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A survey on geometric properties of

holomorphic self-maps in some domains of Cn

by Chiara Frosini and Fabio Vlacci (Firenze)

Abstract. In this survey we give geometric interpretations of some standard results
on boundary behaviour of holomorphic self-maps in the unit disc of C and generalize them
to holomorphic self-maps of some particular domains of C

n.

1. Introduction and metric properties of holomorphic self-maps.

We start by considering holomorphic self-maps of Riemann surfaces. This
topic is of great interest and has had several approaches (see [9, 21, 22, 28,
32, 35]). A Riemann surface is defined to be a connected one-dimensional
complex manifold. In particular, any Riemann surface is an orientable two-
dimensional real manifold and it can be proved (see e.g. [12, 20]) that on
any orientable connected two-dimensional real manifold one can always in-
troduce a complex structure which agrees with the real structure and the
resulting complex manifold is a Riemann surface. Two Riemann surfaces
S and T are conformally or biholomorphically equivalent if there exists an
invertible holomorphic map f : S → T with holomorphic inverse. Such a
map is also said to be a biholomorphism or a conformal transformation. Up
to conformal equivalence, there exist only three Riemann surfaces which are
simply-connected (see [4], [12] or [13] for the (difficult) proof):

Theorem 1 (Riemann’s uniformization theorem). Any simply-con-

nected Riemann surface is biholomorphic either to the unit disc ∆ =
{z ∈ C : |z| < 1} of C, or to the complex plane C, or to the Riemann

sphere C ∪ {∞} = CP
1 = Ĉ.

Since any Riemann surface X admits a universal covering X̃, it is possible
to lift the structure of Riemann surface of X onto X̃ in such a way that the
projection πX : X̃ → X is holomorphic. A Riemann surface X is called

2000 Mathematics Subject Classification: Primary 32A10, 32A40; Secondary 32A07,
32H50.

Key words and phrases: holomorphic maps, boundary behaviour.

[197] c© Instytut Matematyczny PAN, 2007



198 C. Frosini and F. Vlacci

elliptic (respectively, parabolic or hyperbolic) if its universal covering X̃ is Ĉ

(respectively, C or ∆).
If X is a Riemann surface, the group of automorphisms (or transforma-

tions) of X (i.e. the set of all invertible holomorphic self-maps of X, which
is a group with the usual operation of composition of functions) will be
denoted by Aut(X); the set of holomorphic functions f : X → Y will be
denoted by Hol(X, Y ). It has also to be remarked (see [1], [12]) that from the
study of the actions of the subgroups of automorphisms which act freely and
properly discontinuously on the three (possible) simply-connected Riemann
surfaces it is possible to show that:

(i) the unique elliptic Riemann surface is the Riemann sphere Ĉ;
(ii) the only non-simply-connected examples of parabolic Riemann sur-

faces are the punctured plane C \ {0} = C
∗ and the tori C/Γτ .

All such Riemann surfaces have abelian fundamental groups; hence any Rie-
mann surface with non-abelian fundamental group has to be hyperbolic. In
particular, almost all plane domains are hyperbolic Riemann surfaces:

Proposition 2. Every domain D ⊂ Ĉ such that Ĉ\D contains at least

three points is a hyperbolic Riemann surface.

Indeed, Ĉ minus three points, having non-abelian fundamental group, is
hyperbolic; since D is contained in Ĉ minus three points, it is possible to
embed D holomorphically and univalently into Ĉ minus three points. If then
D were not hyperbolic, the lifting to the universal covering of this immersion
(and hence the immersion itself) would be constant, because of Liouville’s
theorem (see [3, 37]). The class of hyperbolic Riemann surfaces is thus quite
large.

The standard metric |dz| of C corresponds, under the stereographic pro-

jection of the unit sphere S2 ≃ Ĉ of R
3, to the so-called spherical metric

ds =
2|dz|

1 + |z|2
,

which has constant Gaussian curvature +1 and is defined in such a way that
the point ∞ has finite distance from any other point of Ĉ. Observe that even
though the map z 7→ 1/z is an isometry for this metric, it is not true that

every conformal self-map of Ĉ is an isometry.
We now recall how one can determine all the holomorphic automorphisms

of ∆. To do this we essentially need the following lemma, whose importance,
however, goes far beyond this purpose.

Lemma 3 (Schwarz lemma). Let f ∈ Hol(∆, ∆) be such that f(0) = 0.
Then

|f(z)| ≤ |z| ∀z ∈ ∆
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and

|f ′(0)| ≤ 1.

In particular , if there exists a z0 ∈ ∆ \ {0} such that |f(z0)| = |z0|, or if

|f ′(0)| = 1, then f(z) = eiθz for some real θ and f ′(0) = eiθ.

A generalization of the Schwarz lemma, due to Ahlfors, can be found
for instance in [28]. The Schwarz lemma is also very useful for the following
description of the automorphisms of ∆:

Proposition 4. Every holomorphic automorphism γ of ∆ into itself is

of the form

γ(z) = eiθ z − z0

1 − z0z

with z0 ∈ ∆ and θ ∈ R.

The automorphisms of ∆ are also called Möbius transformations.

It is clear from the form of such automorphisms that they act transitively
on ∆ and on ∂∆. It is also evident that the automorphisms of ∆ extend
holomorphically on ∂∆. This leads one to consider their fixed points in ∆.

Proposition 5. Let γ ∈ Aut(∆), γ 6= Id∆ . Then either

(i) γ has a unique fixed point in ∆, or

(ii) γ has a unique fixed point in ∂∆, or

(iii) γ has two distinct fixed points in ∂∆.

An automorphism γ of ∆, different from the identity, is called elliptic if
it has a (unique) fixed point in ∆, parabolic if it has a unique fixed point in
∂∆, and hyperbolic if it has two distinct fixed points on ∂∆.

Remark 6. Unfortunately the terms elliptic, parabolic and hyperbolic

have different meanings in different fields. These terms apparently came into
use for different historical reasons. In order to avoid confusion we will always
refer to a specific meaning by adjoining a (hopefully) clarifying term when
necessary.

It is sometimes useful to study the automorphisms of the upper half
plane H+ = {w ∈ C : Im w > 0}, which is conformally equivalent to ∆ by
means of the Cayley transformation C : ∆ → H+, C(z) = i(1 + z)/(1 − z),
with inverse C−1 : H+ → ∆, C−1(w) = (w − i)/(w + i).

Once the so-called hyperbolic or Poincaré metric

ds =
2|dz|

1 − |z|2

is introduced in ∆, it becomes an example of a Riemann surface with nega-
tive constant Gaussian curvature, which can be easily calculated to be −1.
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The (analogous) hyperbolic metric in H+ is

ds =
|dw|

Imw
.

If this metric is integrated (see, e.g., [49]), one gets the corresponding hy-

perbolic or Poincaré distance

ω∆(z1, z2) =
1

2
log

1 +

∣∣∣∣
z1 − z2

1 − z1z2

∣∣∣∣

1 −

∣∣∣∣
z1 − z2

1 − z1z2

∣∣∣∣
.

The Poincaré distance has the particular property to be contracted by holo-
morphic self-maps of ∆:

Lemma 7 (Schwarz–Pick lemma). Let f ∈ Hol(∆, ∆). Then, for any

z1, z2 ∈ ∆, ∣∣∣∣
f(z1) − f(z2)

1 − f(z1)f(z2)

∣∣∣∣ ≤
∣∣∣∣

z1 − z2

1 − z1z2

∣∣∣∣,

and for any z ∈ ∆,
|f ′(z)|

1 − |f(z)|2
≤

1

1 − |z|2
.

Moreover , the above inequalities are actually equalities for some z1, z2 ∈ ∆
(z1 6= z2), or for some z ∈ ∆, if and only if f ∈ Aut(∆).

The Schwarz–Pick lemma is a generalized version of the Schwarz lem-
ma once one notices that if we take any z0 ∈ ∆ and define γz0

(z) =
(z + z0)/(1 + z0z) and γf(z0)(z) = (z − f(z0))/(1 − f(z0)z), then the func-
tion g = γf(z0) ◦ f ◦ γ−z0

belongs to Hol(∆, ∆) and is such that g(0) = 0.

Since the map t 7→ log 1+t
1−t is increasing for 0 ≤ t < 1, it is clear that

the Schwarz–Pick lemma implies that ω∆(f(z), f(w)) ≤ ω∆(z, w) for all
z, w ∈ ∆. It also follows that each automorphism of ∆ is an isometry for the
Poincaré distance. It can actually be proved (see, e.g., [1]) that the group
of all isometries for the Poincaré distance consists of all holomorphic and
antiholomorphic automorphisms of ∆.

We want to transfer the Poincaré distance ω∆ from ∆ to any hyperbolic
Riemann surface. Let X be a hyperbolic Riemann surface and denote by
πX : ∆ → X the universal covering map of X. Defining

∀z, w ∈ X ωX(z, w) = inf{ω∆(z̃, w̃) : z̃ ∈ πX
−1(z), w̃ ∈ πX

−1(w)},

we get a complete hyperbolic distance on X, which induces the standard
topology (see, e.g., [1]).

The main property of this hyperbolic distance on an arbitrary hyperbolic
Riemann surface is the analogue of the Schwarz–Pick lemma for the Poincaré
distance in ∆:
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Proposition 8. Let X and Y be two hyperbolic Riemann surfaces and

f : X → Y be a holomorphic function. Let ωX and ωY be the (induced)
hyperbolic distances on X and on Y. Then

∀z, w ∈ X ωY (f(z), f(w)) ≤ ωX(z, w).

More generally, let X be a complex manifold. A complex chain α connect-
ing two points z0 and w0 in X is a sequence of points (ξ0, . . . , ξm, η0, . . . , ηm)
in ∆ and holomorphic maps ϕ0, . . . , ϕm ∈ Hol(∆, X) such that ϕ0(ξ0) =
z0, ϕj(ηj) = ϕj+1(ξj+1) for j = 0, . . . , m − 1 and ϕm(ηm) = w0. The length

of α is defined to be

ω(α) =
m∑

j=0

ω∆(ξj, ηj).

We can define the Kobayashi (pseudo) distance kX by putting

∀z, w ∈ X kX(z, w) = inf
α
{ω(α)}

(see, e.g., [14, 25, 29, 33, 34]).
Since X is connected, kX(z, w) is always finite and in general is a pseudo-

distance, that is, the infimum might be zero even though z 6= w. However
(see [1]), we have

Proposition 9. If D is a bounded domain of C
n then kD is a distance.

The topology induced by the Kobayashi distance is completely described
by the following

Proposition 10. If kD is a distance, then kD defines on D the relative

topology of D as a subset of C
n.

Definition 11. A domain D of C
n is hyperbolic if kD is a distance.

Furthermore, the following can be shown easily (see, e.g., [14]):

Proposition 12. If X is a hyperbolic Riemann surface then the Koba-

yashi and Poincaré distances coincide. If X is a Riemann surface but is not

hyperbolic, then kX ≡ 0. Finally , if d : C
n → R

+ is any norm in C
n, then

for any z in the unit ball Bd for the norm d,

kBd
(0, z) = ω(0, d(z)).

Therefore any hyperbolic domain in C is a hyperbolic Riemann surface.
From the definition it follows immediately that if f : X → Y is a holomor-
phic map between complex manifolds, then for all x, w ∈ X,

kY (f(z), f(w)) ≤ kX(z, w).

In particular we have

Definition 13. Any ϕ ∈ Hol(∆, X) which is an isometry for the Poin-
caré and Kobayashi distance will be called a complex geodesic.
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With the notations of Proposition 12, one can prove that if x ∈ Bd \ {0}
then the map ϕ(ξ) = ξ · (x/d(x)) is a complex geodesic. The existence and
uniqueness of complex geodesics in a domain is in general a difficult problem
and has been investigated by many authors (see, e.g., [19, 31, 48]).

Another important property of the Kobayashi (pseudo) distance is the
following: let X and Y be two domains of C

n; then (see [30]) for any z, u ∈ X
and w, v ∈ Y ,

kX×Y ((z, w); (u, v)) ≥ max{kX(z, u); kY (w, v)}.

In particular, if X ≃ Y ≃ ∆ then the inequality becomes an equality.

2. Boundary Schwarz lemmas in B
n. Suppose that f ∈ Hol(∆, ∆).

If f has a fixed point z0 ∈ ∆, then the Schwarz–Pick lemma implies that
f maps every disc for the Poincaré metric, centred at z0, into itself. If,
instead, f has no fixed points in ∆, then—as we will see shortly—the Wolff
lemma states the existence of a unique point on the boundary of ∆, the
“Wolff point”, which plays the role of a “fixed point” on ∂∆. Since a map
f ∈ Hol(∆, ∆) and its derivative need not be continuous in ∆, we have to
explain the meaning of “fixed point on the boundary” and “derivative of f
at a point on the boundary” of ∆.

Definition 14. Take x ∈ ∂∆ and M > 1. The set

K(x, M) =

{
z ∈ ∆ :

|x − z|

1 − |z|
< M

}

is called the Stolz region of vertex x and amplitude M .

The Stolz region K(x, M) is an “angular region” with vertex at x and
“opening” less than π. Stolz regions are used to give the following

Definition 15. Let f : ∆ → C be a (holomorphic) function. We say
that c is the non-tangential limit (or angular limit) of f at x ∈ ∂∆ if
f(z) → c as z tends to x within K(x, M), for all M > 1. We shall also write
K-limz→x f(z) = c.

We can equivalently say that:

Definition 16. A function f ∈ Hol(∆, C) has non-tangential limit

L ∈ C at a point x ∈ ∂∆ if

f(σ(t)) → L as t → 1−

for any curve σ : [0, 1) → ∆ such that σ(t) → x non-tangentially as t → 1−.

Remark 17. The letter K is generally used for Stolz regions since the
analogous set in the unit ball B

n of C
n, for x ∈ ∂B

n, namely

K(x, M) =

{
z ∈ B

n :
|1 − 〈x, z〉|

1 − ‖z‖
< M

}
,
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with 〈·, ·〉 the scalar product of C
n, is called the Korányi region of vertex x

and amplitude M .

We recall (see [1]) that the automorphism group of B
n consists of the

maps γ = Uγa where U is an element of the unitary group of C
n and

γa(z) =
a − Pa(z) − (1 − |a|2)1/2Qa(z)

1 − 〈z, a〉

with

Pa(z) =
〈z, a〉

〈a, a〉
a and Qa(z) = z − Pa(z).(2.1)

Any automorphism of B
n extends continuously to a homeomorphism of

Bn and acts transitively on B
n and doubly transitively on Bn. To sketch the

shape of K(x, M) we may therefore assume, without loss of generality, that
x = (1, 0, . . . , 0) = e1 ∈ ∂B

n. Then the intersection of K(e1, M) with the
complex subspace generated by e1 is the Stolz region of vertex 1 in ∆,

K(1, M) =

{
z1 ∈ ∆ :

|1 − z1|

1 − |z1|
< M

}
,

while the intersection of the Korányi region K(x, M) with the copy of R
2n−1

obtained by setting Im z1 = 0 contains the ball
(

Re z1 −
1

M

)2

+ ‖z′‖2 <

(
1 −

1

M

)2

,

where z′ = (z2, . . . , zn), which is tangent to ∂B
n. Therefore, since Korányi

regions are tangent to ∂B
n along complex tangential directions, the defini-

tion of non-tangential limit in B
n requires a more subtle approach (see [1]):

Definition 18. Let x ∈ ∂B
n. An x-curve is a (continuous) curve σ :

[0, 1) → B
n such that σ(t) → x as t → 1−.

To every x-curve we associate its orthogonal projection σx = 〈σ, x〉 · x
in Cx. Therefore (σ − σx) ⊥ σx, so that

‖σ‖2 = ‖σ − σx‖
2 + ‖σx‖

2

and hence
‖σ − σx‖

2

1 − ‖σx‖2
< 1.

Definition 19. An x-curve σ in B
n is special if

lim
t→1

‖σ(t) − σx(t)‖2

1 − ‖σx(t)‖2
= 0.

An x-curve σ in B
n is restricted if it is special and there exists M > 0

such that for all t ∈ [0, 1),
‖σ(t) − x‖

1 − ‖σx(t)‖
≤ M.
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Notice that a special curve σ is restricted if and only if its projection σx

is non-tangential.

Definition 20. A map f : B
n → C has restricted K-limit L ∈ C at

x ∈ ∂B
n if f(σ(t)) → L as t → 1− for any restricted special x-curve σ. If

this is the case we write
K̃-lim
w→x

f(w) = L.

Remark 21. Notice that

K-lim
w→x

f(w) = L ⇒ K̃-lim
w→x

f(w) = L.

The converse is false (see counterexamples in [1], [41]).

We also say that f is K-bounded at x ∈ ∂B
n if it is bounded inside any

Korányi region of vertex x. Using these definitions, we can state the following
result which gives a relationship for limits of maps when approaching a
boundary point and can be considered as a generalization of the Lindelöf
theorem (see [1]) in ∆.

Theorem 22 (Chirka’s theorem). Given x ∈ ∂B
n, let f : B

n → C be a

bounded holomorphic map and assume that there exists a special x-curve σ0

such that
lim

t→1−
f(σ0(t)) = L ∈ C.

Then f has restricted K-limit L at x.

Going back to the unit disc ∆, we have

Definition 23. A point τ ∈ ∂∆ is a fixed point of f on the boundary

of ∆ if K-limz→τ f(z) = τ ; analogously we define the derivative of f at

τ ∈ ∂∆ to be the value of K-limz→τ f ′(z) if it exists and is finite.

Before stating one of the main results for boundary fixed points, namely
the Wolff lemma, let us recall the following

Definition 24. Let τ ∈ ∂∆. Then for any R > 0 the open (Euclidean)
disc of ∆ tangent to ∂∆ at τ defined as

E(τ, R) =

{
z ∈ ∆ :

|τ − z|2

1 − |z|2
< R

}

is called a horocycle of centre τ and radius R.

Geometrically the horocycle E(τ, R) in ∆ is the Euclidean disc in ∆ of
radius R/(R + 1) tangent to ∂∆ at τ .

Remark 25. If we denote by

P (ξ) =
1 − |ξ|2

|1 − ξ|2
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the Poisson kernel in ∆, the horocycle of centre 1 and radius R can be
equivalently defined as

E(1, R) = {z ∈ ∆ : P (ξ) > 1/R}.

(We refer the interested reader to [23] for developments of these relations.)

Furthermore, the horocycle E(τ, R) can be obtained (see [1]) as a limit of
a sequence {Bn = B(zn, Rn)}n∈N of Poincaré discs whose centres and radii
are such that

zn → τ and
1 − |zn|

1 − tanhRn
= R 6= 0,∞.

We can then state the following

Lemma 26 (Wolff lemma). Let f ∈ Hol(∆, ∆) be without interior fixed

points. Then there is a unique τ ∈ ∂∆ such that for all z ∈ ∆,

|τ − f(z)|2

1 − |f(z)|2
≤

|τ − z|2

1 − |z|2
,(2.2)

that is,

f(E(τ, R)) ⊆ E(τ, R) ∀R > 0,(2.3)

where E(τ, R) is the horocycle of centre τ and radius R > 0. Moreover , the

equality (2.2) holds at one point (and hence at all points) if and only if f
is a (parabolic) automorphism of ∆ leaving τ fixed.

Definition 27. If f ∈ Hol(∆, ∆) has a fixed point in ∆ (and f 6= id∆),
then we denote this fixed point by τ(f). Otherwise, τ(f) denotes the point
obtained in Wolff’s lemma. In both cases τ(f) is called the Wolff point of f .

The notion of Wolff point of a holomorphic map f ∈ Hol(∆, ∆) is deeply
related to the behaviour of the sequence of iterates of f and commuting or
permutable holomorphic functions. For the sake of completeness, we only
mention here the main results and basic facts on this subject and we refer
the interested reader to [6, 11, 36, 45, 46, 47, 50, 51].

Definition 28. Let S and T be two Riemann surfaces. A sequence of
holomorphic maps fn : S → T is said to converge on compact sets to the
limit map g : S → T if for every compact subset K ⊂ S the sequence
{fn|K}n∈N converges uniformly to g|K .

Definition 29. Let S and T be two Riemann surfaces. A sequence of
holomorphic maps fn : S → T is said to be compactly divergent if for every
pair of compact sets K1 ⊂ S and K2 ⊂ T there is an n0 ∈ N such that
fn(K1) ∩ K2 = ∅ for every n > n0.

A well known theorem of Weierstrass (see for instance [40]) asserts that
if a sequence of holomorphic functions converges uniformly on compact sets,
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then so does the sequence of their derivatives. Moreover, as a consequence
of Morera’s theorem (see, e.g., [40]), the limit function is holomorphic.

Theorem 30 (Wolff–Denjoy theorem). If f ∈ Hol(∆, ∆) is neither

an elliptic automorphism nor the identity , then the sequence of iterates

{f◦k}k∈N converges, uniformly on compact sets, to the Wolff point τ of f .

The following result has been obtained independently by the two authors
(see [7, 44]).

Theorem 31 (Behan–Shields theorem). Let f, g ∈ Hol(∆, ∆) \ id∆ be

such that f ◦ g = g ◦ f. Let τ(f) and τ(g) be their Wolff points.

(i) If f is not a hyperbolic automorphism of ∆, then τ(f) = τ(g).
(ii) Otherwise, g is also a hyperbolic automorphism of ∆, with the same

fixed point set as f , and either τ(f) = τ(g) or τ(f−1) = τ(g).

We have already encountered fruitful applications of the Schwarz and
Schwarz–Pick lemmas; the next lemma is a first step towards “boundary
generalizations” of these lemmas.

Lemma 32 (Julia lemma). Given f ∈ Hol(∆, ∆), let σ ∈ ∂∆ be such

that

lim inf
z→σ

1 − |f(z)|

1 − |z|
= β < ∞.

Then there exists a unique τ ∈ ∂∆ such that

f(E(σ, R)) ⊆ E(τ, βR) ∀R > 0.(2.4)

Furthermore, there exists z0 ∈ ∂E(σ, R) such that f(z0) ∈ ∂E(τ, βR) if and

only if f is an automorphism of ∆.

Given f : ∆ → ∆ holomorphic and σ, τ ∈ ∂∆, the behaviour of the
images of the horocycles at σ under the action of f is described by means of

βf (σ, τ) = sup
z∈∆

{
|τ − f(z)|2

1 − |f(z)|2

/
|σ − z|2

1 − |z|2

}

and of the boundary dilatation coefficient of f at σ, defined

βf (σ) = inf
τ∈∂∆

βf (σ, τ).

It can be proved that for any f ∈ Hol(∆, ∆) and σ ∈ ∂∆ there exists at most
one point τ ∈ ∂∆ such that βf (σ, τ) is finite and that actually βf (σ) = β as
in the Julia lemma. It is also very easy to verify that the relation between
the boundary dilatation coefficient β∆

f of a self-map f, holomorphic in ∆, at

a certain point τ and the corresponding coefficient βH+

F for the conjugated

map F in H+ at the corresponding point is given by βH+

F = [β∆
f ]−1. In

particular, βH+

F is a finite real number, but possibly zero.
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The definitions of non-tangential limit and of boundary dilatation co-
efficient are also used in another classical result, which can be considered
another “boundary version” of the Schwarz lemma (see, e.g., [8, 52, 53]).

Theorem 33 (Julia–Wolff–Carathéodory theorem). Let f ∈ Hol(∆, ∆),
and let τ, σ be any two points in ∂∆. Then

K-lim
z→σ

τ − f(z)

σ − z
= τσβf (σ, τ).

If this non-tangential limit is finite, then

K-lim
z→σ

f(z) = τ

and

K-lim
z→σ

f ′(z) = K-lim
z→σ

τ − f(z)

σ − z
= τσβf (σ, τ).

In particular , if τ = σ then the non-tangential limit of f ′ at σ is a strictly

positive real number.

Remark 34. The Julia–Wolff–Carathéodory theorem provides a handy
condition ensuring the existence of the non-tangential limit of both f and
its derivative at a point of ∂∆. Furthermore, the theorem states that the
derivative of a holomorphic map f at a fixed point τ on the boundary is a
positive real number f ′(τ). The Wolff lemma implies that, in particular, if
τ is the Wolff point of f , then τ is a fixed point of f on the boundary of ∆
and f ′(τ) is bounded from above by 1.

The fact that the derivative of a self-map f, holomorphic in ∆, at a
fixed point τ on the boundary is a positive real number implies, among
other things, that f is univalent near τ , within a Stolz region of vertex τ
(see [38]) and the value of the derivative of a holomorphic map f at its
Wolff point gives important information on the behaviour of the sequence
of points f◦n(z0) (with z0 ∈ ∆): namely (see [10]) if f ′(τ) < 1 any such
sequence converges non-tangentially to τ , whereas if f ′(τ) = 1 it is not
always the case that a sequence of iterates of f at a point converges to τ
tangentially, as the following example shows:

z 7→
1 + 3z2

3 + z2
.

Finally, the Julia–Wolff–Carathéodory theorem also gives a geometric
characterization of conformality at the Wolff point of a holomorphic map,
with conformality defined in the sense of [39].

It would be desirable to extend the notions so far introduced in ∆ to
several complex variables. If one takes as a generalization of ∆ the unit ball
B

n of C
n then it is not difficult (1) to prove the following analogue of the

Schwarz lemma.

(1) We refer the reader to [1] for the proofs of the following theorems in this section.



208 C. Frosini and F. Vlacci

Theorem 35. Let f ∈ Hol(Bn, Bn) be such that f(0) = 0. Then

‖f(z)‖ ≤ ‖z‖ ∀z ∈ B
n

and , for any v ∈ C
n,

‖df0(v)‖ ≤ ‖v‖.

Notice that, in B
n, equalities in the Schwarz lemma imply neither the

linearity of f nor its invertibility, as can be immediately seen by taking
f : B

2 → B
2 given

f(z1, z2) = (z1 + 1
2z2

2 , 0).

However, it can be shown (see [1]) that for f ∈ Hol(Bn, Bn) with f(0) = 0,
if z 6= 0, then

‖f(z)‖ = ‖z‖ ⇔ ‖df0(z)‖ = ‖z‖;

in particular,
f(z) = z ⇔ df0(z) = z.

Also the Schwarz–Pick lemma has a version in B
n:

Theorem 36. Let f ∈ Hol(Bn, Bn). Then for every z, w ∈ B
n we have

|1 − 〈f(z), f(w)〉|2

(1 − ‖f(z)‖2)(1 − ‖f(w)‖2)
≤

|1 − 〈z, w〉|2

(1 − ‖z‖2)(1 − ‖w‖2)
,(2.5)

and for every z ∈ B
n and w ∈ C

n we have

(2.6)
|〈dfz(v), f(z)〉|2 + (1 − ‖f(z)‖2)‖dfz(v)‖2

(1 − ‖f(z)‖2)2

≤
|〈v, z〉|2 + (1 − ‖z‖2)‖v‖2

(1 − ‖z‖2)2
.

In particular , if f is an automorphism of B
n, then both (2.5) and (2.6) are

equalities.

As in the case of the unit disc, (2.6) suggests introducing a differential
metric and a distance in B

n. After identification of the tangent space of B
n

at a point x with C
n, if u, v ∈ C

n we define

dκa(u, v) =
1

(1 − ‖a‖2)2
· [〈u, a〉 · 〈a, v〉 + (1 − ‖a‖2) · 〈u, v〉],

so that (2.6) becomes

dκf(z)(df(v), df(v)) ≤ dκz(v, v).

This differential metric (which coincides in ∆ with the Poincaré metric) is
called the Bergman metric and when integrated it provides the so-called
Bergman distance. According to Proposition 12, it immediately follows that
in B

n the Bergman and the Kobayashi distances coincide.
As a consequence of Theorem 35, one can prove the following result which

gives a first insight into the differences between Hol(∆, ∆) and Hol(Bn, Bn).
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Proposition 37. Let f ∈ Hol(Bn, Bn). Then the fixed point set of f is

either empty or an affine subset of B
n.

However, as a natural generalization of the horocycles we give the fol-
lowing

Definition 38. The horosphere of centre x ∈ ∂B
n and radius R > 0 is

the set

E(x, R) =

{
z ∈ B

n :
|1 − 〈z, z〉|2

1 − ‖z‖2
< R

}
.

An easy computation shows that horospheres are not spheres but ellip-
soids, namely

E(x, R) =

{
z ∈ C

n :
‖Px(z) − a‖2

r2
+

‖Qx(z)‖2

r2
< 1

}
,

where r = R/(1 + R), a = (1− r) · x and Px, Qx are as in (2.1). Despite this
different shape, the main results for horocycles in ∆ can be generalized for
horospheres.

Lemma 39 (Julia lemma in B
n). Given f ∈ Hol(Bn, Bn), let x ∈ ∂B

n be

such that

lim inf
z→x

1 − ‖f(z)‖

1 − ‖z‖
= α < ∞.

Then there exists a unique y ∈ ∂B
n such that

f(E(x, R)) ⊆ E(y, αR) ∀R > 0.(2.7)

Lemma 40 (Wolff lemma in B
n). Given f ∈ Hol(Bn, Bn) without fixed

points in B
n, there exists a unique x ∈ ∂B

n such that

f(E(x, R)) ⊆ E(x, R) ∀R > 0.(2.8)

Remark 41. As in the case of Hol(∆, ∆), the unique point x ∈ ∂B
n

defined in the Wolff lemma for f will be called the Wolff point of f .

Since for maps in Hol(Bn, Bn) the behaviour of the radial component
is different from that of the tangential component, a generalization of the
Julia–Wolff–Carathéodory theorem can only be partial:

Theorem 42 (Julia–Wolff–Carathéodory theorem in B
n). Given f ∈

Hol(Bn, Bn), let x ∈ ∂B
n be such that

lim inf
z→x

1 − ‖f(z)‖

1 − ‖z‖
= α < ∞.

Then f has K-limit y ∈ ∂B
n at x and the following functions are bounded

in any Korányi region:

(1) (1 − 〈f(z), y〉)/(1− 〈z, x〉),
(2) Qy(f(z))/(1 − 〈z, x〉)1/2,



210 C. Frosini and F. Vlacci

(3) 〈dfxx, y〉,
(4) (1 − 〈z, x〉)1/2Qy(dfxx),
(5) 〈dfxx⊥, y〉/(1 − 〈z, x〉)1/2,
(6) Qy(dfxx⊥),

where x⊥ is any non-zero vector orthogonal to x and Qy(x) = z − 〈x, y〉 · y
is the orthogonal projection on the orthogonal complement of Cy. Further-

more, the functions (1) and (3) have restricted K-limit α at x, while the

functions (2), (4) and (5) have restricted K-limit 0 at x.

3. Generalizations of horospheres and boundary versions of the

Schwarz lemma. When trying to extend the results obtained for self-maps
of B

n, the major difficulty is to find an equivalent definition of the objects
which have been involved so far, namely horospheres and angular regions.
For the horospheres, the correct approach has to follow the guidelines given
by

Proposition 43. Let τ ∈ ∂∆ and R > 0. Then the horocycle of centre

τ and radius R can be equivalently defined as follows:

E(τ, R) =

{
z ∈ ∆ : lim

w→τ
[ω∆(z, w) − ω∆(0, w)] <

1

2
log R

}
.

Since the horospheres in B
n also have the (analogous) characterization

described in the previous proposition (see [1]), we are led to

Definition 44. Let z0 ∈ B
n. A horosphere of centre x ∈ ∂B

n and radius
R > 0 is defined as

EBn(x, z0, R) =

{
z ∈ B

n : lim
w→x

[kBn(z, w) − kBn(z0, w)] <
1

2
log R

}
,

where kBn is the Kobayashi distance in B
n. The point z0 is called the pole

of the horosphere.

Remark 45. The above definition and the results contained in the pre-
vious section can also be stated for strongly convex domains with smooth
boundary (see [41]).

3.1. The case of polydiscs. The polydisc ∆n = ∆ × · · · × ∆ is a convex
domain, not biholomorphic to B

n, of considerable interest: it was used as a
first natural generalization of the unit disc to the case of several complex
variables (see e.g. Rudin [42]). Notice that if z ∈ ∆n then eiϑz ∈ ∆n for
all ϑ, so that ∆n is an example of a circular domain.

In this subsection we state some results about the boundary behaviour
of holomorphic self-maps of the polydisc. To avoid technical complications,
without loss of generality we restrict ourselves to the case of the bidisc.
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Let us denote by ∆2 the unit bidisc of C
2 and by ∂∆2 its boundary. Let

x ∈ ∂∆2 and let Ψ ∈ Hol(∆, ∆2) be a complex geodesic passing through x.

Definition 46. The Busemann function BΨ (z) associated to the geode-
sic Ψ is defined by

BΨ (z) := lim
r→1−

[k∆2(z, Ψ(r)) − k∆2(Ψ(0), Ψ(r))]

(see e.g. [5, p. 23]).

Definition 47. The Busemann sublevel set of centre x ∈ ∂∆2 and
radius R > 0 of the function BΨ (z) is the set

B
Ψ (y, R) :=

{
x ∈ ∆2 : BΨ (x) ≤

1

2
log R

}
.(3.1)

In [17], the above definition is used to generalize the notion of horosphere
in the polydisc (see also [2, 16]). In particular, with this approach, any Buse-
mann sublevel set is a product of horocycles. Namely given y = (y1, y2) ∈
∂∆2 (with no restriction, we may assume |y1| = 1), let ϕ(z) = (z, g(z)) be
a complex geodesic in ∆2 passing through y (such a complex geodesic with
this particular parametrization exists in ∆2 but may not be unique, see [1])
and consider the associated Busemann sublevel set B

ϕ(y, R) of radius R > 0
and centre y. If |y2| = 1 (i.e. if y belongs to the Shilov boundary of ∆2),
then (see [17])

B
ϕ(y, R) = E(y1, R) × E(y2, λg · R)(3.2)

where λg is the boundary dilatation coefficient of g at y1, with the convention
that if λg is not finite, then E(y2, λg · R) = ∆. Otherwise, if |y2| < 1, then

B
ϕ(y, R) = E(y1, R) × ∆.(3.3)

We will denote by B(λ1,λ2)(y, R) (with λ1, λ2 > 0, possibly ∞) the Buse-
mann sublevel set given by E(y1, λ1R) × E(y2, λ2R).

Notice that, with the above notation, if ϕ0(z) = z·y is a complex geodesic
in ∆2 then the corresponding Busemann sublevel set B

ϕ0(y, R) is nothing
else than the small horosphere centred at y and of radius R, according to [2];
indeed, in [2] the small horosphere of centre y and radius R > 0 is defined
in ∆n as the set

E(y, R) =

{
z ∈ ∆n : lim sup

w→y
[k∆n(z, w) − k∆n(0, w)] <

1

2
log R

}
.

In the same paper, and for other purposes related to dynamics, the author
also introduces the big horosphere of centre y and radius R as the set

F (y, R) =

{
z ∈ ∆n : lim inf

w→y
[k∆n(z, w) − k∆n(0, w)] <

1

2
log R

}
.
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In this setting, in [17] the following version of the Julia lemma is proved:

Proposition 48. Let f = (f1, f2) ∈ Hol(∆2, ∆2). Let x = (x1, x2) ∈
∂(∆ × ∆) = ∂∆2 and let (for example) ϕg(z) = (z, g(z)) be a complex

geodesic passing through x. Let

1

2
log λj := lim

t→1−
[k∆2(0, ϕg(tx1)) − ω(0, fj(ϕg(tx1))], j = 1, 2.

Suppose that either λ1 < ∞ or λ2 < ∞. Then there exists a point y =
(y1, y2) ∈ ∂∆2 such that for all R > 0,

f(B(1,λg)(x, R)) ⊆ B(λ1,λ2)(y, R).

This approach is useful also in the generalization of the notion of non-
tangential limit (see [17]):

Definition 49. Let x ∈ ∂∆2 and M > 1. The g-Korányi region

Hϕg(x, M) of vertex x and amplitude M is

Hϕg(x, M) := {z ∈ ∆2 : lim
r→1−

[k∆2(z, ϕg(r)) − k∆2(ϕg(0), ϕg(r))]

+ k∆2(ϕg(0), z) < log M}.

A holomorphic function f ∈ Hol(∆2, ∆) has Kg-limit equal to L ∈ C if f
approaches L inside any g-Korányi region.

Moreover it is also possible to generalize the definition of non-tangential
limit along curves (see Definition 16). In order to do this we need
some preliminary notation (see [17]). Let x ∈ ∂∆2. A continuous curve
σ : (0, 1) → ∆2 is called an x-curve if σ(t) → x as t → 1−. Let ϕg :
∆ → ∆2 be a complex geodesic passing through x and parameterized by
z 7→ (z, g(z)) with g ∈ Hol(∆, ∆). A holomorphic function π̃g : ∆2 → ∆
such that π̃g ◦ ϕg = id∆ is called a g-left inverse of ϕg. The composition
πg := ϕg ◦ π̃g : ∆2 → ∆2 (such that πg ◦ ϕg = ϕg, and π̃g ◦ π̃g = π̃g) is
called a g-holomorphic retraction. The pair (ϕg, πg) is a g-projection device.
In this setting, in [17] the following definition is given:

Definition 50. Let σ : (0, 1) → ∆2 be an x-curve.

• The curve σ is g-special if k∆2(σ(t), πg(σ(t))) → 0 as t → 1−.
• The curve σ is g-restricted if π̃g(σ(t)) → π̃g(x) non-tangentially as

t → 1−.

Moreover, if h : ∆n → C is holomorphic we say that h has restricted Kg-

limit equal to L ∈ C if h has limit L along any curve which is g-special and
g-restricted, and we write

K̃g-lim
z→x

h(z) = L.
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Finally, the following Julia–Wolff–Carathéodory type theorem can be
proved (see [17]):

Theorem 51. Let f ∈ Hol(∆2, ∆2) and x ∈ ∂∆2. Let ϕg be any complex

geodesic passing through x and parameterized by ϕg(z) = (z, g(z)), with

g ∈ Hol(∆, ∆). Let π̃g : ∆2 → ∆ be the g-left inverse of ϕg given by

π̃g(z1, z2) = z1. Suppose that for j = 1, 2,

1

2
log λj = lim

t→1
[k∆2(0, ϕg(tx1)) − ω∆(0, fj(ϕg(tx1)))] < ∞.

Then there exists a point y = (y1, y2) ∈ ∂∆2 such that the restricted Kg-limit

of fj at x is yj for j = 1, 2, and

K̃g-lim
z→x

yj − fj(z)

1 − π̃g(z)
= λj min{1, λg},

K̃g-lim
z→x

yj − fj(z)

1 − z2
=

λj

max{1, λg}
.

3.2. The case of analytic polyhedra. Let Ω be an analytic polyhedron
in C

n, that is, a subset Ω of C
n defined as follows:

Ω = {z ∈ C
n : |̺j(z)| < 1, j = 1, . . . , n},

where ̺j : C
n → C are holomorphic (2) in an open neighbourhood of Ω.

Notice that every function ̺j defines a decomposition of Ω into level sets
L̺j

(t) = {z : ̺j(z) = t} ∩ Ω. The set of all connected components of these
level sets is called the characteristic decomposition, denoted by ω̺j

.

Special cases of analytic polyhedra are polydiscs, and recent results on
the relationships between particular analytic polyhedra in C

2 and the bidisc
can be found in [18, 26, 27, 43]. In general an analytic polyhedron is not
holomorphically equivalent to a strictly pseudoconvex domain (see [24]).

With the above notations, an analytic polyhedron Ω as a subset of
C

n can also be regarded as the intersection of the sets Ωj = {z ∈ C
n :

|̺j(z)| < 1}. Therefore the defining functions ̺j for the analytic polyhe-
dron Ω can be considered as components of the map ̺ : Ω → ∆n, where
̺(z) = (̺1(z), . . . , ̺n(z)).

As in the case of polydiscs, we say that a point x ∈ ∂P belongs to the
Shilov boundary of Ω if ̺j(x) = 1 for j = 1, . . . , n.

In [15] a subclass P ′ of analytic polyhedra is introduced.

Definition 52. A polyhedron Ω belongs to the class P ′ if

1. Ω is simply-connected;

(2) One can easily extend the definition to analytic polyhedra in a complex manifold
of dimension n.
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2. each characteristic decomposition ωi of Ω can be defined by a function
̺i analytic on a neighbourhood of Ω and satisfying the following
conditions:

(a) for any z′, z′′ ∈ Ω there is an i such that ̺i(z
′) 6= ̺i(z

′′);
(b) for each i and any t ∈ ̺i(Ω) the level set {z : ̺i(z) = t} ∩ Ω is

connected.

It is then shown that, given two analytic polyhedra Ω and Ω′ of class
P ′, for any proper holomorphic map F : Ω → Ω′ there exists a proper
holomorphic map f : ∆s → ∆s such that ̺′ ◦ F = f ◦ ̺. Furthermore F
extends to a continuous map F̃ : Ω → Ω′. Consider a holomorphic self-map
F of an analytic polyhedron Ω of class P ′. Define D := ̺(Ω). Notice that
̺ : Ω → D is a biholomorphism. Clearly D = ̺1(Ω) × · · · × ̺n(Ω), and,
from the definition, since ̺j(Ω) ≃ ∆ for all j = 1, . . . , n, D ≃ ∆n can be
regarded as a product space.

Take a point x of the Shilov boundary of Ω and assume (3) that there
exists a complex geodesic ϕ : ∆ → Ω passing through x. Without restriction
we may assume that ̺j(x) = 1 for all j = 1, . . . , n. We will say that z ∈
Bϕ(x, R) if and only if

lim
r→1−

[kΩ(z, ϕ(r)) − kΩ(ϕ(0), ϕ(r))] < 1
2 log R.(3.4)

Since ϕ is a complex geodesic the limit in (3.4) exists and is equivalent to

lim
r→1−

[kΩ(z, ϕ(r)) − ω∆(0, r)] < 1
2 log R.(3.5)

Proposition 53. With the notations and assumptions given above,

Bϕ(x, R) =
n∏

j=1

E(1, β̺j◦ϕR),

where β̺j◦ϕ is the boundary dilatation coefficient of ̺j ◦ ϕ : ∆ → ∆.

Proof. From the definitions of the objects involved and since ̺j(Ω) ≃ ∆,
we infer that z ∈ Bϕ(x, R) if and only if

1

2
log R > lim

r→1−
[kΩ(z, ϕ(r)) − ω∆(0, r)] > lim

r→1−
[kΩ(z, ϕ(r)) − ω∆(0, r)]

= lim
r→1−

{max
j

[ω̺j(Ω)(̺j(z), ̺j(ϕ(r)))] − ω∆(0, r)}

= lim
r→1−

[ω∆(̺j(z), ̺j(ϕ(r)))−ω∆(0, ̺j(ϕ(r)))+ω∆(0, ̺j(ϕ(r)))−ω∆(0, r)]

= lim
w→1

[ω∆(̺j(z), w) − ω∆(0, w)] −
1

2
log β̺j◦ϕ.

(3) Such a complex geodesic exists if for instance Ω is convex (see [1]).
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In other words, for any j = 1, . . . , n,

1

2
β̺j◦ϕ log R > lim

w→1
ω∆[(̺j(z), w) − ω∆(0, w)],

or
̺j(z) ∈ E(1, β̺j◦ϕR),

that is,

̺(z) ∈
n∏

j=1

E(1, β̺j◦ϕR).

Notice that if z ∈ Bϕ(x, R) then ̺j(z) ∈ E(1, β̺j◦ϕR), but not conversely,
since in general ̺j(Ω) is not biholomorphic to ∆.

The crucial correspondence between Busemann sublevel sets in an ana-
lytic polyhedron and the product of horocycles in ∆n found in Proposition 53
allows one to immediately transfer to polyhedra most of the results found for
polydiscs. In particular, since a holomorphic self-map of an analytic poly-
hedron of class P ′ maps a Busemann sublevel set into another Busemann
sublevel set, a version of the Julia lemma holds in this setting. Analogously
a version of Theorem 51 can also be stated.
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