =0
for ! =1,...,ny . Choose r > 0 such that B, = {504—0")? :CeC, (| <1}
C A7, Let Dy, > & — & asm — oo, for 1 <1 <k, and let 25" =
(21, &l &L ooy 25) € D. For each m define um () = u(zg" + ¢rX).
Then u,, is harmonic on the unit disc in C, by the assumption that u €
PH(D) N C(D). Moreover, u,, converges uniformly to fe, ¢ as m — oo.
Thus, f¢,,.. ¢, is harmonic on B, and therefore pluriharmonic on A7,
(2)=-(1): Assume that f: 9D — R is a continuous function and set

u(z, .. zs) = | flt. o t) dws, (f) - dws, (£,
oD+

where w,, is the harmonic measure relative to D; and z;. Then u is s-
harmonic on D, continuous on D and ulpgp = f. We now show that u is
pluriharmonic on D. Let zp = (z1,...,25) € D, X = (X1,...,X;s) € C"
(X; € C") be such that X, = 0 and choose r > 0 such that {zy + (X :
(e C, (| <r} CD.Let B = B(0,r) C C be the Euclidean ball with
centre 0 and radius r. For any wy € Dy,...,ws_1 € Ds_1,ws € 0D, w' =
(wl) s 7wsfl)7 X' = (Xb ERE) Xsfl)a ¢ € By, th = (tlv cee 7tsfl)7 where
tj € D;, 1 <j<s—1define

dwyy i cx0 (V') = dwwyvex, () - dww,_yex, (Es—1)-

The assumption that f is pluriharmonic in the sense of Definition 3.1 implies
in particular that f is pluriharmonic on Dy X -+ x Ds_1 X {ws}, hence

# S fw' + X ws) dAC) = f(w',ws) = S fdwy, - dwy,
Br oD+
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and
fw' + (X ws) = S f(t ws) dwiﬂurcx,.
OD1x-+x0Dgs_1
Therefore,
1 1
p— S u(zo + ¢X)dA(C) = —3 X S f(t’,ts)dw'Z/HX/(t’) dw,, (ts)dA(C)
B’r‘ B’r oD+
1
Sl T A Al ) ANQ) din (1)
0D By 0D1Xx-+x0Ds_1
1
= S o2 X F&+ X L) dA(Q) dw: (1) = S f(Zts) dw., (ts)
0D B, 0D
= S ft1, ... ts) dws, (1) -+ - dw,, (ts) = u(z0),
8D1><~~-><8D5
which proves that w is pluriharmonic on Dy X -+ x Dg_; x {25} for all

zs € Ds. By repeating the same argument for X € C" such that X; = 0,
1 < k < s—1, we reach the conclusion that for each k fixed, 1 < k < s, the
function u is pluriharmonic on

Dy x--x{z}x---xDsCD,
for all z € Dy. This means that w is pluriharmonic on D since

Lu(zy, ..., 28)(X1,..., Xs)

1 s
= 8_—225(uo Qj)(zl, .. .,Zj,1,2j+1,. . .,Zs)(Xl, N ,Xjfl,Xj+1, e ,Xs)
J=1

ot
1 ™ " 92y

29| Xk)P=0
s—9 ] 8Zk82k (Zl, 7ZS)| k‘| )

where (21,...,25) €D, X =(X1,...,X5)€C", X;€C™, 0j(21,...,2j,..., %)
= (21,..+,%,...,%s), Lu is the Levi form of u, X; € C" and s > 3.

(2)=-(3): Assume that f : 0D — R is pluriharmonic. The proof of
(2)=-(1) shows that the function u defined by

u(z,..,zs) = | flt. . ts) dws, (f1) - dws, ()
oD+

is pluriharmonic on D, continuous on D and u|pp = f. Hence (ddu)" = 0
and therefore u = PBy (see e.g. [7]). By the same arguments the function v
defined by

v(zt, oz = | (= f(t . ts) dws, (1) - dws, ()
oD+
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is pluriharmonic on D, continuous on D and v|gp = —f. Thus v = PB_y
(see e.g. [7]), which implies that PB_; = —PBy on D, by the construction
of u and v.

(3)=-(4): This is a direct consequence of Theorem 2.4.

(4)=(2): Fixke {1,...,s—1}andlet J,1 < j; < --- < ji < s, beanin-
creasing multi-index. Take zg € A7 and let 20 = (215, &y &y oo s Zs)
€ A7, where (&,,...,&j,) € ODj, x --- x ODj,. In the same way take
X € €™ and let X = (Xy,...,Xj,...,X,), where X, = 0 for | =
1,...,ny. Choose r > 0 such that A = {3+ (X : C € C,[¢| <r} C A/, If
o = (2mr)~1d\, where ) is the Lebesgue measure on A, then po € J5, and
supp o € A. Thus,

fzo) =\ fduo =1\ fdpo
oD A
by assumption, and therefore f is harmonic in A, which implies that it is
harmonic in A”7. =

Example 3.4 below shows that for n = 2 the implication (2)=-(1) in
Theorem 3.3 is, in general, not true. The construction of the function u in
this example is due to Poletsky ([25]).

EXAMPLE 3.4. Let D? = {(z,w) € C? : |2| < 1, |[w| < 1} be the unit
polydisc in C? and let f : OD? — R be defined by

F(¢,€) = Re(C9).

Then f is pluriharmonic on 9D? in the sense of Definition 3.1; we will prove
that condition (1) in Theorem 3.3 is not true for f. Let u be a function
defined on D? by

Re(2@)(2 — [2[* — [w[*) (1 — |21 — |w]*)

u(z,w) = —
(2, w) 1—|zwl|? 1— |zwl|?

Then u € C*(D?) N C(D?) and lim(, ,)_(c¢) u(z,w) = Re(¢E) for every
(¢,€) € OD%. We have

vt = foteon) = ST
Uy (2, w) = 8822(‘)%(2’7““) _ (1- |Z|2(1|—Z|!2U|)1|j’)2()2— Ew)27
Uzw(2z,w) = 68226%1;(2’10) _ (1- 1212(1‘;";1‘)5’)2()13— zE)Q’
veten) = i) =
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Since u,z > 0, uyz > 0 and

det < uzz(z,w) Uz, w) ) o,

Uz (2, W) Upg(z,w)

it follows that u is a maximal plurisubharmonic function on D? and u =
PBj (see e.g. [7]). We will next obtain an explicit formula for PB_y. Let
F(z,w) = (—z,w). Then —Re(2wW) = Re(2w) o F and PB_y = PByo F.
Thus,

—Re(z@)(2 — |2* — [w) (1 -]z} — |w]?)

PB_ = _
£z w) 1— |zwl|? 1— |zwl|?

and we see that PBy + PB_; # 0, hence PBy is not pluriharmonic on D?
and therefore condition (1) in Theorem 3.3 is not true for f.

DEFINITION 3.5. A compliant function is a continuous function f: 92 —R
with the following two properties:
. lEim (PBy + PB_y)(2) =0 for every £ € 012,
z—§, z€
o | (dd*(PBs + PB_y))" < 0,
10
where (dd®-)™ is the complex Monge—Ampére operator. Let CP(9{2) denote
the class of compliant functions on 0f2.

Let u be a holomorphic function defined in a neighbourhood of 2 and let
f = Re(u) on 02. Then f is an elementary example of a compliant function.
For further information and examples see [2]. Corollary 3.6 below follows
immediately from Theorem 3.3.

COROLLARY 3.6. Let D; be a bounded hyperconvexr domain in C", j =
1,...,8, 8>3, and set D = Dy X --- x Ds. Then CP(0D) = PH(OD).

Example 3.7 below shows that there exists a compliant function f for
which PBy is not pluriharmonic. Note that when n > 3 this is not possible
(Theorem 3.3).

EXAMPLE 3.7. Let f be defined as in Example 3.4. Condition (2) in The-
orem A is satisfied for f and therefore so is condition (4). From Theorem 2.4
it follows that

li PB PB_ =0

for every £ € 9f2. By some straightforward calculations we get
(1 —2[)%( — wf*)?

dd*(PB; + PB_;))? = 12

dAa
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and

(L= 1221 — |w[*) G4

\ (dd“(PB; + PB_y))? =128 | 02w da(z,w) = ——,

D2 D2

where )y is the Lebesgue measure on C2. Thus, f is compliant.

We end this section by proving a sufficient condition for a continuous
function defined on 9D? to be compliant.

PROPOSITION 3.8. If f : OD? — R is a pluriharmonic function in the
sense of Definition 3.1 which satisfies

o0
Z \/klk‘g |ak17/§2| < 00,

K1,ka=0
then f is compliant. Here
ky,ky = S wlfl wI;Qf(wlv ’LU2) dg(wl) dO’(’LUQ),
ODx 0D
where do is the normalized Lebesgue measure on OD.

Proof. For any integers k,1 > 1 let fj; = Re(¢*€) and Gk = Im(¢keY).
Then Example 3.7 shows that

S (ddC(PBfk,l + PB*fk,l))z = S (ddc(Png,l + PB—gk,l))2

D2 D2

642kl
3 M

= ki X (ddc(PBfl,l + PB_fl,l))2 =
D2
and therefore fj; and g;; are compliant. Let

| (L= [z = [2f*)

lwi — 21|} |wz — 22

u(z1, 22) = f(w1,w2) do(w1) do(w2),

oD x oD

Then u is 2-harmonic on D, continuous on D and u|sp = f. Note that u is, in
general, not pluriharmonic. There exists a holomorphic function U defined
on D? such that

(0]
u(z1, 22) = Re(U) + Z a’kfl,kQZl 23° + Z Ty k21 2

k1,k2=0 k1,k2=0

(see e.g. [26]), hence

fz1,22) = Z iy ks Re (21" 257) Z iy o Im (21" 257),

k1,k2=0 k1,ko=0
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where by, 1, = Re(ag, r,) and ¢, k, = —Im(ag, r,). Now it follows from [2]
that
1/2

(§ (aa(PBs + PB_))?)

D2

1/2
< Z |bk1 ko | ( X dd* v(fkl ks)) ) Z ‘Ckl ks | ( S ddcv(gkl,k2))2>
k1,k2=0 D2 k1,k2=0 D2

167r >
E Vk1k2 (| ko | + [y ks ]) < >~ Vkiks |ag, k| < o0,
\/_k k=0 f K1, ko =0
1,R2= 1,R2=

where U(fk’l,k‘z) = PBkak2 +PB—fk1,k2 and U(gkl,kz) = PB
Thus, f is compliant. =

+PB_

gkl,k2 gkl,kg'

4. Plurisubharmonic boundary values and analytic discs. In this
section we will prove a characterization of plurisubharmonic functions de-
fined on the boundary in terms of analytic discs. Let 2 C C" be a bounded
domain. By an analytic disc embedded in Jf2 we mean an injective, holo-
morphic function d : D — 92, where D is the unit disc in C.

PROPOSITION 4.1. Let D = Dy x --- x D, C C", n > 2, be a bounded
hyperconver domain, where D; C C, 1 < j < n. Then for every analytic disc
d:D — 9D there exist k € {1,...,n — 1} and an increasing multi-index J,
1 <51 <+ < jr <n, such that

d(D)ngx"'XaDhX"’XaDij'--XDn:AJ_

Proof. Let d : D — 0D be an analytic disc. Then d(DD) is a connected
manifold of real dimension 2 so d(D) € dD*. Assume that d(D) NdD™ # (.
Then there exist w € d(D) N 8D+ and z; € d(D) N (0D \ dDT) such that
II;(zj) € Dj, where II; is the standard projection on the jth coordinate.
Therefore there exist (i, € D such that I7;0d((1) € 0D; and I10d((2) €
Dj, which is impossible since II; o d is an open map. Thus d(D) N 9D = 0.
Now since d(ID) is connected there exist k € {1,...,n—1} and an increasing
multi-index J, 1 < j; < --- < jp < n, such that d(D) C A”7. =

Theorem 4.2 will be a prominent tool in Section 5.

THEOREM 4.2. Let D = Dy x --- x D, C C" n > 2, be a bounded
hyperconver domain, where D; C C, 1 < j < n, and let f : 0D — R be a
continuous function. The following are then equivalent:

(1) f is plurisubharmonic in the sense of Definition 3.1,

(2) f is subharmonic on every analytic disc d embedded in 0D, i.e., fod
18 subharmonic on D C C,

(3) there exists u € PSH(D) N C(D) such that u|lpp = f.
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Proof. (2)=-(1): Let k € {1,...,n — 1}, J an increasing multi-index,
1 <51 <+ < Jg £n, and (gjl,...,fjk) S aDjl X e anjk- Define
fern s A7 = Rby

f€1,...,£k(zlvn-7§j17'"7£jk7"‘72n) :f(z17~--7§j17'”7£jk7"'7271)'

Take 2o € A7 and let 3y = (21,3 &0y &y o0 2s) € A7 moreover, take
X eC*andlet X = (Xy,...,Xj,..., X,), where X;, = 0forl =1,..., k.
Choose 7 > 0 such that {Zo+(rX : ¢ € C,|¢| < 1} C A7. Define d : D — A7
by d(¢) = Zo +(¢rX. Then d is an analytic disc embedded in A7. Thus fod is
subharmonic on D by assumption, hence f¢, . ¢ is plurisubharmonic on A7,

(1)=(2): Let d be an analytic disc embedded in dD. Proposition 4.1
shows that there exists a k € {1,...,n — 1} and an increasing multi-index
J, 1< j1 <---<ji <n,such that d(D) C A”’. By definition, f is plurisub-
harmonic on A7 , which implies that f o d is subharmonic on D.

(3)=(1): See the proof of Theorem 3.3.

(1)=(3): Just take u = PBy. Observe also that 7., = {d,,} for all
2o € 0D, so by (1) we get, for all z € 9D,

) =int{ § fdpo:po € T}
oD
Therefore Theorem 3.5 in [30] implies that u € PSH(D) N C(D) and
'LL|3D — f. |
REMARK. In [8] Blocki proved the equivalence of (2) and (3) in the case

when D is the unit polydisc in C™. See also [28] and for the case when n = 2,
Example 3.6 in [30].

The following is well-known (cf. e.g. the proof of Corollary 2.10 in [9]).

LEMMA 4.3. Let {2 be a bounded domain in C" with C_l-boundary and
h : D — §2 a holomorphic function. If u € PSH(£2) N C(§2), then uwo h is

subharmonic on D.

Proof. By [18] there exists a sequence [u;] of smooth plurisubharmonic
functions defined on a neighbourhood of {2 which converges uniformly to
u on {2 as j — oo. Hence, u; o h subharmonic on D and therefore u o h is

subharmonic on D, since u;oh converges uniformly on {2 to uoh asj — co. m

REMARK. It is not known to the authors if Lemma 4.3 is valid for more
general domains.

THEOREM 4.4. Let D = Dy X ---x Dy be a bounded hyperconvex product
domain, where each Dj is a bounded hyperconver domain in C"i with Cl-
boundary, 1 < j < s and s > 2. For every continuous function f : 0D — R
the following assertions are equivalent:
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(1) f is plurisubharmonic in the sense of Definition 3.1,
(2) f is subharmonic on every analytic disc d embedded in 0D, i.e., fod
is subharmonic on D.

Proof. The implication (2)=-(1) follows as in the proof of Theorem 4.2.
For the converse let d : D — JD be an analytic disc. Assume that d(ID) N
dD" # (0 and d(D) N (8D \ 0D") # 0. Then there exist j and z; € 9D,
z9 € Dj such that 21,22 € d(D). Hence, d(D) N9D; # () and d(D) N D; # 0,
which contradicts Corollary 2.10 in [9], since D; is a hyperconvex domain
with Cl-boundary. Thus either d(D) C D" or d(D) C D\ dD*. If d(D) C
dD \ OD™, then there exists a k € {1,...,s — 1} and an increasing multi-
index J, 1 < j; < --- < ji < s, such that d(D) C A7, since d(D) is
a connected manifold of real dimension 2. Therefore f o d is subharmonic
by (1). Similarly, if d(D) C dD™, then there exists 1 < j < s such that
d(D) € 0D;. This implies that f o d is subharmonic by Lemma 4.3. =

5. Pluriharmonic boundary values on the symmetrized polydisc.
In this section we prove Theorem A for the case when {2 is the symmetrized
polydisc G,,. Let m, = (mp1,...,Tnn) : C* — C", n > 1, be defined as

follows:
T k(21,05 2n) = Z Zjy e g

1<ji<<jrk<n

for 1 < k < n. Then m, is a proper holomorphic mapping with multiplicity n!,
and so also is mp|pn : D" — 7, (D™). Moreover, m,(0D") = d(7,(D")). Here
D™ denotes the unit polydisc in C" and 9D"™ = 9JD x --- x 0D. We refer
to [19] and [27] for information about proper holomorphic mappings. Let
now G,, = m,(D"). The domain G,, is called the symmetrized polydisc. In [16]
it was proved there exists a plurisubharmonic function ¢ : 2 — (—00,0)
such that the closure of the set {z € 2 : ¢(z) < c} is compact in (2 for
every ¢ € (—00,0), i.e., G, is a hyperconvex domain. It is worth mentioning
that G is the first non-trivial example of a domain on which the Lempert
function, the Kobayashi distance and the Charathéodory distance coincide
and which is not exhausted by domains biholomorphic to convex domains
(see e.g. [1], [12], [13], [15] and [16]).

Let I be an increasing multi-index, 1 <41 < - < i < n; we will write
i € I to mean that i € {i1,...,i;}. Let 0; denote the set

7Tn(]D)1 X X ]D)il—l X 8Di1 X Di1+1 X X Dz‘k—l X 8le X Dik-i-l X X Dn),
where the index only refers to the position. Then d; = §; if I and J are of
the same length. This implies that

0Gn = | Jma(@D x - x IDxD x --- x D) =: | ] &
k=1

k=1 k times n — k times
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Note that it was proved in [16] that §,, = m,((0D)") is the Shilov boundary
of G,. We are now in a position to define plurisubharmonic and plurihar-
monic functions on 9G,, (see Definition 3.1 for the case when the domain of
definition is the boundary of a hyperconvex product domain).

DEFINITION 5.1. An upper semicontinuous function u : G, — R U
{—o0} is plurisubharmonic if w is plurisubharmonic on every 0y for k €
{1,...,n — 1}, i.e, for all k € {1,...,n — 1} and wy,...,wy € OD, the
function defined by
(5.1) (21 ey 2n—k) P UO TR (W1, . ooy Why 21y« -+ s Zn—k)
is plurisubharmonic on D" *. The identically —oo function is not considered

plurisubharmonic. In a similar manner a continuous function u : 9G,, — R
is pluriharmonic if u is pluriharmonic on every d for k € {1,...,n —1}.

The following property of the symmetrized polydisc proved by Edigarian
and Zwonek is an important tool in the proof of our main theorem.

PROPOSITION 5.2. Let A be a domain in C™, m > 1, and let p : A — C"
be a holomorphic function. Then the following holds:

(a) if o(A) C &, then ¢ is constant,
(b) if (A) C OGy,, then there exists a k, 1 <k <n, such that p(A) C .

Proof. See Lemmas 4 and 5 in [16]. =

LEMMA 5.3. Letn > 2, and let f : 0G,, — R be a continuous function.
The following conditions are then equivalent:

(1) there exists u € PSH(G,) N C(Gy,) such that u|sg, = f,

(2) f is plurisubharmonic in the sense of Definition 5.1,

(3) f is subharmonic on every analytic disc d embedded in Gy, i.e., fod
1s subharmonic on D.

Proof. First note that the equivalence of (2) and (3) follows immediately
from Proposition 5.2 and Definition 5.1. We next prove (3)=-(1): first, we
define ¢ = f om, : D™ — R. This is a continuous function on 0D". By
assumption (3), g is subharmonic on every analytic disc d embedded in OD".
Theorem 4.2 implies that there exists a function s which is pluriharmonic
on D", continuous on D" and slopn = g. Let ¢ : G,, — R be defined by

o(w) = max{s(z) : z € m, (w)}.
From [20] it follows that ¢ is plurisubharmonic on G, and ¢|sg, = f by
construction. Walsh’s theorem (see [29]) implies that PB;y € PSH(G,) N
C(Gy,). Hence, (1) follows by letting u = PBy.
The final step is to prove (1)=(2). Let fu,, wy, : D" % — RU {00} be
defined as in (5.1); we need to prove that this function is plurisubharmonic
under the assumption that there exists u € PSH(G,) N C(G,) such that
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ulog, = f. Let k € {1,...,n — 1}, wy,...,w, € 0D and take a sequence
(Wi, ..., w)]eS_; in D" % which converges to (wi,...,wy) as m — oo.
Moreover, let [u,,] be the sequence of real-valued function on D"~* defined by

m m
Um (21,5« oy Zn—k) = wo Tp (W, .. WL, 21y« oy Zn—k)-
Then u,, is pluriharmonic on D" % and continuous up to the boundary.

The sequence [uy,] converges uniformly to fu, . w, on D"k ag m — oo, and
therefore f is plurisubharmonic in the sense of Definition 5.1. =

THEOREM 5.4. Let n > 3. If f : 0G,, — R is continuous, then the
following assertions are equivalent:

(1) there exists a function u which is pluriharmonic on Gy, continuous
on G, and ulsg, = f,

(2) f is pluriharmonic on 0G,, in the sense of Definition 5.1,

(3) f is harmonic on every analytic disc d embedded in 0G,,, i.e., fod is
harmonic on D for every injective, holomorphic function d : D — G,
with d(D) C 0G,,,

(4) the Perron—Bremermann envelope PBy is pluriharmonic on Gy, i.e.,
PB_; = —PBy,

(5) for every zp € 0G,, and every Jensen measure p with barycenter z,

flzo) =\ fdp,

Gy,
(6) f is compliant on 0G,,.

Proof. The equivalence of (1), (2) and (3) follows immediately from
Lemma 5.3, and (5)<(6) and (4)=(5) follow from Theorem 2.4.

To prove (5)=(2), let k € {1,...,n — 1} and zy € J;. Take any complex
line I through zp, and r > 0 such that zg + rID C [ N dg. Since the Lebesgue
measure A on D is a Jensen measure at zg we have by assumption

flzo)=| fax,
zo+rD
which implies that f is harmonic at zg and therefore f is pluriharmonic
on 0G,,.

To complete the proof we need to prove that (1), (2) and (3) imply (4).
We proceed as in the proof of Lemma 5.3 by defining g = f o, : dD"” — R.
Then g is pluriharmonic on D™ and therefore PB, is pluriharmonic on D"
and continuous on D" by Theorem 3.3. Define

o(w) = max{PBy(z) : z € 7, (w)}.

From [20] it follows that ¢ € PSH(G,) N C(G,) and ¢|sg, = f, hence
¢ < PBy € PSH(G,) N C(G,). Therefore PBf o m, € PSH(D") and
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(PBy o m)|apn = g. Thus, for 2z € m,1(w) we get (PByom,)(2) < PBy(2)
and therefore PBf(w) < ¢(z), which implies that ¢ = PBj.
Next we prove that PBy = —PB_y. Note that PB; = —PB_,, since
PB, is pluriharmonic on D" and continuous on D" and
PB(w) = max{PBy(2) : z € m, ' (w)}

=max{—PB_,4(z):z € m, }(w

}
.

In a similar manner we get PB_(w) = max { PB_y(z) : z € m, }(w) }. Com-
bining these two representations we obtain

0> PBy(w) + PB_j(w) =max{PB_y4(z) : z € m,* (w)}
—min{PB_4(z): z € 7,  (w)} >0,
which shows that PBy = —PB_; and completes the proof. =

(w)
= —min{PB_,(2) : z € 7, (w)
)

By using Example 3.4 it is possible to construct a continuous function
f : 0Gy — R such that (2) of Theorem 5.4 holds but not (1); and by using
Example 3.7 it is possible to show that the implication (6)=-(4) is, in general,
not true for n = 2. If f: 0Gy — R is a pluriharmonic function in the sense
of Definition 5.1, then

| (dd*(PBjor, + PB_jor,))? =2 | (dd*(PB; + PB_;))?,
D2 G2
and by Theorem 4.2 for every ((,&) € 0G2 we have

lim PB¢+ PB_¢)(z,w) =0.
arsice TP $)w)
(z,w)EG2
By using Proposition 3.8, this yields
ProposiTION 5.5. If f : 3Ga — R is a pluriharmonic function in the
sense of Definition 5.1 which satisfies

o0
Z V k1k2 ’bkl,k2| < 00,
k1,k2=0
then f is compliant on Go. Here
S WM f (w1 + wa, wiws) do(wy) do(ws),
ODx oD

bky by =

where do is the normalized Lebesque measure on OD.

In [26], Rudin characterizes those real-valued continuous functions on
0D? which can be extended to a pluriharmonic function on D?. Using Rudin’s
result we obtain a similar result for 9Gs.
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PROPOSITION 5.6. Let f : 0Go — R be continuous. The following are
then equivalent:

(1) there exists a function u which is pluriharmonic on G, continuous
on Gy and ulgg, = f,

(2) f satisfies by, g, = 0 for any ki, ka2 € N, where by, 1, is defined as
in Proposition 5.5.

Proof. (1)=(2): By assumption, PBy is pluriharmonic on G and there-
fore PBjor, is pluriharmonic on D?, since PBjor, = (PBy) o ma. Rudin’s
characterization in [26] yields

(5.2) S w2 f o mo (w1, ws) do(wy) do(wy) = 0
ODx oD
for any k1, ke € N, and therefore (2) holds.
(2)=-(1): Let f satisfy condition (2). Then (5.2) holds for any ki, k2 € N.
Rudin’s characterization again shows that PBjor, is pluriharmonic on D?
and therefore

0= | (dd*(PByor, + PB_jor,))? =2 | (dd°(PB; + PB_y))>.
D2 G2
Hence, (dd‘(PBy 4+ PB_y))* = 0 on G, which implies that PBy+PB_; =0
on Gy (see e.g. [7]). Thus PBy is the desired function and the proof is
complete. m
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