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A new invariant Kähler metric

on relatively compact domains in a complex manifold

by Bo-Yong Chen (Shanghai)

Abstract. We introduce a new invariant Kähler metric on relatively compact do-
mains in a complex manifold, which is the Bergman metric of the L

2 space of holomorphic
sections of the pluricanonical bundle equipped with the Hermitian metric introduced by
Narasimhan–Simha.

1. Introduction. It is well-known that for a bounded domain in C
n,

there are three canonical invariant metrics, i.e., the Carathéodory, Bergman
and Kobayashi metrics (for their definitions and basic properties, see [6]).
Moreover, if the domain is pseudoconvex, then there exists a complete invari-
ant Kähler–Einstein metric (cf. [1], [10]). For a relatively compact domain
in a complex manifold, these metrics might be degenerate (consider C

n and
its compactification P

n+1). It is also known that the canonical line bundle
is closely related to the Bergman and Kähler–Einstein metrics.

In this paper, we introduce an invariant Kähler metric on complex man-
ifolds with positive canonical bundle, which is in fact the Bergman metric
with respect to a certain weighted Bergman space. Generally, the Bergman
metric with respect to a weighted Bergman space is not invariant under the
group of holomorphic transformations. Here we use a special weight origi-
nally contained in the work of Narasimhan–Simha [11]. Equipped with this
weight, the associated Bergman metric turns out to be invariant.

We focus on the special case of relatively compact domains in complex
manifolds. We give a localization principle for the new invariant metric on
locally pseudoconvex domains in complex manifolds with positive canoni-
cal bundle; consequently, one can reduce the study to the case of bounded
domains of holomorphy in C

n. We also give a characterization for the exis-

2000 Mathematics Subject Classification: Primary 32F45; Secondary 32A25.
Key words and phrases: invariant metric, Kähler metric, canonical bundle.
Supported by grants 05QMX1452, NCET-05-0380 and Chinese Excellent Doctorate’s

Degree Thesis No. 200519; partially supported by NSFC No. 10571135.

[147] c© Instytut Matematyczny PAN, 2007



148 B. Y. Chen

tence of this invariant metric on locally pseudoconvex domains in complex
manifolds with trivial canonical bundle.

This metric has the advantage of flexibility as regards completeness com-
pared to the standard Bergman metric and is easier to analyze than the
Kähler–Einstein metric. In fact, we conjecture that it is complete for any
locally pseudoconvex domains in complex manifolds with positive canoni-
cal bundle. Although we cannot prove it, we provide a powerful evidence
to support this conjecture by showing the completeness of the metric in
the “worst” case, i.e., the complement of an effective divisor in a compact
complex manifold with ample canonical bundle. It is well-known that if in
addition the divisor is ample, then its complement carries a complete (in-
variant) Kähler–Einstein metric (cf. [7]). A little surprise is that the above
two metrics are not equivalent.

The paper is organized as follows: In Section 2, we give the definition of
the invariant metric and study its basic properties along the lines of [8]. In
Section 3, we give a localization principle for this metric. In Section 4, we
study the case of relatively compact Stein domains in a complex manifold
with trivial canonical bundle. The last section investigates the asymptotic
behavior of the metric on a hypersurface complement in a compact complex
manifold with ample canonical bundle.

2. Definition and basic properties. Let M be a complex manifold of
dimension n and KM its canonical line bundle. Let Γ (M,mKM ) denote the
space of holomorphic sections of K⊗m

M . For every integer m ≥ 1, we define
a continuous pseudonorm ‖ · ‖m on Γ (M,mKM ) by

‖s‖m =
{ \
M

[(−1)mn
2/2s⊗ s]1/m

}m/2
, s ∈ Γ (M,mKM ).

Consider a volume form τm on M defined by

τm = sup
‖s‖m=1

[(−1)mn
2/2s⊗ s]1/m.

Clearly 1/τm is a non-negative Hermitian metric on KM if τm is not identi-
cally zero. This metric was introduced by Narasimhan–Simha [11] in order to
study the moduli space of compact complex manifolds with ample canonical
bundle (for recent applications in complex geometry see Tsuji [14]).

Lemma 2.1. The form τm is invariant under biholomorphic mappings.

Proof. Let f : M → N be a biholomorphic mapping. For any s ∈
Γ (N,mKN ), we have ‖f∗s‖m = ‖s‖m by the transformation formula for
integrals. Given p ∈ M , take a sequence {sk} in Γ (N,mKN ) such that
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‖sk‖m = 1 and

τm(f(p)) = lim
k→∞

[(−1)mn
2/2sk(f(p)) ⊗ sk(f(p))]1/m.

Then

f∗τm(p) = τm(f(p)) = lim
k→∞

[(−1)mn
2/2sk(f(p)) ⊗ sk(f(p))]1/m

= lim
k→∞

[(−1)mn
2/2f∗sk(p) ⊗ f∗sk(p)]

1/m ≤ τm(p).

The opposite inequality can be obtained similarly.

Lemma 2.2. Let M and M ′ be complex manifolds of complex dimensions

n and n′ respectively. Then

τm((p, p′),M ×M ′) = τm(p,M) ⊗ τm(p′,M ′).

Proof. Take {sk} ⊂ Γ (M,mKM ) and {s′k} ⊂ Γ (M ′,mKM ′) such that
‖sk‖m = ‖s′k‖m = 1 and

τm(p,M) = lim
k→∞

[(−1)mn
2/2sk(p) ⊗ sk(p)]

1/m,

τm(p,M ′) = lim
k→∞

[(−1)mn
′2/2s′k(p) ⊗ s′k(p)]

1/m.

Fubini’s theorem implies

‖sk ⊗ s′k‖m = ‖sk‖m · ‖s′k‖m = 1.

Thus

τm((p, p′),M ×M ′) ≥ lim
k→∞

[(−1)m(n+n′)2/2sk ⊗ s′k(p) ⊗ sk ⊗ s′k(p)]
1/m

= τm(p,M) ⊗ τm(p′,M ′).

On the other hand, for any S ∈ Γ (M ×M ′,mKM×M ′) satisfying ‖S‖m = 1,
we have

[(−1)m(n+n′)2/2S ⊗ S(p, p′)]1/m ≤ τm(p,M)(−1)n
′2/2‖S(·, p′)‖

2/m
m,M

≤ τm(p,M)τm(p′,M ′)‖S‖
2/m
m,M×M ′

= τm(p,M)τm(p′,M ′).

Since S is arbitrary, the proof is complete.

Suppose now τm is nowhere vanishing. For any integer k ≥ 1, one can
define an inner product of Γ (M,kKM ) as follows:

(s1, s2)m,k =
\
M

(−1)kn
2/2s1 ⊗ s2

τ
⊗(k−1)
m

.

Let ‖ · ‖m,k denote the induced norm and H2
τm(M,kKM ) the Hilbert space

of holomorphic sections of kKM which are finite with respect to ‖ · ‖m,k. Let
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s1, s2, . . . be a complete orthonormal basis forH2
τm(M,kKM ). The associated

Bergman kernel is

BM (p) = (−1)kn
2/2

∑

j

sj(p) ⊗ sj(p).

Clearly, BM is independent of the choice of the basis.

Lemma 2.3. BM is invariant under biholomorphic mappings.

Proof. Since f∗τm = τm for a biholomorphic mapping f from M to an-
other complex manifoldN , one has ‖f∗s‖τm =‖s‖τm for all s∈H2

τm(N, kKN).
Note that

BN = sup[(−1)kn
2/2s⊗ s]

where the supremum is taken over all s ∈ H2
τm(N, kKN ) with ‖s‖τm = 1.

The assertion follows by a similar argument to that for Lemma 2.1.

By Lemma 2.2 and a similar argument, we obtain the following product
property.

Lemma 2.4.

BM×M ′ = BM ⊗BM ′ .

Definition 2.5. We say that H2
τm(M,kKM ) is very ample if the follow-

ing conditions are satisfied:

(B1) Given any p ∈ M , there exists s ∈ H2
τm(M,kKM ) such that s(p)

6= 0.
(B2) For any holomorphic vector v at p, there exists s ∈ H2

τm(M,kKM )
such that s(p) = 0 and v(s∗)|p 6= 0 where s = s∗dz1 ∧ · · · ∧ dzn in
local coordinates.

Write

BM (z) = (−1)kn
2/2B∗

M (z)(dz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn)
⊗k

where B∗
M (z) is a locally defined function. If B∗

M is nowhere vanishing, we
can define a Hermitian form

ds2M =
∑

j,k

∂2 logB∗
M

∂zj∂zk
dzj ⊗ dzk.

Clearly, ds2M is independent of the choice of the coordinate system, hence is
globally defined.

Theorem 2.6. If H2
τm(M,kKM ) is very ample, then ds2M defines a

Kähler metric which is invariant under biholomorphic mappings.

Proof. Given any p ∈ M and a holomorphic vector v at p, take a com-
plete orthonormal basis sj , j = 1, 2, . . . , such that

s2(p) = s3(p) = · · · = 0, v(s∗2)(p) 6= 0, v(s∗3)(p) = v(s∗4)(p) = · · · = 0,
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where

sj = s∗j (dz1 ∧ · · · ∧ dzn)
⊗k.

Thus

B∗
M (p) = |s1(p)|

2 > 0, ds2M (p; v) =
|v(s∗2)(p)|

2

B∗
M (p)

> 0,

showing the Hermitian positivity of ds2M . By Lemma 2.3, one has

B∗
M (p) = B∗

N (f(p))|Jf (p)|
2k

where Jf is the Jacobian determinant of a biholomorphic mapping f :M→N,
and consequently, f∗ds2N = ds2M .

Lemmas 2.2 and 2.4 imply the following

Theorem 2.7. ds2M×M ′ = ds2M + ds2M ′ .

Example. Let M be a complex manifold and Ω a relatively compact
domain in M . Suppose that KM is ample on some neighborhood U of Ω,
i.e., there is an integer m0 such that Γ (U,m0KM ) separates points in U
and gives a local coordinate system at each point of U . Clearly ds2Ω exists
on Ω for any m, k. In particular, it exists on relatively compact domains in
a Stein manifold.

Remark 2.8. Kobayashi’s celebrated criterion for completeness of the
standard Bergman metric is still valid for this new invariant metric; the
proof is exactly the same as in [8].

Recall that a domain Ω in a complex manifold M is called locally pseu-

doconvex if for every p ∈ ∂Ω, there is a coordinate polydisc ∆n around p
such that Ω ∩∆n is pseudoconvex in the usual sense. We have the following

Bremermann Type Theorem. Let M be a complex manifold and Ω a

relatively compact domain in M . Suppose ds2Ω is a complete Kähler metric

on Ω for some m, k. Then Ω is locally pseudoconvex.

Proof. Since the result is local, we may assume M = C
n. If Ω is not

pseudoconvex, then there exists a point p ∈ ∂Ω and a neighborhood U
of p such that every holomorphic function on Ω extends to Ω ∪ U . By the
definition of τm, τ∗m extends to a positive continuous function on Ω ∩ U ,

where τm = (−1)n
2/2τ∗mdz1 ∧ · · · ∧ dzn ∧ dz1 ∧ · · · ∧ dzn. Since H2

τm(Ω, kKΩ)
is identical with the Hilbert space of holomorphic functions on Ω which
are square-integrable with the weight k log τ∗m, the related Bergman kernel
extends to a positive real-analytic function on Ω ∪ U , showing ds2Ω cannot
be complete at p, a contradiction.

An immediate application is the following
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Siegel Type Theorem. Let M be a complex manifold and Ω a rel-

atively compact domain in M such that ds2Ω exists for some m, k. If there

exists a properly discontinuous group Γ of holomorphic transformations of Ω
such that Ω/Γ is compact , then Ω is locally pseudoconvex.

Proof. The invariant metric ds2Ω descends to a Kähler metric on the
compact manifold Ω/Γ , which forces it to be complete on Ω. The above
theorem applies.

Remark 2.9. Lárusson [9] has constructed a class of relatively compact
domains in P

n which have compact quotients, but are not locally pseudo-
convex.

3. Localization principle. In this section, we give a couple of local-
ization principles.

Theorem 3.1. Let M be an n-dimensional complex manifold and Ω a

relatively compact , locally pseudoconvex domain in M . Suppose that KM is

ample on some neighborhood U of Ω. Then for sufficiently large m, k one

has, for every p ∈ ∂Ω,

C1ds
2
Ω∩∆n ≤ ds2Ω ≤ C2ds

2
Ω∩∆n on Ω ∩∆n

1/2.

Here ∆n, ∆n
1/2 denote coordinate polydiscs with center p and radius 1 and

1/2 respectively , and C1, C2 are positive constants.

Proof. Fix a Kähler metric ω onΩ (e.g., ω is generated by Γ (U,m0KM )).
Since Ω is locally pseudoconvex, there is a constant C3 > 0 such that
− log δΩ + C3ω is positive in the sense of currents, according to a theorem
of Elencwajg [5]. Here δΩ denotes the boundary distance with respect to ω.
By a smooth regularization of − log δΩ, there exists a smooth exhaustion
function ψ on Ω such that

ψ − logψ + C4ω

gives a complete Kähler metric on Ω for sufficiently large C4. Given z0 ∈
Ω ∩∆n

1/2, one can choose s1, . . . , sl ∈ Γ (U,m0KM ) such that

(−1)m0n/2sj ⊗ sj ≤ C5ω
⊗m0 on Ω,

∑

sj ⊗ sj 6= 0 on Ω \ {z0},

and

∂∂
∑

|s∗j (z)|
2 ≥ ∂∂|z|2, ∀z ∈ ∆n,

log
∑

|s∗j (z)|
2 = log |z|2 +O(1) near 0,

where sj = s∗j (dz1∧· · ·∧dzn)
⊗m0 on ∆n and C5 is a constant independent of

z0. Clearly, τm0
≥ Cω and its curvature Θτm0

> 0 (it is not known whether
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Θτm0
dominates ω!). Set

ϕ = (n+ 1) log
(−1)m0n2/2

∑

sj ⊗ sj

τ⊗m0

m0

.

Clearly, ϕ is bounded above by a constant. Set m1 = (n+ 1)m0 and define
a singular Hermitian metric h−1 on m1KΩ by

h = τ⊗m1

m0
eϕ.

Then h−1 is smooth and positive outside z0 and Θh−1 dominates the Eu-
clidean metric on∆n. Let χ be a smooth cut-off function such that χ|(−∞,2/3]

= 1 and χ|[1,∞) = 0. For any local section s ∈ H2
τm0

(Ω ∩∆n, (m1 + 1)K∆n),

we can solve ∂u = s⊗∂χ(|z|) by the standard L2-theory on complete Kähler
manifolds (compare [2], [13]) together with the estimate\

Ω

(−1)(m1+1)n2/2u⊗ u

h
≤ C6

\
Ω∩∆n

(−1)(m1+1)n2/2s⊗ s

τ
⊗(n+1)
m0

.

Since ϕ is bounded above by a constant, we conclude that S := χ(|z|)s−u ∈
Γ (Ω, (m1 + 1)KΩ) is such that\

Ω

(−1)(m1+1)n2/2S ⊗ S

τ⊗m1

m0

≤ C7

\
Ω∩∆n

(−1)(m1+1)n2/2s⊗ s

τ⊗m1

m0

and S∗(z0) = s∗(z0), (∂S∗/∂zj)(z0) = (∂s∗/∂zj)(z0) for j = 1, . . . , n, where
S∗, s∗ are local representations of S, s. Thus the assertion follows.

Question. Is ds2Ω complete under the hypothesis of Theorem 3.1?

Next we give a localization principle for holomorphic fiber bundles.

Theorem 3.2. Let π : M → B be a holomorphic fiber bundle such

that the base B is a compact complex manifold with ample canonical bundle

and the typical fiber F is a bounded pseudoconvex domain in C
n. Then for

sufficiently large m, k one has, for every p ∈ B and a coordinate polydisc ∆l

at p,
C1ds

2
π−1(∆l) ≤ ds2M ≤ C2ds

2
π−1(∆l) on π−1(∆l

1/2).

Proof. Observe that M carries a complete Kähler metric: as F is a
bounded domain of holomorphy, it admits a complete Kähler–Einstein met-
ric ωF which is invariant under the group of holomorphic transformations
of F ; one simply chooses the complete metric to be ωF + ωB with ωB an
arbitrary Kähler metric on B. Similarly, τm(F ) is also invariant under the
group of holomorphic transformations of F , hence one has the decomposi-
tion τm(M) = τm(B) ⊗ τm(F ) for any m ≥ 1. A similar application of the
L2-theory on complete Kähler manifolds yields the assertion.
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4. More examples on existence. The localization principle provides
enough examples for the existence of the invariant metric. In this section,
we give more examples.

Theorem 4.1. Let M be a complex manifold with trivial canonical

bundle (e.g. a torus) and Ω a relatively compact Stein domain in M . Sup-

pose the following conditions are satisfied :

(i) There exists a smooth, strictly plurisubharmonic exhaustion func-

tion ψ on Ω such that C1 log 1/δΩ ≤ ψ ≤ C2 log 1/δΩ and ∂∂ψ ≥
C3ω, where ω is a fixed Hermitian metric on M and δΩ denotes the

distance to ∂Ω with respect to ω.

(ii) There is a number α > 0 such that
T
Ω δ

−α
Ω dVω < ∞, where dVω

denotes the volume form with respect to ω (e.g. ∂Ω is Lipschitz ).

Then ds2Ω exists on Ω for sufficiently large m, k.

Theorem 4.1 will be proved by a number of lemmas.

Lemma 4.2. For a > 0, we define

O2
a(Ω) :=

{

f ∈ O(Ω) :
\
Ω

|f |2δaΩ dVω <∞
}

where O(Ω) is the sheaf of holomorphic functions on Ω. Then for sufficiently

large a, O2
a(Ω) separates points and gives local coordinate systems in Ω.

Furthermore, there exist positive numbers a1, C such that

sup
f∈O2

a(Ω)

|f(p)|2T
Ω |f |2δaΩ dVω

≥ CδΩ(p)−a1 , ∀p ∈ Ω.

Proof. By compactness of Ω, for every p ∈ Ω we have a coordinate
polydisc ∆n around p such that ω is equivalent to the Euclidean metric
on ∆n with the implicit constants independent of p. By hypothesis (i), we
have

∂∂(Cψ + 2(n+ 1)χ(|z|) log |z|) + Ricci(ω) > ω

for sufficiently large C. Equipping the anti-canonical bundle K
⊗(−1)
M with

the Hermitian metric

h = ωne−Cψ−2(n+1)χ(|z|) log |z|,

and applying the L2-existence theorem [4] for K
⊗(−1)
M -valued (n, 1)-forms

with respect to not necessarily complete metrics in a similar way as above,
we conclude that those f in O(Ω) satisfying\

Ω

|f |2e−Cψ dVω <∞

separate points and give local coordinate systems in Ω. The first assertion
follows immediately from ψ ≍ log 1/δΩ. To show the second assertion, we
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see that the above argument in fact gives a localization principle for the
Bergman kernel of the Hilbert space of holomorphic functions on Ω which
are square-integrable with weight Cψ, thus one can reduce to the case of
bounded pseudoconvex domains in C

n. On the other hand, Demailly’s the-
orem [3] implies that this Bergman kernel always dominates eCψ. This com-
pletes the proof.

Lemma 4.3.

f ∈ O2
a(Ω) ⇒ sup

p∈Ω
|f(p)|2δΩ(p)2n+a <∞.

Proof. Since the assertion is local, we may assume Ω is a bounded domain
in C

n and ω is the Euclidean metric. By the sub-mean-value principle, we
have, for arbitrary p ∈ Ω,

|f(p)|2 ≤
1

Vol{B(p; δΩ(p))}

\
B(p;δΩ(p)))

|f |2 dV ≤ CnδΩ(p)−2n−a
\
Ω

|f |2δaΩ dV

where B(p; r) denotes the Euclidean ball with center p and radius r. We are
done.

Let us fix a nowhere vanishing holomorphic section s0 of KM .

Lemma 4.4. If m≫ a, then for any f ∈ O2
a(Ω) we have

s := fs⊗m0 ∈ Γ (Ω,mKΩ)

and

‖s‖m =
{ \
Ω

[(−1)mn
2/2s⊗ s]1/m

}m/2
<∞.

Furthermore, τm dominates δ
−a1/m
Ω where a1 is as in Lemma 4.2.

Proof. By Lemma 4.3, there is a constant C > 0 depending only on the
L2 norm of f in O2

a(Ω) such that |f |2 ≤ Cδ−2n−a
Ω on Ω. By hypothesis (ii)

we see that the conclusion holds when

m ≥
2n+ a

α
.

The second assertion follows from Lemma 2.2.

Proof of Theorem 4.1. Fix m ≫ a ≫ 1 such that the conclusions of
Lemmas 4.2 and 4.4 hold. By Lemma 4.4, we claim that for any f ∈ O2

a(Ω),

s := fs⊗k0 ∈ H2
τm(Ω, kKΩ)

provided
(k − 1)a1

m
≥ a or k ≥

am

a1
+ 1.

Therefore, Lemma 4.2 implies the existence of ds2Ω.

Conjecture. Hypothesis (ii) in Theorem 4.1 is not necessary.
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Remark 4.5. It is also interesting to consider relatively compact do-
mains in a complex manifold whose canonical bundle is neither positive nor
trivial. For instance, Nemirovskĭı [12] has constructed a smooth Levi-flat
Stein domain in the product of a compact Riemann surface and a one-
dimensional torus which is biholomorphically equivalent to the product of a
punctured Riemann surface (remove finitely many points from the original
Riemann surface) and an annulus. By Theorems 2.7 and 3.1, this domain car-
ries an invariant metric if the genus of the Riemann surface is larger than 1.

5. Asymptotic behavior. In this section, we study the asymptotic be-
havior of ds2Ω when ∂Ω is relatively simple, namely, we consider the domain
Ω = M −D where M is a compact complex manifold and D is an effective
divisor with only simple normal crossings.

Theorem 5.1. Let M be a compact complex manifold with ample canon-

ical line bundle and D an effective divisor with only simple normal cross-

ings. Then for sufficiently large m, k, ds2Ω is a complete Kähler metric on Ω.

Furthermore, the distance is equivalent to − log δΩ where δΩ is the boundary

distance with respect to a Hermitian metric on M .

Remark 5.2. If in addition D is ample, then Ω admits an invariant
Kähler–Einstein metric whose distance is equivalent to log |log δΩ | (cf. [7]).
Thus ds2Ω is not equivalent to the Kähler–Einstein metric.

Proof of Theorem 5.1. First fix a positive smooth Hermitian metric h of
KM such that the curvature ω := Θ(h) gives a Kähler metric on M . Write
D = D1 + · · · +DN where the irreducible components Di are smooth and
intersect transversely. Let σi be a holomorphic section of [Di] definingDi and
set σ = σ1 ⊗· · ·⊗σN . Let ‖ · ‖ denote the norm with respect to a Hermitian
metric for [Di] and also the norm for the product [D] = [D1] ⊗ · · · ⊗ [DN ]
associated to the induced metric. Assume ‖σ‖ < 1 for simplicity. It is easy
to verify that

Cω − log(− log ‖σ‖)

defines a complete Kähler metric on Ω for large C > 0. Setting

H2
h(Ω,mKΩ) =

{

s ∈ Γ (Ω,mKΩ) : ‖s‖2
h,m =

\
Ω

(−1)mn
2/2s⊗ s

h⊗(m−1)‖σ‖−1/2
<∞

}

.

Let BΩ,h,m denote the Bergman kernel of H2
h(Ω,mKΩ), i.e.,

BΩ,h,m = sup
‖s‖h,m=1

[(−1)mn
2/2s⊗ s].

Lemma 5.3. There is an integer m0 > 1 such that for all m ≥ m0,

BΩ,h,m is a smooth Hermitian metric on mKΩ such that

C ′
m‖σ‖

−2 ≤ BΩ,h,m/h
⊗m ≤ C ′′

m‖σ‖
−2.
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Proof. By compactness of M , there is an integer m0 > 0 such that for
any m ≥ m0 and any p ∈ Ω, there is a coordinate polydisc (∆n, z) with
z(p) = 0 such that the singular Hermitian metric

hm−1 := h⊗(m−1)‖σ‖−1/2e−2(n+1)χ(|z|) log |z|

is smooth and positive on Ω − {p} and dominates ∂∂|z|2 on Ω ∩ ∆n. A
standard application of the L2-theory shows that the localization principle
holds for BΩ,h,m. Note that for any p ∈ D, there is a coordinate polydisc
∆n centered at p such that

(1) Ω ∩∆n = (∆∗)k ×∆n−k

for some 1 ≤ k ≤ N where ∆∗ denotes the punctured disc. It is clear that

s = s∗(dz1 ∧ · · · ∧ dzn)
⊗m ∈ H2

h(Ω ∩∆n,mKΩ)

⇔ cα1···αn = 0 if αi < −1 for some 1 ≤ i ≤ k,

where

s∗ =
∑

cα1···αnz
α1

1 · · · zαn
n

is the Laurent expansion. By the localization principle, the assertion follows.

Now fix such an m0 > 1. Let τm0
be defined as in Section 2. As ‖σ‖−2/m0

is integrable on Ω, Lemma 5.3 implies τm0
/h ≥ C‖σ‖−2/m0. Let ∆n be a

coordinate polydisc around a boundary point p as in (1) and let z∗ ∈ ∆n∩Ω
be any point. Take s ∈ Γ (Ω,m0KΩ) such that

‖s‖m0
=

{ \
Ω

[(−1)m0n2/2s⊗ s]1/m0

}m0/2
= 1

and
τm0

(z∗) ≤ 2[(−1)m0n2/2s⊗ s(z∗)]1/m0.

Considering the Laurent expansion of s∗, we conclude that there exist pos-
itive integers λi, i = 1, . . . , k, such that

(2) τm0
(z∗) ≍

∏

1≤i≤k

‖σi‖
−2λi/m0(z∗).

Lemma 5.4. There exists an integer k0 ≥ 2 such that H2
τm0

(Ω, k0KΩ) is

very ample and the ratio of its Bergman kernel and h⊗k0 dominates ‖σ‖−2.

Proof. The localization principle also holds for the Bergman kernel of
the Hilbert space

Hk :=

{

s ∈ Γ (Ω, kKΩ) :
\
Ω

(−1)kn
2/2s⊗ s

τm0
⊗ h⊗(k−1)

<∞

}

provided k sufficiently large, and its Bergman kernel dominates ‖σ‖−2 ac-
cording to (2). Since Hk ⊂ H2

τm0

(Ω, kKΩ), we are done.
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End of proof of Theorem 5.1. Lemma 5.4 implies the existence of ds2Ω.
Consider again the coordinate polydisc ∆n chosen as in (1). Given any

z∗ ∈ Ω ∩∆n, suppose that the Bergman kernel at z∗ equals [(−1)k0n
2/2s⊗

s(z∗)]1/k0 for some s ∈H2
τm0

(Ω, k0KΩ) with unit norm. As above, we con-

clude from (2) and Lemma 5.4 that there are positive integers l1, . . . , lk such
that

|s∗(z∗)| ≍
∏

1≤i≤k

‖σi‖
−li(z∗),

|(∂s∗/∂zi)(z
∗)| ≍ ‖σ1‖

−l1 · · · ‖σi‖
−li−1 · · · ‖σk‖

−lk(z∗) ∀1 ≤ i ≤ k.

The assertion follows immediately from the extremal property of the invari-
ant metric.
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