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Ragnar Sigurdsson (Reykjav́ık)
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Abstract. We prove a disc formula for the weighted Siciak–Zahariuta extremal func-
tion VX,q for an upper semicontinuous function q on an open connected subset X in C

n.
This function is also known as the weighted Green function with logarithmic pole at
infinity and weighted global extremal function.

Introduction. If X is a subset of C
n and q : X → R = [−∞,∞] is

a function, then the weighted Siciak–Zahariuta extremal function VX,q with

respect to q is defined as

VX,q = sup{u ∈ L; u ≤ q on X}

where L denotes the Lelong class of all plurisubharmonic functions u on
C

n of minimal growth, i.e., functions u satisfying u(z) ≤ log+ ‖z‖ + cu,
z ∈ C

n, for some constant cu. The Siciak–Zahariuta extremal function VX

corresponds to the case q = 0. The functions VX and VX,q were first intro-
duced by Siciak in the fundamental paper [8] where he proved his celebrated
approximation theorem in several complex variables. The theorem states
that for every compact subset X of C

n such that VX is continuous, every
holomorphic function f on some neighbourhood of X can be approximated
uniformly on X by polynomials Pν of degree less than or equal to ν in such
a way that

lim sup
ν→∞

(sup
z∈X

|f(z) − Pν(z)|)
1/ν = ̺ < 1

if and only if f has a holomorphic extension to the sublevel set {z ∈ C
n;

VX(z) < − log ̺}.
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The purpose of this paper is to extend the methods of Lárusson and
Sigurdsson [3] in order to prove disc envelope formulas for VX,q. Our main
result is the following

Theorem 1. Let X be an open connected subset of C
n and q be an

upper semicontinuous function on X. Then for every z ∈ C
n,

VX,q(z) = inf
{
−

∑

a∈f−1(H∞)

log |a| +
\
T

q ◦ f dσ;

f ∈ O(D,Pn), f(T) ⊂ X, f(0) = z
}
.

Here P
n is the complex projective space viewed in the usual way as the union

of the affine space C
n and the hyperplane at infinity H∞, D and T are the

open unit disc and the unit circle in C, and σ is the normalized arc length

measure on T.

Our approach is the following. Based on the observation (see Guedj
and Zeriahi [1]) that a function u is in the Lelong class if and only if
(z0, . . . , zn) 7→ u(z1/z0, . . . , zn/z0) + log |z0| extends as a plurisubharmonic
function from C

n+1 \ {z0 = 0} to C
n+1 \ {0}, we derive a fundamental in-

equality u(z) ≤ Jq(f) for any closed analytic disc mapping the origin to
z and the unit circle into X. This inequality defines a disc functional Jq

associated to q. Then we define good sets of analytic discs with respect to q
and observe that Poletsky’s theorem implies a disc formula for VX,q. From
this formula we deduce that VX,q is the envelope of Jq with respect to the
class of all closed analytic discs mapping the unit circle into X. This result
gives the theorem above.

Notation and some basic results. An analytic disc in a manifold Y
is a holomorphic map f : D → Y from the unit disc D in C into Y . We
denote the set of all analytic discs in Y by O(D, Y ). A disc functional on Y
is a map H : A → R defined on some subset A of O(D, Y ) with values in
the extended real line R = [−∞,∞]. The envelope EBH : Y → R of H with
respect to the subclass B of A is defined by

EBH(x) = inf{H(f); f ∈ B, f(0) = x}, x ∈ Y.

We let AY denote the set of all closed analytic discs in Y , i.e., analytic discs
that extend to holomorphic maps in some neighbourhood of the closed unit
disc D, and for a subset S of Y we let AS

Y denote the set of all discs in AY

which map the unit circle T into S.

We let P
n denote the complex projective space with the natural projec-

tion π : C
n+1 \ {0} → P

n, (z0, . . . , zn) 7→ [z0 : · · · : zn], and we identify C
n

with the subspace of P
n consisting of all [z0 : · · · : zn] with z0 6= 0. The
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hyperplane at infinity H∞ in P
n is the projection of Z0 \ {0} where Z0 is

the hyperplane in C
n+1 defined by the equation z0 = 0.

It is an easy observation that a function u ∈ PSH(Cn) is in the Lelong
class L if and only if the function

(1) z̃ = (z0, . . . , zn) 7→ u ◦ π(z̃) + log |z0| = u(z1/z0, . . . , zn/z0) + log |z0|

extends as a plurisubharmonic function from C
n+1 \Z0 to C

n+1 \ {0}. If we
denote this extension by v, take f = [f0 : · · · : fn] ∈ APn with f(0) = z ∈ C

n,

f(T) ⊂ C
n, and set f̃ = (f0, . . . , fn) ∈ ACn+1\{0}, then by subharmonicity

of v ◦ f̃ we get

(2) u(z) + log |f0(0)| = v ◦ f̃(0) ≤
\
T

v ◦ f̃ dσ =
\
T

u ◦ f dσ +
\
T

log |f0| dσ.

Since f(T) ⊂ C
n, the set f(D) has finitely many intersection points with

H∞, which means that f0 has finitely many zeros in D. We write

f0(ζ) =
∏

a∈f−1(H∞)

(
ζ − a

1 − āζ

)mf0
(a)

g0(ζ)

where mf0
(a) denotes the multiplicity of a as a zero of f0, and g0 is holo-

morphic and without zeros in some neighbourhood of D. We have

(3) log |f0(0)| =
∑

a∈f−1(H∞)

mf0
(a) log |a| + log |g0(0)|,

and since the product has modulus 1 on T and log |g0| is harmonic in some
neighbourhood of D, we have

(4)
\
T

log |f0| dσ =
\
T

log |g0| dσ = log |g0(0)|.

By combining (3) and (4) with (2) we arrive at the inequality

(5) u(z) ≤ −
∑

a∈f−1(H∞)

mf0
(a) log |a| +

\
T

u ◦ f dσ.

As in [3] we define the disc functional

J : O(D,Pn) → R+ = [0,∞], J(f) = −
∑

a∈f−1(H∞)

mf0
(a) log |a|,

where we take J(f) = 0 if f−1(H∞) = ∅. If q is Borel measurable, then we
add a mean value term to J and define Jq by

Jq : O(D,Pn) ∩ C(D,Pn) → R, Jq(f) = J(f) +
\

T∩f−1(X)

q ◦ f dσ.

If f−1(H∞) is an infinite set the sum is understood as the infimum over
all finite subsets, which is well defined since the terms are all negative. In
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the case when J(f) = ∞ and the integral is −∞ we define Jq(f) = ∞. If

f(T) ⊂ X, then the sum is finite. For the constant disc kx, D ∋ ζ 7→ x ∈ X,
we have J(kx) = 0, and hence Jq(kx) = q(x).

The inequality (5) implies that for every u ∈ L with u ≤ q on X and
every f ∈ APn with f(0) = z we have

u(z) ≤ Jq(f) +
\

T\f−1(X)

u ◦ f dσ.

If f(T) ⊂ X, then the second term on the right hand side vanishes. If we
take the supremum over all u ∈ L with u ≤ q on X on the left hand side and
the infimum over all f ∈ B for some subclass B ⊆ AX

Pn on the right hand
side, then we arrive at the inequality

VX,q(z) ≤ EAX
Pn
Jq(z) ≤ EBJq(z), z ∈ C

n.

We will prove that the first inequality is actually an equality:

Theorem 2. Let X be an open connected subset of C
n and q :

X → R∪{−∞} be an upper semicontinuous function. Then VX,q = EAX
Pn
Jq,

i.e., for every z ∈ C
n we have

VX,q(z) = inf
{
−

∑

a∈f−1(H∞)

mf0
(a) log |a| +

\
T

q ◦ f dσ;

f ∈ APn , f(T) ⊂ X, f(0) = z
}
.

Observe that the formula in Theorem 1 is the same except for the mul-
tiplicities. In order to show that Theorem 1 follows from Theorem 2, we
first observe that the upper semicontinuity of q implies that for every ε > 0
and every f ∈ AX

Pn there exists a continuous function q̃ ≥ q on X such thatT
T
q̃ ◦ f dσ <

T
T
q ◦ f dσ + ε. By Proposition 1 in [3], every f ∈ APn can be

approximated uniformly on D by g ∈ APn such that all the zeros of g0 are
simple, g(0) = f(0), and J(g) = J(f). Since q̃ is continuous we can choose g
such that

T
T
q̃ ◦ g dσ <

T
T
q̃ ◦ f dσ+ ε. This gives Jq(g) ≤ Jq̃(g) < Jq(f) + 2ε

and we conclude that the infima in Theorems 1 and 2 are equal.

Good sets of analytic discs. We modify the definition from [3] of
good sets of analytic discs by saying that a subset B of APn is good with

respect to the function q if:

(i) f(T) ⊂ X for every f ∈ B,
(ii) for every z ∈ C

n, there is a disc in B with centre z,
(iii) for every x ∈ X, the constant disc at x is in B, and
(iv) the envelope EBJq is upper semicontinuous on C

n and has minimal
growth, that is, EBJq − log+ ‖ · ‖ is bounded above on C

n.
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Condition (i) implies that u(z) ≤ Jq(f) for every u ∈ L with u ≤ q and
f ∈ B with f(0) = z; (ii) implies that EBJq(z) < ∞ for every z ∈ C

n;
(iii) implies that EBJq(x) ≤ q(x) for all x ∈ X; and (iv) implies that VX,q

is the largest plurisubharmonic function on C
n dominated by EBJq.

Poletsky’s theorem states that for every upper semicontinuous function
ψ : Y → R ∪ {−∞} on a complex manifold Y , and every x ∈ Y , we have

sup{u(x); u ∈ PSH(Y ), u ≤ ψ} = inf
{\

T

ψ ◦ h dσ; h ∈ AY , h(0) = x
}
.

See Poletsky [6], Lárusson and Sigurdsson [4, 5], and Rosay [7]. As a conse-
quence we get a disc formula for VX,q:

Theorem 3. Let X be an open subset of C
n, q : X → R be a Borel

measurable function, and B be a good class of analytic discs with respect

to q. Then

VX,q(z) = inf
{\

T

EBJq ◦ h dσ; h ∈ ACn , h(0) = z
}
, z ∈ C

n.

The remaining proof. Assume that q : X → R ∪ {−∞} is upper
semicontinuous. From now on we choose B to be the set of all analytic discs
in P

n which are either a constant disc in X or of the form

fz,w,r : ζ 7→ w +
‖z − w‖ + rζ

r + ‖z − w‖ζ

r

‖w − z‖
(z − w)

where z ∈ C
n, w ∈ X \ {z} and r < min{‖z − w‖, d(w, ∂X)}.

Observe that fz,w,r maps D into the projective line through z and w,
T is mapped to the circle with centre w and radius r, 0 is mapped to z, and
−r/‖z − w‖ is mapped into H∞. The conditions on z, w and r ensure that
fz,w,r(T) ⊂ X and we have the formula

(6) Jq(fz,w,r) = log(‖z − w‖/r) +
\
T

q ◦ fz,w,r dσ.

It is obvious that conditions (i)–(iii) in the definition of a good set are
satisfied. By (iii) we have EBJq(x) ≤ q(x) for all x ∈ X, and since q is upper
semicontinuous, this implies that EBJq is upper bounded on every compact
subset of X. If we fix w ∈ X and r < d(w, ∂X), then it follows from (6) that
EBJq is upper bounded on every compact subset of C

n and is of minimal
growth. The upper semicontinuity of EBJq follows from

Lemma 1. Assume that q : X → R ∪ {−∞} is upper semicontinuous.

For every z0 ∈ C
n and every α ∈ R such that EBJq(z0) < α there ex-

ist w0 ∈ C
n, r0 > 0, and a neighbourhood U of z0 such that 0 < r0 <

min{‖z − w0‖, d(w0, ∂X)} and Jq(fz,w0,r0
) < α for all z ∈ U .
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Proof. Let f ∈ B be such that f(0) = z0 and Jq(f) < α. If f is of the form
fz0,w0,r0

for some w0 ∈ C
n and 0 < r0 < min{d(w0, ∂X), ‖z0 − w0‖}, then

we can choose a continuous function q̃ ≥ q on X such that Jq̃(fz0,w0,r0
) < α.

The continuity of q̃ implies that there exists a neighbourhood U of z0 such
that r0 < ‖z − w0‖ and Jq̃(fz,w0,r0

) < α for all z ∈ U . Since Jq ≤ Jq̃ the
statement holds in this case.

Assume now that f is the constant disc z0. Then z0 ∈ X and Jq(f) =
q(z0) < α. Since q is upper semicontinuous, there exists 0 < δ < d(z0, ∂X)
such that q(z) < α for all z ∈ B(z0, δ), the ball with centre z0 and radius δ.
Then for every z and w in B(z0, δ/2) and 0 < r < min{‖z − w‖, δ/2}
we have

T
T
q ◦ fz,w,r dσ < α. Now choose w0 ∈ B(z0, δ/2) and 0 < r0

< min{‖z0 − w0‖, δ/2} such that Jq(fz0,w0,r0
) = log(‖z0 − w0‖/r0) +T

T
q ◦ fz0,w0,r0

dσ < α. The statement now follows as in the first part of

the proof.

If q : X → R ∪ {−∞} is upper semicontinuous and qj : X → R is
a decreasing sequence of continuous functions converging to q, then it is
obvious that VX,qj

ց VX,q. It also immediately follows that Jqj
(f) ց Jq(f)

for every f ∈ AX
Pn and as a consequence we get EAX

Pn
Jqj

ց EAX
Pn
Jq. This

shows that for the proof of Theorem 2 we may assume that q is continuous.
In the previous section we have seen that VX,q ≤ EAX

Pn
Jq and that VX,q

is the largest plurisubharmonic function on Cn dominated by EBJq. Hence,
Theorem 2 is a direct consequence of Theorem 3 and the following

Lemma 2. Let X be an open connected subset of C
n, q : X → R be con-

tinuous, and B be as above. For every h ∈ ACn , every continuous function

v ≥ EBJq on C
n, and every ε > 0, there exists g ∈ AX

Pn with g(0) = h(0)
and

Jq(g) ≤
\
T

v ◦ h dσ + ε.

The proof is exactly the same as the proof of the Lemma in [3] with Jq

in place of J . We only have to note that if we choose ϕ : C
n+1 → R with

ϕ(z) = log |z0|, let f = [f0 : · · · : fn] ∈ APn , and let f̃ = (f0, . . . , fn) ∈
ACn+1\{0} be a lifting of f , then

Jq(f) =
\
T

(ϕ ◦ f̃ + q ◦ π ◦ f̃) dσ − ϕ(f̃(0)),

and that the last part of the proof holds with ϕ+ q ◦ π in place of ϕ.
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