ANNALES POLONICI MATHEMATICI 91.2–3 (2007)

Disc formulas for the weighted Siciak–Zahariuta extremal function

by Benedikt Steinar Magnússon and Ragnar Sigurdsson (Reykjavík)

Dedicated to Professor Józef Siciak on the occasion of his 75th birthday

Abstract. We prove a disc formula for the weighted Siciak–Zahariuta extremal function $V_{X,q}$ for an upper semicontinuous function q on an open connected subset X in \mathbb{C}^n . This function is also known as the weighted Green function with logarithmic pole at infinity and weighted global extremal function.

Introduction. If X is a subset of \mathbb{C}^n and $q: X \to \overline{\mathbb{R}} = [-\infty, \infty]$ is a function, then the weighted Siciak–Zahariuta extremal function $V_{X,q}$ with respect to q is defined as

$$V_{X,q} = \sup\{u \in \mathcal{L}; u \leq q \text{ on } X\}$$

where \mathcal{L} denotes the Lelong class of all plurisubharmonic functions u on \mathbb{C}^n of minimal growth, i.e., functions u satisfying $u(z) \leq \log^+ \|z\| + c_u$, $z \in \mathbb{C}^n$, for some constant c_u . The Siciak–Zahariuta extremal function V_X corresponds to the case q=0. The functions V_X and $V_{X,q}$ were first introduced by Siciak in the fundamental paper [8] where he proved his celebrated approximation theorem in several complex variables. The theorem states that for every compact subset X of \mathbb{C}^n such that V_X is continuous, every holomorphic function f on some neighbourhood of X can be approximated uniformly on X by polynomials P_{ν} of degree less than or equal to ν in such a way that

$$\limsup_{\nu \to \infty} (\sup_{z \in X} |f(z) - P_{\nu}(z)|)^{1/\nu} = \varrho < 1$$

if and only if f has a holomorphic extension to the sublevel set $\{z \in \mathbb{C}^n; V_X(z) < -\log \varrho\}$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 32U35; Secondary 32U15.

Key words and phrases: plurisubharmonic function, weighted Siciak–Zahariuta extremal function, analytic disc, disc functional, envelope.

The purpose of this paper is to extend the methods of Lárusson and Sigurdsson [3] in order to prove disc envelope formulas for $V_{X,q}$. Our main result is the following

THEOREM 1. Let X be an open connected subset of \mathbb{C}^n and q be an upper semicontinuous function on X. Then for every $z \in \mathbb{C}^n$,

$$V_{X,q}(z) = \inf \Big\{ - \sum_{a \in f^{-1}(H_{\infty})} \log |a| + \int_{\mathbb{T}} q \circ f \, d\sigma;$$
$$f \in \mathcal{O}(\overline{\mathbb{D}}, \mathbb{P}^n), \, f(\mathbb{T}) \subset X, \, f(0) = z \Big\}.$$

Here \mathbb{P}^n is the complex projective space viewed in the usual way as the union of the affine space \mathbb{C}^n and the hyperplane at infinity H_{∞} , \mathbb{D} and \mathbb{T} are the open unit disc and the unit circle in \mathbb{C} , and σ is the normalized arc length measure on \mathbb{T} .

Our approach is the following. Based on the observation (see Guedj and Zeriahi [1]) that a function u is in the Lelong class if and only if $(z_0, \ldots, z_n) \mapsto u(z_1/z_0, \ldots, z_n/z_0) + \log |z_0|$ extends as a plurisubharmonic function from $\mathbb{C}^{n+1} \setminus \{z_0 = 0\}$ to $\mathbb{C}^{n+1} \setminus \{0\}$, we derive a fundamental inequality $u(z) \leq J_q(f)$ for any closed analytic disc mapping the origin to z and the unit circle into X. This inequality defines a disc functional J_q associated to q. Then we define good sets of analytic discs with respect to q and observe that Poletsky's theorem implies a disc formula for $V_{X,q}$. From this formula we deduce that $V_{X,q}$ is the envelope of J_q with respect to the class of all closed analytic discs mapping the unit circle into X. This result gives the theorem above.

Notation and some basic results. An analytic disc in a manifold Y is a holomorphic map $f: \mathbb{D} \to Y$ from the unit disc \mathbb{D} in \mathbb{C} into Y. We denote the set of all analytic discs in Y by $\mathcal{O}(\mathbb{D},Y)$. A disc functional on Y is a map $H: \mathcal{A} \to \overline{\mathbb{R}}$ defined on some subset \mathcal{A} of $\mathcal{O}(\mathbb{D},Y)$ with values in the extended real line $\overline{\mathbb{R}} = [-\infty, \infty]$. The envelope $E_{\mathcal{B}}H: Y \to \overline{\mathbb{R}}$ of H with respect to the subclass \mathcal{B} of \mathcal{A} is defined by

$$E_{\mathcal{B}}H(x) = \inf\{H(f); f \in \mathcal{B}, f(0) = x\}, \quad x \in Y$$

We let \mathcal{A}_Y denote the set of all closed analytic discs in Y, i.e., analytic discs that extend to holomorphic maps in some neighbourhood of the closed unit disc $\overline{\mathbb{D}}$, and for a subset S of Y we let \mathcal{A}_Y^S denote the set of all discs in \mathcal{A}_Y which map the unit circle \mathbb{T} into S.

We let \mathbb{P}^n denote the complex projective space with the natural projection $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$, $(z_0, \ldots, z_n) \mapsto [z_0 : \cdots : z_n]$, and we identify \mathbb{C}^n with the subspace of \mathbb{P}^n consisting of all $[z_0 : \cdots : z_n]$ with $z_0 \neq 0$. The

hyperplane at infinity H_{∞} in \mathbb{P}^n is the projection of $Z_0 \setminus \{0\}$ where Z_0 is the hyperplane in \mathbb{C}^{n+1} defined by the equation $z_0 = 0$.

It is an easy observation that a function $u \in \mathcal{PSH}(\mathbb{C}^n)$ is in the Lelong class \mathcal{L} if and only if the function

(1)
$$\widetilde{z} = (z_0, \dots, z_n) \mapsto u \circ \pi(\widetilde{z}) + \log |z_0| = u(z_1/z_0, \dots, z_n/z_0) + \log |z_0|$$
 extends as a plurisubharmonic function from $\mathbb{C}^{n+1} \setminus Z_0$ to $\mathbb{C}^{n+1} \setminus \{0\}$. If we denote this extension by v , take $f = [f_0 : \dots : f_n] \in \mathcal{A}_{\mathbb{P}^n}$ with $f(0) = z \in \mathbb{C}^n$, $f(\mathbb{T}) \subset \mathbb{C}^n$, and set $\widetilde{f} = (f_0, \dots, f_n) \in \mathcal{A}_{\mathbb{C}^{n+1} \setminus \{0\}}$, then by subharmonicity of $v \circ \widetilde{f}$ we get

(2)
$$u(z) + \log|f_0(0)| = v \circ \widetilde{f}(0) \le \int_{\mathbb{T}} v \circ \widetilde{f} d\sigma = \int_{\mathbb{T}} u \circ f d\sigma + \int_{\mathbb{T}} \log|f_0| d\sigma.$$

Since $f(\mathbb{T}) \subset \mathbb{C}^n$, the set $f(\mathbb{D})$ has finitely many intersection points with H_{∞} , which means that f_0 has finitely many zeros in \mathbb{D} . We write

$$f_0(\zeta) = \prod_{a \in f^{-1}(H_\infty)} \left(\frac{\zeta - a}{1 - \bar{a}\zeta}\right)^{m_{f_0}(a)} g_0(\zeta)$$

where $m_{f_0}(a)$ denotes the multiplicity of a as a zero of f_0 , and g_0 is holomorphic and without zeros in some neighbourhood of $\overline{\mathbb{D}}$. We have

(3)
$$\log|f_0(0)| = \sum_{a \in f^{-1}(H_\infty)} m_{f_0}(a) \log|a| + \log|g_0(0)|,$$

and since the product has modulus 1 on \mathbb{T} and $\log |g_0|$ is harmonic in some neighbourhood of $\overline{\mathbb{D}}$, we have

(4)
$$\int_{\mathbb{T}} \log |f_0| d\sigma = \int_{\mathbb{T}} \log |g_0| d\sigma = \log |g_0(0)|.$$

By combining (3) and (4) with (2) we arrive at the inequality

(5)
$$u(z) \le -\sum_{a \in f^{-1}(H_{\infty})} m_{f_0}(a) \log |a| + \int_{\mathbb{T}} u \circ f \, d\sigma.$$

As in [3] we define the disc functional

$$J: \mathcal{O}(\mathbb{D}, \mathbb{P}^n) \to \overline{\mathbb{R}}_+ = [0, \infty], \quad J(f) = -\sum_{a \in f^{-1}(H_\infty)} m_{f_0}(a) \log |a|,$$

where we take J(f) = 0 if $f^{-1}(H_{\infty}) = \emptyset$. If q is Borel measurable, then we add a mean value term to J and define J_q by

$$J_q: \mathcal{O}(\mathbb{D}, \mathbb{P}^n) \cap C(\overline{\mathbb{D}}, \mathbb{P}^n) \to \overline{\mathbb{R}}, \quad J_q(f) = J(f) + \int_{\mathbb{T} \cap f^{-1}(X)} q \circ f \, d\sigma.$$

If $f^{-1}(H_{\infty})$ is an infinite set the sum is understood as the infimum over all finite subsets, which is well defined since the terms are all negative. In

the case when $J(f) = \infty$ and the integral is $-\infty$ we define $J_q(f) = \infty$. If $f(\mathbb{T}) \subset X$, then the sum is finite. For the constant disc k_x , $\overline{\mathbb{D}} \ni \zeta \mapsto x \in X$, we have $J(k_x) = 0$, and hence $J_q(k_x) = q(x)$.

The inequality (5) implies that for every $u \in \mathcal{L}$ with $u \leq q$ on X and every $f \in \mathcal{A}_{\mathbb{P}^n}$ with f(0) = z we have

$$u(z) \le J_q(f) + \int_{\mathbb{T} \setminus f^{-1}(X)} u \circ f \, d\sigma.$$

If $f(\mathbb{T}) \subset X$, then the second term on the right hand side vanishes. If we take the supremum over all $u \in \mathcal{L}$ with $u \leq q$ on X on the left hand side and the infimum over all $f \in \mathcal{B}$ for some subclass $\mathcal{B} \subseteq \mathcal{A}_{\mathbb{P}^n}^X$ on the right hand side, then we arrive at the inequality

$$V_{X,q}(z) \le E_{\mathcal{A}_{\mathbb{P}^n}^X} J_q(z) \le E_{\mathcal{B}} J_q(z), \quad z \in \mathbb{C}^n$$

We will prove that the first inequality is actually an equality:

THEOREM 2. Let X be an open connected subset of \mathbb{C}^n and $q: X \to \mathbb{R} \cup \{-\infty\}$ be an upper semicontinuous function. Then $V_{X,q} = E_{\mathcal{A}_{\mathbb{P}^n}^X} J_q$, i.e., for every $z \in \mathbb{C}^n$ we have

$$V_{X,q}(z) = \inf \Big\{ - \sum_{a \in f^{-1}(H_{\infty})} m_{f_0}(a) \log |a| + \int_{\mathbb{T}} q \circ f \, d\sigma;$$
$$f \in \mathcal{A}_{\mathbb{P}^n}, \, f(\mathbb{T}) \subset X, \, f(0) = z \Big\}.$$

Observe that the formula in Theorem 1 is the same except for the multiplicities. In order to show that Theorem 1 follows from Theorem 2, we first observe that the upper semicontinuity of q implies that for every $\varepsilon > 0$ and every $f \in \mathcal{A}_{\mathbb{P}^n}^X$ there exists a continuous function $\widetilde{q} \geq q$ on X such that $\int_{\mathbb{T}} \widetilde{q} \circ f \, d\sigma < \int_{\mathbb{T}} q \circ f \, d\sigma + \varepsilon$. By Proposition 1 in [3], every $f \in \mathcal{A}_{\mathbb{P}^n}$ can be approximated uniformly on $\overline{\mathbb{D}}$ by $g \in \mathcal{A}_{\mathbb{P}^n}$ such that all the zeros of g_0 are simple, g(0) = f(0), and J(g) = J(f). Since \widetilde{q} is continuous we can choose g such that $\int_{\mathbb{T}} \widetilde{q} \circ g \, d\sigma < \int_{\mathbb{T}} \widetilde{q} \circ f \, d\sigma + \varepsilon$. This gives $J_q(g) \leq J_{\widetilde{q}}(g) < J_q(f) + 2\varepsilon$ and we conclude that the infima in Theorems 1 and 2 are equal.

Good sets of analytic discs. We modify the definition from [3] of good sets of analytic discs by saying that a subset \mathcal{B} of $\mathcal{A}_{\mathbb{P}^n}$ is good with respect to the function q if:

- (i) $f(\mathbb{T}) \subset X$ for every $f \in \mathcal{B}$,
- (ii) for every $z \in \mathbb{C}^n$, there is a disc in \mathcal{B} with centre z,
- (iii) for every $x \in X$, the constant disc at x is in \mathcal{B} , and
- (iv) the envelope $E_{\mathcal{B}}J_q$ is upper semicontinuous on \mathbb{C}^n and has minimal growth, that is, $E_{\mathcal{B}}J_q \log^+ \| \cdot \|$ is bounded above on \mathbb{C}^n .

Condition (i) implies that $u(z) \leq J_q(f)$ for every $u \in \mathcal{L}$ with $u \leq q$ and $f \in \mathcal{B}$ with f(0) = z; (ii) implies that $E_{\mathcal{B}}J_q(z) < \infty$ for every $z \in \mathbb{C}^n$; (iii) implies that $E_{\mathcal{B}}J_q(x) \leq q(x)$ for all $x \in X$; and (iv) implies that $V_{X,q}$ is the largest plurisubharmonic function on \mathbb{C}^n dominated by $E_{\mathcal{B}}J_q$.

Poletsky's theorem states that for every upper semicontinuous function $\psi: Y \to \mathbb{R} \cup \{-\infty\}$ on a complex manifold Y, and every $x \in Y$, we have

$$\sup\{u(x);\,u\in\mathcal{PSH}(Y),\,u\leq\psi\}=\inf\Big\{\int\limits_{\mathbb{T}}\psi\circ h\,d\sigma;\,h\in\mathcal{A}_Y,\,h(0)=x\Big\}.$$

See Poletsky [6], Lárusson and Sigurdsson [4, 5], and Rosay [7]. As a consequence we get a disc formula for $V_{X,a}$:

THEOREM 3. Let X be an open subset of \mathbb{C}^n , $q: X \to \overline{\mathbb{R}}$ be a Borel measurable function, and \mathcal{B} be a good class of analytic discs with respect to q. Then

$$V_{X,q}(z) = \inf \left\{ \int_{\mathbb{T}} E_{\mathcal{B}} J_q \circ h \, d\sigma; \, h \in \mathcal{A}_{\mathbb{C}^n}, \, h(0) = z \right\}, \quad z \in \mathbb{C}^n$$

The remaining proof. Assume that $q: X \to \mathbb{R} \cup \{-\infty\}$ is upper semicontinuous. From now on we choose \mathcal{B} to be the set of all analytic discs in \mathbb{P}^n which are either a constant disc in X or of the form

$$f_{z,w,r}: \zeta \mapsto w + \frac{\|z - w\| + r\zeta}{r + \|z - w\|\zeta} \frac{r}{\|w - z\|} (z - w)$$

where $z \in \mathbb{C}^n$, $w \in X \setminus \{z\}$ and $r < \min\{||z - w||, d(w, \partial X)\}$.

Observe that $f_{z,w,r}$ maps $\overline{\mathbb{D}}$ into the projective line through z and w, \mathbb{T} is mapped to the circle with centre w and radius r, 0 is mapped to z, and $-r/\|z-w\|$ is mapped into H_{∞} . The conditions on z, w and r ensure that $f_{z,w,r}(\mathbb{T}) \subset X$ and we have the formula

(6)
$$J_{q}(f_{z,w,r}) = \log(\|z - w\|/r) + \int_{\mathbb{T}} q \circ f_{z,w,r} d\sigma.$$

It is obvious that conditions (i)–(iii) in the definition of a good set are satisfied. By (iii) we have $E_{\mathcal{B}}J_q(x) \leq q(x)$ for all $x \in X$, and since q is upper semicontinuous, this implies that $E_{\mathcal{B}}J_q$ is upper bounded on every compact subset of X. If we fix $w \in X$ and $r < d(w, \partial X)$, then it follows from (6) that $E_{\mathcal{B}}J_q$ is upper bounded on every compact subset of \mathbb{C}^n and is of minimal growth. The upper semicontinuity of $E_{\mathcal{B}}J_q$ follows from

LEMMA 1. Assume that $q: X \to \mathbb{R} \cup \{-\infty\}$ is upper semicontinuous. For every $z_0 \in \mathbb{C}^n$ and every $\alpha \in \mathbb{R}$ such that $E_{\mathcal{B}}J_q(z_0) < \alpha$ there exist $w_0 \in \mathbb{C}^n$, $r_0 > 0$, and a neighbourhood U of z_0 such that $0 < r_0 < \min\{\|z - w_0\|, d(w_0, \partial X)\}$ and $J_q(f_{z,w_0,r_0}) < \alpha$ for all $z \in U$. Proof. Let $f \in \mathcal{B}$ be such that $f(0) = z_0$ and $J_q(f) < \alpha$. If f is of the form f_{z_0,w_0,r_0} for some $w_0 \in \mathbb{C}^n$ and $0 < r_0 < \min\{d(w_0,\partial X), \|z_0 - w_0\|\}$, then we can choose a continuous function $\widetilde{q} \geq q$ on X such that $J_{\widetilde{q}}(f_{z_0,w_0,r_0}) < \alpha$. The continuity of \widetilde{q} implies that there exists a neighbourhood U of z_0 such that $r_0 < \|z - w_0\|$ and $J_{\widetilde{q}}(f_{z,w_0,r_0}) < \alpha$ for all $z \in U$. Since $J_q \leq J_{\widetilde{q}}$ the statement holds in this case.

Assume now that f is the constant disc z_0 . Then $z_0 \in X$ and $J_q(f) = q(z_0) < \alpha$. Since q is upper semicontinuous, there exists $0 < \delta < d(z_0, \partial X)$ such that $q(z) < \alpha$ for all $z \in B(z_0, \delta)$, the ball with centre z_0 and radius δ . Then for every z and w in $B(z_0, \delta/2)$ and $0 < r < \min\{\|z - w\|, \delta/2\}$ we have $\int_{\mathbb{T}} q \circ f_{z,w,r} d\sigma < \alpha$. Now choose $w_0 \in B(z_0, \delta/2)$ and $0 < r_0 < \min\{\|z_0 - w_0\|, \delta/2\}$ such that $J_q(f_{z_0,w_0,r_0}) = \log(\|z_0 - w_0\|/r_0) + \int_{\mathbb{T}} q \circ f_{z_0,w_0,r_0} d\sigma < \alpha$. The statement now follows as in the first part of the proof.

If $q: X \to \mathbb{R} \cup \{-\infty\}$ is upper semicontinuous and $q_j: X \to \mathbb{R}$ is a decreasing sequence of continuous functions converging to q, then it is obvious that $V_{X,q_j} \setminus V_{X,q}$. It also immediately follows that $J_{q_j}(f) \setminus J_q(f)$ for every $f \in \mathcal{A}_{\mathbb{P}^n}^X$ and as a consequence we get $E_{\mathcal{A}_{\mathbb{P}^n}^X} J_{q_j} \setminus E_{\mathcal{A}_{\mathbb{P}^n}^X} J_q$. This shows that for the proof of Theorem 2 we may assume that q is continuous.

In the previous section we have seen that $V_{X,q} \leq E_{\mathcal{A}_{\mathbb{P}^n}^X} J_q$ and that $V_{X,q}$ is the largest plurisubharmonic function on \mathbb{C}^n dominated by $E_{\mathcal{B}}J_q$. Hence, Theorem 2 is a direct consequence of Theorem 3 and the following

LEMMA 2. Let X be an open connected subset of \mathbb{C}^n , $q: X \to \mathbb{R}$ be continuous, and \mathcal{B} be as above. For every $h \in \mathcal{A}_{\mathbb{C}^n}$, every continuous function $v \geq E_{\mathcal{B}}J_q$ on \mathbb{C}^n , and every $\varepsilon > 0$, there exists $g \in \mathcal{A}_{\mathbb{P}^n}^X$ with g(0) = h(0) and

$$J_q(g) \le \int_{\mathbb{T}} v \circ h \, d\sigma + \varepsilon.$$

The proof is exactly the same as the proof of the Lemma in [3] with J_q in place of J. We only have to note that if we choose $\varphi: \mathbb{C}^{n+1} \to \mathbb{R}$ with $\varphi(z) = \log |z_0|$, let $f = [f_0: \dots: f_n] \in \mathcal{A}_{\mathbb{P}^n}$, and let $\widetilde{f} = (f_0, \dots, f_n) \in \mathcal{A}_{\mathbb{C}^{n+1}\setminus\{0\}}$ be a lifting of f, then

$$J_q(f) = \int_{\mathbb{T}} (\varphi \circ \widetilde{f} + q \circ \pi \circ \widetilde{f}) d\sigma - \varphi(\widetilde{f}(0)),$$

and that the last part of the proof holds with $\varphi + q \circ \pi$ in place of φ .

References

 V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), 607–639.

- [2] M. Klimek, *Pluripotential Theory*, Oxford Univ. Press, London, 1991.
- [3] F. Lárusson and R. Sigurdsson, The Siciak–Zahariuta extremal function as the envelope of disc functionals, Ann. Polon. Math. 86 (2005), 177–192.
- [4] —, —, Plurisubharmonic functions and analytic discs on manifolds, J. Reine Angew. Math. 501 (1998), 1–39.
- [5] —, —, Plurisubharmonicity of envelopes of disc functionals on manifolds, ibid. 555 (2003), 27–38.
- [6] E. A. Poletsky, Plurisubharmonic functions as solutions of variational problems, in: Several Complex Variables and Complex Geometry (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math. 52, Part 1, Amer. Math. Soc., 1991, 163–171.
- J.-P. Rosay, Poletsky theory of disks on holomorphic manifolds, Indiana Univ. Math. J. 52 (2003), 157–169.
- [8] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322–357.

Science Institute University of Iceland Dunhaga 3 IS-107 Reykjavík, Iceland E-mail: bsm@hi.is ragnar@hi.is

Received 22.12.2006 (1710)