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The gradient lemma

by URBAN CEGRELL (Umed and Sundsvall)

Abstract. We show that if a decreasing sequence of subharmonic functions converges

. . 1.2 PO 1,2
to a function in W . then the convergence is in W .

1. Introduction. This paper is based on a talk I gave in Krakéow
on April 30, 2003 and is in part motivated by Blocki’s paper [1].

PROPOSITION 1.1. Denote by SH™ the negative subharmonic functions
defined on some domain in C", and by Wllof the usual Sobolev class. Then

we SH™NW,2 if and only if w € SH™ N LL (Au).
Using Proposition 1.1, we prove the gradient lemma:

LEMMA 1.2. If u; is a decreasing sequence of functions in SH™ with limit
u € I/Vﬁm?, then u; € T/Vlif and u; — u in W'l(l)f as j — oo.

In the last section, we use the gradient lemma in connection with the
class &.

2. Proof of Proposition 1.1. The problem is local, so we can assume
that w € SH™(B) where B is the unit ball in C",0 < r < s < 1. Define
u = sup{¢ € SH™(B); ¢|rB < u|,p}. Then 0 > w > u,u € SH™(B),u = u
on rB and @ is harmonic on B\ 7B and u(x) = {_; g(z,y) Au(y) where g is
the Green function for B.

The smallest harmonic majorant of u on sB can be estimated from below
on B by ¢ {udv where ¢ is a positive constant (depending on s and t) and
dv is the Lebesgue measure on B. It follows that

S g(z,y)Au(y) + ¢ S udv<wu onrB.
sB B
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For z € B, we have

. 2 —1 )
02 () > | gla,y)Auy) + ¢ Ty Sudv = u(z).
sB B
Since
V(1= |24t = | —tdv
B B
we get
| lgrad@® dv = | Az < | —uAw
B B B
= S { S —g(x,y)Au(y)}Aﬁ—i— rQC_ 7 S udv S(l — |z?)Au
B sB B B
< S —uAu + 1_CT2 ( S udv>2 < S —ulu + 1_CT2 ( S udv)2
sB B sB B

so if {_p —uAu < oo, then

2
(%) S lgradu|? < S lgrad a|? < S —uAu + 1 _CT2 ( S udv)
rB B sB B
and we have proved the first half of Proposition 1.1.
Assume now that u € SH™ N W2, We prove that then § » —uAu < oco.

loc

Let 0 <t e C§°(B),t=1on sB. Then

S —ulu < S —tulu = S dtu A d°u A (dd€|z|*)" !
rB B B

<|f dtuAdCtUA(ddC!zP)"‘l}l/Q[ | duAdcuA(ddcyzy2)n—1]”2<oo,

supp t supp t
which completes the proof of Proposition 1.1.

3. Proof of Lemma 1.2. If u; > u then u; > wso by (x), SB —ujAu; <
{p —uAU < oo and
| d(u; —u) A do(u; —u) A (dd°|2)*)"!
rB
<\ d(@; —u) A de(it; — @) A (dd°|z*)"!
B
= — (@ — w)da°(@; —w) A (dd|=*)"
B
< | (@ — W)ddw A (dd°)2)*)" .
B
The last term tends to zero as j tends to infinity and the proof is complete.
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4. The class £. We denote by PSH™({2) the class of negative plurisub-
harmonic functions defined on the domain {2 in C”.

A domain (2 in C" is called hyperconvez if there is a negative exhaustion
function for (2, i.e. a function ¢» € PSH™({2) such that

{ze2;Y(z)<c}CcC 2, Ve<O.

We say that a function v € PSH™(£2) is in F({2) if there is a decreasing
sequence of functions v; € & (£2) with limv; = v and sup | (dd®v;)" < oc.
Here &({2) is the class of bounded plurisubharmonic functions u such that
lim, ¢ u(z) = 0 for all £ € 942 and {,(dd“u)" < co. Finally, u € £({2) if for
every w CC {2 there is a function u < u, € F({2) with equality on w. See
[C1, C2] for further properties of this and related classes.

THEOREM 4.1. Suppose §2 is a hyperconvexr subset of C™. Then there is
a constant ¢, depending on 2 only, such that if u € F(§2) then

S lgradul? dv < ¢ X(ddcu)".
{u<—1} n
Proof. By the gradient lemma and Theorem 2.1 in [3]|, we can assume
that u € & (2)NC(2). Then {u < —1} CC 2. We can choose m and t such
that —1 < m(]z|> —t) < 0 on £2.
Integration by parts gives

1
| leradufdv=—— | dundiun(ddm(lz® — )"
{u<-1} m {u<-1}

1
< du A d°u A (dd° max(m(|z|? — t),u))" "t

—mnl

S
9]
! S max(m(|z|* — t),uw)(ddu)* A (dd° max(m(|z|* — t),u))" 2
Q
)

mnl

m(t — |z|?)(ddu)" < -\ (ddew)™. a

]

COROLLARY 4.2. If u € &, then u € PSH™ N W,

loc *

COROLLARY 4.3. Suppose §2 is a hyperconvexr domain in C?. Then there
is a constant c, depending on {2 only, such that if u € F(§2) then

S lgrad u|? dv < cS(ddCu)Q.
N 2

THEOREM 4.4 (Blocki [1]). Suppose (2 is a hyperconvex subset of C2.
Then u € &€ if and only if w e PSH™ N VVli)’C2
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Proof. If u € &, then u € PSH™ N W, by Corollary 4.2. Conversely,
it w e PSH™ N Wli’f, then v € L2 . and |gradu|? € L] .. Therefore, since

loc

ddu® = 2du A d°u + 2uddu, it follows that dd®(uddu) is a well defined
positive measure so v isin £. n

REMARK. For u € F(B), where B is the unit ball in C", n > 1, we have

S |gradu!2 dv < c%n72)/n|:5(1 . ‘2‘2)(ddcu)n] 2/n
B B

where ¢, is the volume of B.
REMARK. Let u,w € F(§2) with {2 hyperconvex. Then, using integration
by parts and Theorem 5.5 in [3], we have

[ du A du A (ddew)"" < [ | —w(ddcu)”} Y "[ | —w(ddcw)”} 2.
(7 02

2

Choosing w to be a strictly plurisubharmonic function (see e.g. [4]), we get
local estimates for |grad u|?.
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