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Cegrell lasses on ompat Kähler manifoldsby Sªawomir Dinew (Kraków)Abstrat. We study Cegrell lasses on ompat Kähler manifolds. Our results gen-eralize some theorems of Guedj and Zeriahi (from the setting of surfaes to arbitrarymanifolds) and answer some open questions posed by them.1. Introdution. Sine the ornerstone results of Bedford and Taylor([BT1℄ and [BT2℄) pluripotential theory in domains of Cn has beome asubjet of very intensive studies.Reently, in [K1℄, [GZ1℄ and [GZ2℄ pluripotential theory in the settingof ompat Kähler manifolds has been developed. Suh a theory has inter-esting appliations in omplex dynamis, di�erential and algebrai geometryand also in problems in ��at� theory (by �at we mean pluripotential the-ory in hyperonvex domains in C
n). We refer to [GZ1℄, where some inter-ations between plurisubharmoni funtions in Cn with logarithmi growthand the PSH(Pn, ωFS) funtions on the omplex projetive spae P

n equippedwith the Fubini�Study metri ωFS are shown. In [GZ2℄ the authors de�nedthe Monge�Ampère operator and proved various results onerning it. Theylaimed that their results still hold in arbitrary dimension, but they restritedthemselves to the surfae ase, sine the de�nition is muh simpler in thatase.Here in Setion 2 we give the general de�nition of the Monge�Ampèreoperator on a ompat Kähler manifold and speify its domain of de�nition.Next we introdue Cegrell lasses of PSH(X, ω) funtions and prove severalproperties generalizing some results in [GZ2℄. Some proofs from this setionrely heavily on their �at analogues (Propositions 2.1 and 2.9, Theorem 2.4).We shall also often refer to [GZ2℄ when an �n-dimensional� result followsdiretly from the surfae ase, and shall fous only on those points whereanalogies are less lear.The results from this setion will be used to prove our main theorem.2000 Mathematis Subjet Classi�ation: 32U05, 32U40, 53C55.Key words and phrases: pluripotential theory, Kähler manifold, Cegrell lasses.[179℄ © Instytut Matematyzny PAN, 2007



180 S. DinewTheorem 1.1 (Main result). Every PSH(X, ω) funtion φ with bounded
p-energy is a limit of a dereasing sequene of funtions φj whih belong to
L∞(X) ∩ PSH(X, ω) and whose p-energies tend to the p-energy of φ (Se-tion 3).Note that an analogous result is true in �at theory (see [Ce1℄), but theproof relies on several rather nontrivial results (i.e. Cegrell deomposition,existene results for the Dirihlet problem and a �global� omparison prin-iple). That proof annot be repeated in the Kähler manifold setting, mainlybeause there is no analogue of the global omparison priniple (sine allMonge�Ampère measures are probability measures in the Kähler ase). Ourproof, however, an be applied in both situations, so that as a byprodut weobtain a di�erent proof of this result in the �at ase (more tehnial but notrequiring heavy mahinery).In Setion 4 we generalize the (loal) omparison priniple from [K1℄ toCegrell lasses.We refer to [GZ1℄ and [GZ2℄ for all notions used in this paper. Morebakground in pluripotential theory an be found in [Kli℄, [K2℄.2. De�nitions. Let X be a ompat n-dimensional Kähler manifoldequipped with a fundamental Kähler form ω given in loal oordinates by

ω =
i

2

n∑

k,j=1

gkjdzk ∧ dzj .We assume that the metri is normalized so that\
X

ωn = 1.Reall that
PSH(X, ω) := {φ ∈ L1(X, ω) : ddcφ ≥ −ω, φ ∈ C↑(X)}where as usual d = ∂ + ∂, dc = i

2π (∂ − ∂) and C↑(X) denotes the spaeof upper semiontinuous funtions. We all the funtions that belong to
PSH(X, ω) ω-plurisubharmoni (ω-psh for short).Throughout the paper we shall assume that all the funtions φ we on-sider satisfy the extra ondition(2.1) sup

X
φ ≤ −1.This ondition is not restritive, sine if we add a onstant to a funtion ina ertain Cegrell lass, the new funtion also belongs to that lass. Never-theless, (2.1) will often be very helpful for our purposes.We would like to de�ne the Monge�Ampère operator

(ωu)n := (ω + ddcu)n



Cegrell lasses on ompat Kähler manifolds 181ating on ω-psh funtions. It is well known that this annot be done for all
ω-psh funtions (for ounterexamples in dimension 2 see [GZ2℄). Thereforeone should restrit oneself to a smaller lass of ω-psh funtions. We denotethe maximal lass of ω-psh funtions for whih the Monge�Ampère operatoris well de�ned by E(X, ω) or just by E for simpliity. In the �at theory wehave a omplete desription of this lass due to Bªoki (see [Bl℄). Using hisideas one an also desribe the lass E on Kähler manifolds.Let us �rst reall some onstrutions for bounded ω-psh funtions:Proposition 2.1. Let u be a bounded ω-psh funtion. Then one ande�ne the (positive) urrents

ωk
u := (ω + ddcu) ∧ · · · ∧ (ω + ddcu)

︸ ︷︷ ︸

k times

, k = 1, . . . , n.

Moreover ωn
u is a probability measure for every bounded ω-psh funtion u.Proof. It is enough to de�ne the urrents loally, i.e. in oordinate hartswhere we have a ontinuous potential for ω (a funtion v suh that ddcv = ω).But then u+v is simply a plurisubharmoni funtion. Hene one an use thelassial results from [BT2℄ to de�ne our urrents. Note that the de�nitionis oherent in an intersetion of two harts.The last assertion of the proposition follows from the fat that we andeompose

ωn
u = ωn +

n∑

k=1

n!

k!(n − k)!
(ddcu)k ∧ ωn−k

where the latter term happens to be a losed urrent.For more details we refer to [GZ1℄ and [GZ2℄ (the latter in the ase n = 2).A natural question is under what kind of onvergene this operator isontinuous. To study ontinuity results one an de�ne the apaity capω bysetting
capω(A) := sup

{\
A

ωn
u : u ∈ PSH(X, ω), 0 ≤ u ≤ 1

}

where A is an arbitrary Borel subset of X (for more details see [K1℄).Reall that a sequene uj onverges to u with respet to apaity if
∀t > 0 lim

j→∞
capω({|uj − u| > t}) = 0.Proposition 2.2. The Monge�Ampère operator de�ned above is ontin-uous on dereasing sequenes in PSH(X, ω) ∩ L∞(X). It is also ontinuouswith respet to onvergene in apaity capω.Proof. See [K2℄.



182 S. DinewHaving in mind these results one an ask whether it is possible to de-�ne the Monge�Ampère operator also for unbounded funtions. We wouldof ourse like to keep its basi properties, i.e. ontinuity on dereasing se-quenes. So we make the following de�nition:Definition 2.3. Let u ∈ PSH(X, ω). If for every sequene of ω-pshfuntions uj ∈ PSH(U, ω) ∩ L∞(U) dereasing to u on some open subset Uof X the assoiated sequene ωn
uj

is weakly onvergent (on U) and the limitmeasure M (u) is independent of the sequene, we de�ne ωn
u := M (u) on theset U where the onvergene holds.Here PSH(U, ω) denotes the set of germs of ω-psh funtions de�ned on U .The de�nition is oherent on intersetions. The lass of funtions u as inDe�nition 2.3 is the maximal lass of ω-psh funtions for whih one ande�ne the Monge�Ampère operator, whih we have denoted by E .Remark. Of ourse one an use a sequene that onverges to u every-where on X. We hoose the loal de�nition not only in order to use on-netions with �at theory, but also beause global approximation e.g. withsmooth ω-psh funtions is a very deliate matter and often requires restri-tions on the form ω and the underlying manifold. In the loal ontext wean approximate easily, using for example onvolutions with smooth ker-nel.Of ourse De�nition 2.3 is of very small pratial use (we have to hekall onvergent sequenes). The following result makes this de�nition moremanageable:Theorem 2.4. Let u ∈ PSH(X, ω). The following onditions are equiv-alent :1. u ∈ E.2. For every x ∈ X there exists a neighbourhood Ux suh that for everysequene uj ∈ PSH(Ux, ω) ∩ L∞ with uj ց u the sequenes

(−uj)
n−p−2duj ∧ dcuj ∧ (ωuj

)p ∧ ωn−p−1, p ∈ {0, . . . , n − 2},are weakly bounded.3. For every x ∈ X there exists a neighbourhood Ux suh that there existsa sequene uj ∈ PSH(Ux, ω)∩L∞ with uj ց u suh that the sequenes
(−uj)

n−p−2duj ∧ dcuj ∧ (ωuj
)p ∧ ωn−p−1, p ∈ {0, . . . , n − 2},are weakly bounded.Proof. Sine the result is loal, one an use the argument from Proposi-tion 1.1 one more. If v is a loal potential then uj + v ց u + v. Now theresult follows from Bªoki's theorem in the �at ase (see [Bl℄).



Cegrell lasses on ompat Kähler manifolds 183Using analogous arguments one an prove that most loal results fromthe �at theory remain true in the Kähler manifold setting. In partiular wehave the following orollary:Corollary 2.5. If u ∈ E and w ∈ PSH(X, ω) with u ≤ w, then w ∈ E.Now following [Ce1℄ and [GZ1℄ we are ready to introdue the so alledCegrell lasses:Definition 2.6. Let Ep denote the lass of u ∈ PSH(X, ω) suh thatthere exist uj ∈ PSH(X, ω) ∩ L∞(X, ω) with uj ց u suh that
sup

j

\
X

(−uj)
pωn

uj
< ∞(in this paper for simpliity we assume p ≥ 1, although the de�nition makessense for every p > 0).Remark. In the �at setting one also onsiders lasses with the additionalproperty

sup
j

\
(ddcu)n < ∞.This is obviously satis�ed in our setting sine all integrals TX(ωuj

)n are equalto 1.Of ourse bounded funtions belong to Ep, but Ep ontains many un-bounded funtions. These, however, annot be very singular, whih will fol-low from the results below (most of them are generalizations of the analogousresults in [GZ2℄).Proposition 2.7. Let u ∈ Ep. Then u + c ∈ Ep for any onstant c.Remark. When we do not a priori assume that all funtions onsideredare negative, the ondition in the de�nition of Cegrell lasses has to bemodi�ed slightly (as in [GZ2℄), namely instead of (−uj)
p we integrate |uj |

p.Proof of Proposition 2.7. This rather simple observation justi�es our ini-tial assumption (2.1). Indeed, if uj is a sequene from the de�nition of Ep(for a funtion u), then uj + c is suh a sequene for u + c. One just has touse the Minkowski inequality, whih is justi�ed, sine ωuj+c are all positivemeasures.Proposition 2.8. If u1, . . . , un ∈ E then ωu1
∧· · ·∧ωun is a well de�nedprobability measure.Proof. Basially we repeat the arguments from Proposition 1.3 of [GZ2℄.It su�es to de�ne the (positive) urrent

−ukωu1
∧ · · · ∧ ωuk−1

.



184 S. DinewSine we an write
ωu1

∧ · · · ∧ ωuk
:= ωu1

∧ · · · ∧ ωuk−1
∧ ω + ddc(ukωu1

∧ · · · ∧ ωuk−1
)it is enough to hek that\

X

−ukωu1
∧ · · · ∧ ωuk−1

∧ ωn−(k−1) < ∞.When k = 1 this of ourse holds for all u ∈ PSH(X, ω).To hek that −u2ωu1
is well de�ned, it is enough to use the same alu-lations as in [GZ2℄. One has to hek that\

X

dui ∧ dcui ∧ ωn−1 < ∞, i = 1, 2,Observe that TX dui∧dcui∧ωn−1 ≤
T
X(−ui)

n−2dui∧dcui∧ωn−1 < ∞, wherewe have used the de�nition for the seond inequality and the ondition (2.1)for the �rst. Now we an proeed by indution. Indeed, using again an ideafrom [GZ2℄ we have\
X

−ukωu1
∧ · · · ∧ ωuk−1

∧ ωn−(k−1) =
\
X

−ukωu1
∧ · · · ∧ ωuk−2

∧ ωn−(k−2)

+
\
X

duk ∧ dcuk−1 ∧ ωu1
∧ · · · ∧ ωuk−2

∧ ωn−(k−1)

≤
\
X

−ukωu1
∧ · · · ∧ ωuk−2

∧ ωn−(k−2)

+
( \

X

duk ∧ dcuk ∧ ωu1
∧ · · · ∧ ωuk−2

∧ ωn−k+1
)1/2

×
( \

X

duk−1 ∧ dcuk−1 ∧ ωu1
∧ · · · ∧ ωuk−2

∧ ωn−k+1
)1/2

.The �rst integral on the right hand side is bounded by indution (we have
k − 1 funtions). For eah of the integrals in the produt we proeed in thefollowing way:\

X

duk ∧ dcuk ∧ ωu1
∧ · · · ∧ ωuk−2

∧ ωn−(k−1)

=
\
X

−ukddcuk ∧ ωu1
∧ · · · ∧ ωuk−2

∧ ωn−(k−1)

=
\
X

−ukωuk
∧ ωu1

∧ · · · ∧ ωuk−2
∧ ωn−(k−1)

+
\
X

ukωu1
∧ · · · ∧ ωuk−2

∧ ωn−(k−2)



Cegrell lasses on ompat Kähler manifolds 185sine we add and subtrat a bounded integral. We notie that we have got ridof uk−1 in the �rst term and of uk in the seond. This implies that integralsinvolving k distint funtions are ontrolled by integrals with k−1 funtions(the integrated funtion also appears in the wedge produt). Our goal will beto estimate these integrals by integrals where the integrated funtion appearsin the wedge produt at least twie and so on. In the end we get integrals ofthe type \
X

−ujω
k
uj

∧ ωn−k,whih are �nite by de�nition.Before we proeed further we make slight adjustments. Instead of thefuntions u1, . . . , uk we take their bounded approximants, namely us,js :=
max{us,−js}. We do so in order to ensure that all integrals are �nite andthen we show that the estimates are uniform. We drop the indies js in whatfollows. Using the same idea as before we get\

X

−ukωuk
∧ ωu1

∧ · · · ∧ ωuk−2
∧ ωn−(k−1)

≤
[ \

X

−ukω
2
uk

∧ ωu1
∧ · · · ∧ ωuk−3

∧ ωn−(k−1)

+
\
X

ukωuk
∧ ωu1

∧ · · · ∧ ωuk−3
∧ ωn−(k−2)

]1/2

×
[ \

X

−uk−2ωuk−2
∧ ωuk

∧ ωu1
∧ · · · ∧ ωuk−3

∧ ωn−(k−1)

+
\
X

uk−2ωuk
∧ ωu1

∧ · · · ∧ ωuk−3
∧ ωn−(k−2)

]1/2

+
\
X

−ukωuk
∧ ωu1

∧ · · · ∧ ωuk−3
∧ ωn−(k−2).

Now if we denote by Ml = max{
T
X −ui1ω

l
ui1

∧ωui2
∧ · · ·∧ωuik−l

∧ωn−(k−1) :

ij ∈ {1, . . . , k}, i1 6= ij, j 6= 1} the maximum over all integrals suh thatthe funtion we integrate appears in the wedge produt l times, the lastinequality an be read as
M1 ≤ C + (M1 + C)1/2(M2 + C)1/2for some onstant C independent of M1 and M2. If M1 and M2 are �nite(this is the point where we need the approximants!), we get uniform on-trol of M1 in terms of M2. Proeeding analogously we get Ml ontrolled by

Ml+1. Putting these results together we onlude that the initial integral isbounded, thus proving our laim.



186 S. DinewWe note that using the above argument one an get the following propo-sition:Proposition 2.9. If u1, . . . , un ∈ E1, then E1 ⊂ L1(X, ωu1
∧ · · · ∧ ωun).Proof (f. [GZ2, Proposition 3.2℄). Indeed, from Proposition 2.8 it followsthat E and E1 are onvex sets (one an deompose ω(u+v)/2 into 1
2(ωu+ωv) ineah term and use the results for mixed terms). But then for every un+1 ∈ E1,\

X

−un+1ωu1
∧ · · · ∧ ωun ≤ (n + 1)n+1

\
X

−
u1 + · · · + un+1

n + 1
ωn

u1+···+un+1

n+1

,whih is �nite.Proposition 2.10. Let u ∈ PSH(X, ω). Then −(−u)ε ∈ Ep for small
ε > 0.Proof. An elementary omputation shows that −(−u)ε ∈ PSH(X, ω) for
ε < 1 (we use the initial ondition (2.1)!). Now the result follows from its�at analogue (see [Ce3℄). Indeed, −(−u − v)ε ∈ PSH (v is as usual a loalpotential for ω). Now −(−u−v)ε ≤ −(−u)ε+v if we take a negative potential(whih is possible, sine we an add a onstant to the potential), and theresult follows from the stability of Ep under taking maximums.Corollary 2.11. The measures

ωu1
∧ · · · ∧ ωunput no mass on pluripolar sets for u1, . . . , un ∈ E1.Proof. Indeed, Propositions 2.9 and 2.10 tell us that −(−u)ε is integrablewith respet to suh a measure for small positive ε. But any pluripolar setis ontained in {u = −∞} for some u ∈ PSH(X, ω) (see [GZ1℄), hene themeasure annot put any mass on that set.Remark. A similar result also holds for the measures

du1 ∧ dcu1 ∧ ωu2
∧ · · · ∧ ωun .3. Main result. In [GZ2℄ the authors posed the followingProblem. Let φ be a PSH(X, ω) funtion suh that TX(−φ)pωn

φ is �nite(for some p ≥ 1). Does there exist a sequene φj ∈ PSH(X, ω) ∩ L∞(X)dereasing to φ suh that supj

T
X(−φj)

pωn
φj

< ∞?We prove that this is the ase. We show moreover that we an hoose
φj 's in suh a way that limj→∞

T
X(−φj)

pωn
φj

=
T
X(−φ)pωn

φ .Remark. As in the surfae ase, the problem is when p > 1. For p = 1alulations similar to those in [GZ2℄ (f. also Theorem 3.2 below) give usthe result. We mention this, beause using (2.1) and Lp integrability we get
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L1 integrability. This yields φ ∈ E1 and we an use all the mahinery neededfrom Setion 2.We start with a tehnial lemma that gives us the main tool for our laterstudy, �integration by parts�.Lemma 3.1. Let φ be as before and φj := max{φ,−j}. Then for allurrents T of the form ωm

φj
∧ ωs ∧ ωn−1−m−s

φ :(am) the numbers TX(−φ)pωφ ∧ T,
T
X(−φ)pω ∧ T and TX(−φ)p−1dφ ∧

dcφ ∧ T are bounded by a onstant independent of j,(bm) TX(−φ)pddcφj ∧ T =
T
X φjddc(−φ)p ∧ T .Proof. We shall use indution on m. We shall prove (a0) and (am)⇒(bm),

(am)&(bm)⇒(am+1).Proof of (a0). From the Stokes theorem we have\
X

(−φ)p(ωφ − ω) ∧ T = p
\
X

(−φ)p−1dφ ∧ dcφ ∧ T ≥ 0.So it is enough to hek the boundedness of the numbers TX(−φ)pωφ ∧ T .In this speial ase these numbers are independent of j. Using the aboveinequality we have\
X

(−φ)pωk ∧ ωn−k
φ ≤ · · · ≤

\
X

(−φ)p(ωφ)n < ∞.Proof of (am)⇒(bm). We have\
X

(−φ)pddcφj ∧ T = lim
k→∞

\
X

(−φk)
pddcφj ∧ T(ddcφj ∧ T need not be a positive measure, but an be written as a dif-ferene of two positive probability measures, hene we an use monotoneonvergene). So we have\

X

(−φk)
pddcφj ∧ T =

\
X

φjddc(−φk)
p ∧ T(when both funtions are bounded, integration by parts is legitimate). So

∣
∣
∣

\
X

φjddc(−φ)p ∧ T −
\
X

(−φ)pddcφj ∧ T
∣
∣
∣

= lim
k→∞

∣
∣
∣

\
φ≤−k

φjddc((−φ)p − (−φk)
p) ∧ T

∣
∣
∣

≤ lim sup
k→∞

(∣
∣
∣

\
φ≤−k

−jddc(−φ)p ∧ T
∣
∣
∣ +

∣
∣
∣

\
φ≤−k

−jddc(−φk)
p ∧ T

∣
∣
∣

)

=: lim sup
k→∞

(Ak + Bk).



188 S. DinewNow we shall estimate Ak (the ase of Bk is similar) using the Hölder in-equality:
Ak ≤

∣
∣
∣jp

\
φ≤−k

(−φ)p−1ddcφ ∧ T
∣
∣
∣ +

∣
∣
∣j

\
φ≤−k

p(p − 1)(−φ)p−2dφ ∧ dcφ ∧ T
∣
∣
∣

≤ jp
(∣
∣
∣

\
φ≤−k

(−φ)p−1ωφ ∧ T
∣
∣ +

∣
∣
∣

\
φ≤−k

(−φ)p−1ω ∧ T
∣
∣
∣

)

+
∣
∣
∣j

\
φ≤−k

p(p − 1)(−φ)p−2dφ ∧ dcφ ∧ T
∣
∣
∣

≤ jp
( \

φ≤−k

(−φ)pωφ ∧ T
)(p−1)/p( \

φ≤−k

ωφ ∧ T
)1/p

+ jp
( \

φ≤−k

(−φ)pω ∧ T
)(p−1)/p( \

φ≤−k

ω ∧ T
)1/p

+ jp(p − 1)
( \

φ≤−k

(−φ)p−1dφ ∧ dcφ ∧ T
) p−2

p−1
( \

φ≤−k

dφ ∧ dcφ ∧ T
)1/(p−1)

.In eah term the seond fator tends to zero (sine all these measures vanishon pluripolar sets and we integrate over sets that derease to {φ = −∞}).The �rst fators are bounded by (am), so we obtain lim supk→∞ Ak = 0.Analogously Bk → 0 and we are done.Proof of (am)&(bm)⇒(am+1). Write T as T = ωφj
∧ S. As in the proofof (a0), it is enough to estimate the numbers TX(−φ)pωφ ∧ T . We have\

X

(−φ)pωφ ∧ T =
\
X

(−φ)pωφj
∧ ωφ ∧ S

=
\
X

(−φ)pω ∧ ωφ ∧ S +
\
X

(−φ)pddcφj ∧ ωφ ∧ S.Now by (am) the �rst term is bounded. It is easy to hek that it is boundedby TX(−φ)p(ωφ)n. Also by (bm) we an integrate by parts in the seond termto obtain\
X

(−φ)pddcφj ∧ ωφ ∧ S =
\
X

φjddc(−φ)p ∧ ωφ ∧ S

= p
\
X

(−φj)(−φ)p−1ddcφ ∧ ωφ ∧ S

+ p(p − 1)
\
X

φj(−φ)p−2dφ ∧ dcφ ∧ ωφ ∧ S.But −φj ≤ φ and φj < 0, so the seond term is nonpositive, and the �rstan be estimated by
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p
\
X

(−φj)(−φ)p−1ddcφ ∧ ωφ ∧ S ≤ p
\
X

(−φ)pω2
φ ∧ S,whih aording to (am) an be bounded by a onstant independent of j.Now it follows from our estimates that we an bound all the initial numbersby (p + 1)n

T
X(−φ)p(ωφ)n.Remark. Note that in the proof we used some speial features of φj . Weonjeture that �integration by parts� holds in a muh more general situation(as in the �at ase, see [Ce2℄). In partiular, it seems that integration by partsis legitimate whenever one of the integrals is �nite.Now we are ready to prove that φj is a sequene solving our problem:Theorem 3.2.

sup
j

\
X

(−φj)
pωn

φj
< ∞.Proof. Fix j. We have\

X

(−φj)
pωn

φj
≤
\
X

(−φ)pωn
φjbut by Lemma 3.1(an) the last term is estimated by (p + 1)n

T
X(−φ)p(ωφ)n,whih is �nite by assumption.This argument is in fat the same as in Lemma 4.2 of [GZ2℄. To proveour next result we need more deliate estimates. We �rst proveLemma 3.3. Let u be an ω-psh funtion whih belongs to E. Then

ω + ddc max(u,−j) ≥ χ{u>−j}(ω + ddcu)in the sense of urrents.Proof. Analogous results for bounded funtions are well known and anbe found in [BT2℄, [K2℄. Here we use similar arguments. Let S be a positiveform of bidegree (n − 1, n − 1). We have to prove that
(ω + ddcuj) ∧ S ≥ χ{u>−j}(ω + ddcu) ∧ S.It is enough to have this estimate on ompat subsets K of {u > −j}. Fix

ε > 0. Using quasiontinuity of PSH(X, ω) funtions (see [GZ1℄) one an �ndan open set U with capω(U) < ε and u = u0 on X\U for some ontinuous u0.Let us ց u as s → ∞, us ∈ PSH(X, ω) ∩ C(X), and Vt := {−j < u0 + t}
(t > 0). We have {−j < us + t} on Vt\U . Take any open V suh that
K ⊂ V ⊂ Vt ∪ U . Then\
K

(ω + ddcu) ∧ S

≤ lim inf
s→∞

\
V ∪U

(ω + ddcus) ∧ S ≤ lim inf
s→∞

\
V \U

(ω + ddcus) ∧ S + 2jCε



190 S. Dinewfor some onstant C (depending on S but not on j), whih follows from theCLN inequalities (see [CLN℄). Indeed, it is enough to prove the inequalityfor small ompats ontained in oordinate harts and then apply lassialCLN inequalities. Now
lim inf
s→∞

\
V \U

(ω + ddcus) ∧ S + 2jCε

≤ lim inf
s→∞

\
V \U

(ω + ddc max{us + t,−j}) ∧ S + 2jCε.

Let V ց K to get\
K

(ω + ddcu) ∧ S ≤
\
K

(ω + ddc max{u + t,−j}) ∧ S + 2jCε,then let t ց 0 to end up with\
K

(ω + ddcu) ∧ S ≤
\
K

(ω + ddc max{u,−j}) ∧ S + 2jCε.Now sine ε is arbitrary and C depends only on S but not on ε we get thedesired onlusion.Theorem 3.4. Let φ ∈ E ∩ Lp(X, ωn
φ) and φj := max(φ,−j). Then

lim
j→∞

\
X

(−φj)
pωn

φj
=
\
X

(−φ)pωn
φ .Proof. It follows from standard measure-theoreti arguments that

lim inf
j→∞

\
X

(−φj)
pωn

φj
≥
\
X

(−φ)pωn
φ ,so we have to prove that

lim sup
j→∞

\
X

(−φj)
pωn

φj
≤
\
X

(−φ)pωn
φ .The proof will be indutive. We shall prove that

lim sup
j→∞

\
X

(−φj)
pωk

φj
∧ ωl ∧ ωn−k−l

φ ≤
\
X

(−φ)pωn−l
φ ∧ ωl.For k = n and l = 0 we get the desired result. Let us start with k = 1 and larbitrary:

lim sup
j→∞

\
X

(−φj)
pωφj

∧ ωl ∧ ωn−k−1
φ ≤

\
X

(−φ)pωl ∧ ωn−k
φ .Perhaps muh simpler arguments would do, sine the funtion is onstantand we have ontinuity results for dereasing sequenes in E1. We neverthe-less perform here some alulations sine the main proof also uses similar
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lim sup

j→∞

\
X

(−φ)pωφj
∧ ωl ∧ ωn−l−1

φ =
\
X

(−φ)pω ∧ ωl ∧ ωn−l−1
φ

+ lim sup
j→∞

\
X

φjddc(−φ)p ∧ ωl ∧ ωn−l−1
φj

=
\
X

(−φ)pω ∧ ωl ∧ ωn−l−1
φ

+ lim sup
j→∞

( \
X

p(p − 1)φj(−φ)p−2dφ ∧ dcφ ∧ ωl ∧ ωn−l−1
φ

+
\
X

p(−φj)(−φ)p−1ddcφ ∧ ωl ∧ ωn−l−1
φ

)

.Now by monotone onvergene (whih is justi�ed as in Lemma 3.1) this isequal to
−p(p − 1)

\
X

(−φ)p−1dφ ∧ dcφ ∧ ωl ∧ ωn−l−1
φ + p

\
X

(−φ)pddcφ ∧ ωl ∧ ωn−l−1
φ

+
\
X

(−φ)pωl+1 ∧ ωn−l−1
φ

= − (p − 1)
\
X

(−φ)pddcφ ∧ ωl ∧ ωn−l−1
φ + p

\
X

(−φ)pddcφ ∧ ωl ∧ ωn−l−1
φ

+
\
X

(−φ)pωl+1 ∧ ωn−l−1
φ =

\
X

(−φ)pωl ∧ ωn−l
φ ,whih was to be proved.Assume the result holds for k−1 and arbitrary l. We shall prove it for k:

lim sup
j→∞

\
X

(−φj)
pωk

φj
∧ ωl ∧ ωn−k−l

φ

≤ lim sup
j→∞

\
X

φjddc(−φ)p ∧ ωk−1
φj

∧ ωl ∧ ωn−k−l
φ )

+
\
X

(−φ)pωk−1
φj

∧ ωl+1 ∧ ωn−k
φ

≤ lim sup
j→∞

[

p(p − 1)
\
X

φj(−φ)p−2dφ ∧ dcφ ∧ ωk−1
φj

∧ ωl ∧ ωn−k−l
φ

− p
\
X

φj(−φ)p−1ddcφ ∧ ωk−1
φj

∧ ωl ∧ ωn−k−l
φ

+
\
X

(−φ)pωk−1
φj

∧ ωl+1 ∧ ωn−k−l
φ

]
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≤ lim sup

j→∞

[

p(p − 1)
\
X

φj(−φ)p−2dφ ∧ dcφ ∧ ωk−1
φj

∧ ωl ∧ ωn−k−l
φ

+ p
\
X

φj(−φ)p−1ω ∧ ωk−1
φj

∧ ωl ∧ ωn−k−l
φ

− p
\
X

φj(−φ)p−1ωk−1
φj

∧ ωl ∧ ωn−k−l+1
φ +

\
X

(−φ)pωk−1
φj

∧ ωl+1 ∧ ωn−k−l
φ

]

.Now we an use Lemma 3.3 to bound from above the �rst two terms on theright with χ{u>−j} times measures independent of j. Indeed,
p(p − 1)

\
X

φj(−φ)p−2dφ ∧ dcφ ∧ ωk−1
φj

∧ ωl ∧ ωn−k−l
φ

+ p
\
X

φj(−φ)p−1ω ∧ ωk−1
φj

∧ ωl ∧ ωn−k−l
φ

≤ p(p − 1)
\
X

φj(−φ)p−2χ{u>−j}dφ ∧ dcφ ∧ ωk−1
φ ∧ ωl ∧ ωn−k−l

φ

+ p
\
X

φj(−φ)p−1χ{u>−j}ω ∧ ωk−1
φ ∧ ωl ∧ ωn−k−l

φ .Then we an use monotone onvergene (for those terms), and indutionhypothesis for the next two. What we get reads
−p(p − 1)

\
X

(−φ)p−1dφ ∧ dcφ ∧ ωl ∧ ωn−l−1
φ + p

\
X

(−φ)pωl ∧ ωn−l
φ

− (p − 1)
\
X

(−φ)pωl+1 ∧ ωn−l−1
φ

= p
\
X

(−φ)pωl ∧ ωn−l
φ − (p − 1)

\
X

(−φ)pωl ∧ ωn−l
φ =

\
X

(−φ)pωl ∧ ωn−l
φ ,whih �nishes the proof.We �nish this setion with an analogous result in the �at theory. Let usreall some terminology. A domain Ω in Cn is alled hyperonvex if it admitsa negative exhaustion funtion, i.e a PSH funtion f suh that {z ∈ Ω |

f(z) < −c} ⊂⊂ Ω for all c > 0. Let E0 be the set of bounded exhaustionfuntions and E the set of PSH funtions for whih one an de�ne theirMonge�Ampère mass in suh a way that the Monge�Ampère operator isstill ontinuous on dereasing sequenes (see [Ce2℄). Let Fp be the sublassof E onsisting of those funtions g for whih there exists a sequene gj ∈ E0dereasing to g suh that(3.1) sup
j

\
Ω

(−gj)
p(ddcgj)

n < ∞, sup
j

\
Ω

(ddcgj)
n < ∞.



Cegrell lasses on ompat Kähler manifolds 193Finally, let F be the sublass of E onsisting of those funtions g for whihthere exists a sequene gj ∈ E0 dereasing to g suh that
sup

j

\
Ω

(ddcgj)
n < ∞(for more details onerning these topis we refer to [Ce1℄, [Ce2℄).One an prove the following result:Theorem 3.5. Let h ∈ F be a funtion suh that\

Ω

(−h)p(ddch)n < ∞.Then h ∈ Ep, i.e. there exists a sequene of funtions dereasing to h andsatisfying (3.1) and their p-energies tend to TΩ(−h)p(ddch)n.Proof. Let hj := max{h,−j}. These funtions need not belong to E0(they need not tend to 0 on the boundary, but of ourse they belong to
F), but if we take any w ∈ E0 then wj := max{hj , mjw} ∈ E0 for anypositive mj. Now wj ց hj as mj → ∞ (but we keep j �xed!), we an �x mjso large that wj+1 ≤ wj and |

T
Ω((−wj)

p(ddcwj)
n − (−hj)

p(ddchj)
n)| < 1/j(here we use the ontinuity of the Monge�Ampère operator on dereasingsequenes). Therefore we an restrit ourselves to the sequene hj :\

Ω

(−hj)
p(ddchj)

n ≤
\
Ω

(−h)p(ddchj)
n =

\
Ω

hjddc(−h)p(ddchj)
n−1

= p
\
Ω

(−hj)(−h)p−1(ddchj)
n

+ p(p − 1)
\
Ω

hj(−h)p−2dh ∧ dch ∧ (ddchj)
n−1

≤ p
\
Ω

(−h)pddch ∧ (ddchj)
n−1

+ p(p − 1)
\
Ω

hj(−h)p−2χ(h>−j)dh ∧ dch ∧ (ddch)n−1

where we have used the ��at� variant of Lemma 3.3 and integration by parts,whih is legitimate in F (see [Ce1℄ and [Ce2℄). Hene
lim sup

j→∞

\
Ω

(−hj)
p(ddchj)

n ≤ lim sup
j→∞

p
\
Ω

(−h)pddch ∧ (ddchj)
n−1

− p(p − 1)
\
Ω

(−h)p−1dh ∧ dch ∧ (ddch)n−1

≤ · · · ≤

n∑

k=1

−pk(p − 1)
\
Ω

(−h)p−1dh ∧ dch(ddch)n−1 + pn
\
Ω

(−h)p(ddch)n
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= − p(pn − 1)

\
Ω

(−h)p−1dh ∧ dch ∧ (ddch)n−1 + pn
\
Ω

(−h)p(ddch)n

= − (pn − 1)
\
Ω

(−h)p(ddch)n + pn
\
Ω

(−h)p(ddch)n =
\
Ω

(−h)p(ddch)n.

4. Loal omparison theorem. In [K1℄ the author proved the follow-ing result:Theorem 4.1. Let u, v be PSH(X, ω) ∩ C(X) funtions on a ompat
n-dimensional Kähler manifold. Then\

{u<v}

ωn
v ≤

\
{u<v}

ωn
u .

In that paper the author analyzed only ontinuous PSH(X, ω) funtions,nevertheless it was laimed (see the remark after Theorem 2.1 in [K1℄) thatthe ontinuity assumption is redundant. It was also suggested that the gen-eral ase of bounded PSH(X, ω) funtions ould be proved by using a qua-siontinuity argument. This an also be done by using a reent result from[BK℄, namely one an approximate any bounded PSH(X, ω) funtion by adereasing sequene of ontinuous ω-plurisubharmoni funtions.Here we prove that this result still holds when u, v ∈ Ep for all p ≥ 1. Theproof repeats arguments of [Ce1℄ from the �at ontext. We shall onentrateonly on those points where slight adjustments are made.Lemma 4.2. Let φ ∈ Ep and φj = max{φ,−j}. Then\
{u<v}

ωn
φ ≤ lim inf

j→∞

\
{u<v}

ωn
φj

.

Proof. Note that φj is a sequene as in the de�nition of Ep for φ (due toresults in Setion 3). Now one has to repeat the proof of Lemma 4.3 (�rstpart) in [Ce1℄.Theorem 4.3. Let u,v ∈ Ep be funtions on a ompat n-dimensionalKähler manifold. Then \
{u<v}

ωn
v ≤

\
{u<v}

ωn
u .

Proof. Let vj , uj be de�ned as above. Then\
{u<v}

ωn
v ≤ lim inf

j→∞
lim

k→∞

\
{uk<v}

ωn
vj

≤ lim inf
j→∞

lim sup
k→∞

\
{uk<vj}

ωn
vj

.
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lim inf
j→∞

lim sup
k→∞

\
{uk<vj}

ωn
uk

≤ lim sup
j→∞

lim sup
k→∞

\
{u<vj}

ωn
uk

≤ lim sup
j→∞

\
{u<vj}

ωn
u =

\
{u<v}

ωn
u ,where we have used monotone onvergene for the last equality.Aknowledgements. I would like to thank Professor Sªawomir Koªo-dziej for many helpful disussions and omments.
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