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Reproducing kernels for holomorphic

functions on some balls related to the Lie ball

by Keiko Fujita (Saga)

Abstract. We consider holomorphic functions and complex harmonic functions on
some balls, including the complex Euclidean ball, the Lie ball and the dual Lie ball. After
reviewing some results on Bergman kernels and harmonic Bergman kernels for these balls,
we consider harmonic continuation of complex harmonic functions on these balls by using
harmonic Bergman kernels. We also study Szegő kernels and harmonic Szegő kernels for
these balls.

Introduction. In the complex Euclidean space C
n+1 we consider the

function

(1) Np(z) =

(
(‖z‖2 +

√
‖z‖4−|z2|2)p/2 + (‖z‖2−

√
‖z‖4 − |z2|2)p/2

2

)1/p

,

where ‖z‖2 = z1z1 + · · · + zn+1zn+1 and z2 = z2
1 + · · · + z2

n+1 for z =
(z1, . . . , zn+1) ∈ C

n+1. In [10], we showed that Np(z) is a norm on C
n+1 if

p ≥ 1. Note that N2(z) = ‖z‖ is the complex Euclidean norm. By using
these norms we define Np-balls (see Section 1). Locally any holomorphic
function can be expanded into a double series by means of homogeneous
harmonic polynomials. In [6], we characterized holomorphic functions on
the Np-balls by the growth behavior of homogeneous harmonic polynomials.
Then we studied Bergman kernels for the Np-balls in [2], [4] and [5]. In
general, explicit forms of Bergman kernels are known only for some special
domains. For the Np-balls, explicit forms are known only for the N1-ball
(the dual Lie ball), the N2-ball (the Euclidean ball) and the N∞-ball (the
Lie ball). However in [2] we were able to express the Bergman kernel for any
Np-ball by a double series expansion (see Section 3).

J. Siciak [13] showed that harmonic functions on the real ball can be con-
tinued analytically to the Lie ball. On the other hand, they are in one-to-one
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correspondence with hyperfunctions on the sphere under the boundary value
operator. Therefore we are interested in complex harmonic functions, and
we have considered the harmonic Bergman kernel which is the reproducing
kernel of the Hilbert space of complex harmonic functions on the Np-balls
in [3] and [5] (see Section 3).

In this paper, we will prove that harmonic functions on the Np-ball with
radius r can be continued harmonically to the Lie ball with radius 21/pr by
using the harmonic Bergman kernel (Theorem 3.4).

So far we have not considered the Szegő kernels and harmonic Szegő ker-
nels for the Np-balls but it is easy to see that results similar to those on the
Bergman kernels and harmonic Bergman kernels hold for the Szegő kernels
and harmonic Szegő kernels, respectively. In Section 4, we will represent the
Szegő kernels and the harmonic Szegő kernels by double series expansions
(Theorems 4.1 and 4.2) although explicit forms of the Szegő kernels are
known only for the Euclidean ball and the dual Lie ball.

In Section 5, we treat the two-dimensional case. The Np-norm is then
equivalent to the Lp-norm, and J.-D. Park [12] obtained the Bergman kernels
and the Szegő kernels in explicit form for p = 4, 4/3. By employing his results
and an idea of Bell [1], we are able to get the harmonic Bergman kernels
and the harmonic Szegő kernels in explicit form for p = 4, 4/3 in addition
to p = 1, 2,∞.

The author would like to thank Professor Mitsuo Morimoto for useful
discussion.

1. Np-ball. First we review the Np-norms defined by (1) (see [10] for
the details). For later convenience, we put

L(z, w) = z · w +
√

(z · w)2 − z2w2,

M(z, w) = z · w −
√

(z · w)2 − z2w2,
(2)

where z · w = z1w1 + · · · + zn+1wn+1. Then the Np-norm is represented by

Np(z) =

(
L(z, z)p/2 + M(z, z)p/2

2

)1/p

.

For p ≥ 1, Np(z) is an increasing function of p:

N1(z) ≤ Ns(z) ≤ N2(z) ≤ Nt(z), 1 < s < 2 < t,

and limp→∞ Np(z) = L(z), where

L(z) =

√
‖z‖2 +

√
‖z‖4 − |z2|2

= inf
{ m∑

j=1

|aj | ‖xj‖; z =

m∑

j=1

ajxj , xj ∈ R
n+1, aj ∈ C, m ∈ Z+

}
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is the Lie norm. By using the notation (2), we have

L(z)2 = max{L(z, z), M(z, z)}.
Note that N1(z) =

√
(‖z‖2 + |z2|)/2 = L∗(z) = sup{|z · w|; L(w) ≤ 1} is

the dual Lie norm.

Define the open Np-ball B̃p(r) by

B̃p(r) = {z ∈ C
n+1; Np(z) < r},

and set

B̃(r) = B̃∞(r) =
⋂

p≥1

B̃p(r) = {z ∈ C
n+1; L(z) < r}.

By the definition, B̃p(r) is an open convex and balanced subset of C
n+1.

In particular, B̃p(r) is a domain of holomorphy in C
n+1. Since 2−1/pL(z) ≤

Np(z) ≤ L(z), we have B̃(r) ⊂ B̃p(r) ⊂ B̃(21/pr).

2. Complex harmonic functions. We denote by O(B̃p(r)) the space

of holomorphic functions on B̃p(r) equipped with the topology of uniform

convergence on compact sets, and by O(B̃p[r]) the space of germs of holo-
morphic functions on the closed Np-ball

B̃p[r] = {z ∈ C
n+1; Np(z) ≤ r}

equipped with the inductive limit locally convex topology. If f satisfies the
differential equation

∆zf(z) ≡
(

∂2

∂z2
1

+ · · · + ∂2

∂z2
n+1

)
f(z) = 0,

then f is called a complex harmonic function or a harmonic function. Put

O∆(B̃p(r)) = {f ∈ O(B̃p(r)); ∆zf(z) = 0},
O∆(B̃p[r]) = {f ∈ O(B̃p[r]); ∆zf(z) = 0}.

For harmonic functions on the Lie ball, the Poisson integral representation
is well-known. We denote by

Kr(z, w) =
r2(n−1)(r4 − z2w2)

(r4 − 2r2z · w + z2w2)(n+1)/2

the Poisson kernel. Then we have the following Poisson integral formula:

Formula 2.1 (Poisson formula). Let f ∈ O∆(B̃(r)). Take ̺ < 1 suffi-

ciently close to 1. Then

f(w) =
\

Sr

f(̺x)Kr(x/̺, w) dSr(x), w ∈ B̃(̺r),
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where the right-hand side does not depend on ̺, and dSr is the normalized

Lebesgue measure on the real sphere Sr = {x ∈ R
n+1; ‖x‖ = r}.

The Poisson formula gives the inverse mapping of the isomorphism in
the following theorem:

Theorem 2.2 (J. Siciak, [13]). The restriction mapping gives a linear

topological isomorphism

O∆(B̃(r))
∼−→ A∆(B(r)),

where A∆(B(r)) is the space of harmonic functions on the real ball B(r) =
{x ∈ R

n+1; ‖x‖ < r}.
This means that all harmonic functions on the real ball B(r) can be

continued harmonically to the Lie ball B̃(r).
The Poisson kernel Kr(z, w) can be represented by means of homoge-

neous harmonic extended Legendre polynomials.

2.1. Homogeneous harmonic extended Legendre polynomials. Let Pk,n(t)
be the Legendre polynomial of degree k and of dimension n + 1. Note that
Pk,1(t) is the Chebyshev polynomial and

Pk,n(t) =
k!Γ (n − 1)

Γ (k + n − 1)

[k/2]∑

l=0

(−1)l Γ (k + (n − 1)/2 − l)

l!(k − 2l)!Γ ((n − 1)/2)
(2t)k−2l, n ≥ 2,

Pk,1(t) = Tk(t) =
(t + i

√
1 − t2)k + (t − i

√
1 − t2)k

2
.

We define the homogeneous harmonic extended Legendre polynomial of de-
gree k and of dimension n + 1 by

P̃k,n(z, w) = (
√

z2)k(
√

w2)kPk,n

(
z√
z2

· w√
w2

)
.

Then P̃k,n(z, w) = P̃k,n(w, z) and ∆zP̃k,n(z, w) = 0. We write T̃k(z, w) for

P̃k,1(z, w). Note that T̃k(z, w) = (L(z, w)k + M(z, w)k)/2. The dimension
N(k, n) of the space of homogeneous harmonic polynomials of degree k in
C

n+1 is known to be

N(0, n) = 1,

N(k, 1) = 2, k = 1, 2, . . . ,

N(k, n) = (2k + n − 1)(k + n − 2)!/(k!(n − 1)!), n ≥ 2.

For z, w ∈ C
n+1 with L(z)L(w) < r2, the Poisson kernel can be repre-

sented by an infinite sum of P̃k,n(z, w) as follows:

Kr(z, w) =
∞∑

k=0

N(k, n)

r2k
P̃k,n(z, w).
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3. Bergman kernels and harmonic Bergman kernels

3.1. Bergman kernels in explicit form. Put

HO(B̃p(r)) =
{
f ∈ O(B̃p(r));

\
B̃p(r)

|f(w)|2 dV
B̃p(r)

(w) < ∞
}
,

where dV
B̃p(r)

is the normalized Lebesgue measure on B̃p(r), and denote by

Bp,r(z, w) the Bergman kernel of HO(B̃p(r)); that is, for f ∈ HO(B̃p(r)),
we have

f(w) =
\

B̃p(r)

f(z)Bp,r(z, w) dV
B̃p(r)

(z), w ∈ B̃(r).

In the following, we write Br(z, w) for B∞,r(z, w). For the Euclidean ball

B̃2(r), the Bergman kernel is well-known:

B2,r(z, w) =
r2n+4

(r2 − z · w)n+2
=

r2n+4

(r2 − (L(z, w) + M(z, w))/2)n+2
.

For the Lie ball B̃(r), L. K. Hua [7] obtained the explicit form

Br(z, w) =
r4n+4

(r4 − 2r2z · w + z2w2)n+1

=
r4n+4

(r2 − L(z, w))n+1(r2 − M(z, w))n+1
.

For the dual Lie ball B̃1(r), K. Oeljeklaus, P. Pflug and E. H. Youssfi [11]
obtained the explicit form (note that they call the dual Lie ball the minimal
ball)

B1,r(z, w) =

∑[(n+1)/2]
k=0

n!Xn−2kY k

(2k+1)!(n+1−2k)!(2(n+1)X− (n + 1 − 2k)(X2−Y ))

(X2−Y )n+2
,

where X = 1 − z · w/(2r2) and Y = z2w2/(4r4). Note that

X2 − Y

=

(
1 −

(
L(z, w)1/2 + M(z, w)1/2

2r

)2)(
1 −

(
L(z, w)1/2 − M(z, w)1/2

2r

)2)
,

N1(z) = (L(z, z)1/2 + M(z, z)1/2)/2, N2(z)2 = (L(z, z) + M(z, z))/2 and
L(z)2 = max{L(z, z), M(z, z)}.

3.2. Double series expansions of Bergman kernels. For the Euclidean
ball and the Lie ball, the Bergman kernels are expanded into double series
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as follows:

B2,r(z, w) =
∞∑

k=0

[k/2]∑

l=0

Γ ((n + 1)/2)(k + n + 1)!N(k − 2l, n)

2kr2kΓ (k − l + (n + 1)/2)l!(n + 1)!

× (z2)l(w2)lP̃k−2l,n(z, w),

Br(z, w) =
∞∑

k=0

[k/2]∑

l=0

2Γ (l + (n + 3)/2)Γ (k + n − l + 1)N(k − 2l, n)

r2k(n + 1)!l!Γ (k + (n + 1)/2 − l)

× (z2)l(w2)lP̃k−2l,n(z, w).

Put

βn,p
k,l,r =

\
B̃p(r)

|(ζ2)lP̃k−2l,n(ζ, ω)|2 dV
B̃p(r)

(ζ), ω ∈ S.

Then for any p ≥ 1, we have the following theorem:

Theorem 3.1 (K. Fujita, [2]). The Bergman kernel of HO(B̃p(r)) is

given by

Bp,r(z, w) =
∞∑

k=0

[k/2]∑

l=0

(βn,p
k,l,r)

−1(z2)l(w2)lP̃k−2l,n(z, w).

3.3. Harmonic Bergman kernels. Similarly, for harmonic functions on
the Np-ball, we define

HO∆(B̃p(r)) =
{
f ∈ O∆(B̃p(r));

\
B̃p(r)

|f(w)|2 dV
B̃p(r)

(w) < ∞
}
,

and denote by B∆
p,r(z, w) the harmonic Bergman kernel of HO∆(B̃p(r));

that is, for f ∈ HO∆(B̃p(r)), we have

f(w) =
\

B̃p(r)

f(z)B∆
p,r(z, w) dV

B̃p(r)
(z), w ∈ B̃p(r).

Theorem 3.2 (K. Fujita, [3]). The harmonic Bergman kernel of

HO∆(B̃p(r)) is given by

B∆
p,r(z, w) =

∞∑

k=0

(βn,p
k,0,r)

−1P̃k,n(z, w).

3.4. Harmonic continuation. Thanks to Theorem 4.1 in [2] on the Berg-
man transformation (see Appendix), it is easy to see that the following
lemma holds:

Lemma 3.3. Let w0 be a point of the boundary ∂B̃p[r] of B̃p[r]. Then as

a function of z, Bp,r(z, w0) belongs to O(B̃p(r)) \ O(B̃p[r]).
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For example, for p = 1, 2,∞, we can see that z = w0 is a singular point
of Bp,r(z, w0) from the explicit forms given in Section 3.1.

On the other hand, we have the following theorem (proved in [5] for the
2-dimensional case):

Theorem 3.4. Let 1 ≤ p < ∞ and f ∈ HO∆(B̃p(r)). Define

F (w) =
\

B̃p(r)

f(z)B∆
p,r(z, w) dV

B̃p(r)
(z).(3)

Then F ∈ O∆(B̃(21/pr)) and F (w) = f(w) on B̃p(r).

Proof. For w ∈ ∂B̃p[r], put Gw(z) = B∆
p,r(z, w). Then by Lemma 3.3, as

a function of z, Gw(z) ∈ O(B̃p(r)) and we have

lim sup
k→∞

(‖(βn,p
k,0,r)

−1P̃k,n(·, w)‖C(S1))
1/k ≤ 1/(21/pr)(4)

by Theorem 2.2 in [6] (see Appendix), where ‖ · ‖C(S1) denotes the supre-

mum norm on S1. For z ∈ ∂B̃p[r], since P̃k,n(z, w) = P̃k,n(w, z), as a function
of w,

Gz(w) =

∞∑

k=0

(βn,p
k,0,r)

−1P̃k,n(z, w) ∈ O∆(B̃(21/pr))

by (4) and Theorem 5.2 in [9] (see Appendix). Thus F (w) ∈ O∆(B̃(21/pr)).

For w ∈ B̃p(r) ⊂ B̃(21/pr),

F (w) =
\

B̃p(r)

f(z) B∆
p,r(z, w) dVB̃p(r)(z) = f(w).

More precisely, the mapping f 7→ F in (3) gives the inverse mapping of
the following isomorphisms:

Theorem 3.5. The restriction mapping α gives the following linear

topological isomorphisms:

(5) α : O∆(B̃(21/pr))
∼−→ O∆(B̃p(r)), α : O∆(B̃[21/pr])

∼−→ O∆(B̃p[r]).

Proof. If f ∈ O∆(B̃p(r)), take ̺ < 1 sufficiently close to 1 and consider
the mapping

β : f 7→ F (w) =
\

B̃p(r)

f(̺z) B∆
p,r(z/̺, w) dV

B̃p(r)
(z), w ∈ B̃p(̺r).

It is easy to see that the right-hand side does not depend on ̺ for 0 < ̺ < 1.
Since we can take ̺ arbitrarily close to 1 and α ◦ β = β ◦α = id is clear, we
have the first isomorphism in (5).

If f ∈ O∆(B̃p[r]), then take ̺ > 1 sufficiently close to 1. Then we have
the second isomorphism in (5) by the same argument.
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4. Szegő kernels and harmonic Szegő kernels. We denote by

C(B̃p[r]) the space of continuous functions on B̃p[r] and by L2(∂B̃p(r), dSp,r)

the space of square integrable functions on ∂B̃p(r) with respect to the nor-

malized Lebesgue measure dSp,r on ∂B̃p(r). Let HO(∂B̃p(r)) be the clo-

sure in L2(∂B̃p(r), dSp,r) of the restrictions to ∂B̃p(r) of the elements of

O(B̃p(r)) ∩ C(B̃p[r]):

HO(∂B̃p(r)) =
{
f ∈ O(B̃p(r)) ∩ C(B̃p[r]);

\
∂B̃p(r)

|f(w)|2 dSp,r(w) < ∞
}
.

We denote by Sp,r(z, w) the Szegő kernel on HO(∂B̃p(r)) and by

S∆
p,r(z, w) the harmonic Szegő kernel on HO∆(∂B̃p(r)) = HO(∂B̃p(r)) ∩

O∆(B̃p(r)). That is, for f ∈ HO(∂B̃p(r)) we have

f(w) =
\

∂B̃p(r)

f(z)Sp,r(z, w) dSp,r(z), w ∈ B̃p(r),

and for f ∈ HO∆(∂B̃p(r)) we have

f(w) =
\

∂B̃p(r)

f(z)S∆
p,r(z, w) dSp,r(z), w ∈ B̃p(r).

For the complex Euclidean ball, the Szegő kernel is known:

S2,r(z, w) =
r2n

(r2 − z · w)n
.(6)

For the dual Lie ball, E. H. Youssfi obtained the explicit form in [14]:

(7) S1,r(z, w) =

∑[n/2]
k=0

n!Xn−2k−1Y k

(2k+1)!(n−2k)! (2(n + 1)X − (n − 2k)(X2 − Y ))

(n + 2)(X2 − Y )n+1
,

where X = 1 − z · w/(2r2) and Y = z2w2/(4r4).

In the case of the Lie ball, the Shilov boundary Σr of B̃(r) is known to
be

Σr = {eiθx ∈ C
n+1; θ ∈ R, x ∈ Sr},

which is called the Lie sphere. Thus for the Lie ball, the following kernel has
been considered instead of the Szegő kernel: If f ∈ O(B̃[r]), then we have

f(w) =
\

Σr

f(z) Hr(z, w) dΣr(z), w ∈ B̃(r),

where dΣr is the normalized Lebesgue measure on the Lie sphere and

Hr(z, w) =
r2(n+1)

(r4 − 2r2z · w + z2w2)(n+1)/2
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is the Cauchy–Hua kernel (see Theorem 5.2 in [8]). Its double series expan-
sion is as follows:

Hr(z, w) =
∞∑

k=0

[k/2]∑

l=0

N(k − 2l, n)

r2k
(z2)l(w2)lP̃k−2l,n(z, w).

We can also represent the Poisson formula (Formula 2.1) by an integra-
tion taken over the Shilov boundary using the Poisson kernel Kr(z, w) as

follows: For f ∈ O∆(B̃[r]), we have

f(w) =
\

Σr

f(z) Kr(z, w) dΣr(z), w ∈ B̃(r).

Put

αp
k,l,r =

\
∂B̃p(r)

|(ζ2)lP̃k−2l,n(ζ, ω)|2 dSp,r(ζ), ω ∈ S1.

Following [2], we can prove Theorems 4.1 and 4.2 below as in the case of the
Bergman kernel. We will omit the proofs.

Theorem 4.1. The Szegő kernel of HO(∂B̃p(r)) is given by

Sp,r(z, w) =
∞∑

k=0

[k/2]∑

l=0

(αp
k,l,r)

−1(z2)l(w2)lP̃k−2l,n(z, w).

Theorem 4.2. The harmonic Szegő kernel of HO∆(∂B̃p(r)) is given by

S∆
p,r(z, w) =

∞∑

k=0

(αp
k,0,r)

−1P̃k,n(z, w).

5. 2-dimensional case

5.1. Bergman kernels in C
2. For general n, βn,p

k,l,r have not been calcu-

lated except for p = 2,∞. But in the case of n = 1, β1,p
k,l,r can be calculated:

β1,p
k,l,r =

Γ
(

4
p + 1

)
Γ

(
2k−2l+2

p

)
Γ

(
2l+2

p

)
22k/pr2k

N(k − 2l, 1)Γ
(

2
p

)2
Γ

(
2k+4

p + 1
) .

For z = (z1, z2) ∈ C
2 we have

Np(z) =

( |z1 + iz2|p + |z1 − iz2|p
2

)1/p

, N∞(z) = L(z) = max |z1 ± iz2|.

Thus for p with 1 ≤ p < ∞, the Np-norm is equivalent to the Lp-norm and
the Lie norm is equivalent to the supremum norm in C

2. J.-D. Park [12] sum-
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med up the infinite sums in explicit form for p = 4, 4/3 besides p = 1, 2,∞.
His results are as follows. Put

f(a, b) = 3 − 6a + 6b + 3a2 − 6ab − b2,

g(a, b) = (2 − a − b − a2 + 2ab − b2)(1 − a − b).

For Y1 = L(z, w)/(21/2r2) and Y2 = M(z, w)/(21/2r2), define

F (z, w) =
Y1(π + 2arcsinY1)f(Y 2

1 , Y 2
2 )

4(1 − Y 2
1 )3/2

+
Y2(π + 2arcsinY2)f(Y 2

2 , Y 2
1 )

4(1 − Y 2
2 )3/2

+
g(Y 2

1 , Y 2
2 )

2(1 − Y 2
1 )(1 − Y 2

2 )
+ 2πY1Y2.

Then

B4,r(z, w) =
r12F (z, w)

(r4 − 2(z · w)2 + z2w2)3
=

r12F (z, w)

(r4 − N4
4 (z, w))3

,

where N4
4 (z, w) = (L(z, w)2 + M(z, w)2)/2. Note that N4

4 (z, z) = N4(z)4.

Take a branch of L(z, w)1/3 and M(z, w)1/3, and put ω = e2πi/3,

Y1(j1) = ωj1 L(z, w)1/3

21/2r2/3
, Y2(j2) = ωj2 M(z, w)1/3

21/2r2/3
,

Fj1,j2(z, w) =
F (Y1(j1), Y2(j2))

Y1(j1)2Y2(j2)2
.

Then applying Theorem 1 of Bell [1], we have

B4/3,r(z, w) =
1

216

3∑

j1=1

3∑

j2=1

Fj1,j2(z, w)

(1 − Y1(j1)2 − Y2(j2)2)3
.

5.2. Harmonic Bergman kernels in C
2. For the 2-dimensional Np-balls

we gave the harmonic Bergman kernels in explicit form for p = 1, 2,∞ in
[3]. Put

P (s, t) = 1 + 2s − 24t + 60st + 4t2

+ 18st2 − 80s2t − 4t3 + 8st3 − 24s2t2 + 40s3t − t4.

Then

B1,r,∆(z, w) =
r16P (z · w/(4r2), z2w2/(4r4))

(r2 − L(z, w)/4)4(r2 − M(z, w)/4)4

=
r16P (z · w/(4r2), z2w2/(4r4))

(r4 − r2z · w/2 + z2w2/16)4
,
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B2,r,∆(z, w)

=
r6(2r6−3r4z · w+3r4(z · w)2−3r2z2w2/2− (z · w)3 +3z · wz2w2/4)

(r2 − L(z, w)/2)3(r2 − M(z, w)/2)3
−1

=
r6(2r6−3r4z ·w+3r2(z ·w)2−3r2z2w2/2− (z ·w)3 +3z ·wz2w2/4)

(r4 − r2z · w + z2w2/4)3
−1,

Br,∆(z, w) =
r8 − z2w2(4r4 − 4r2z · w + z2w2)

(r2 − L(z, w))2(r2 − M(z, w))2

=
r8 − z2w2(4r4 − 4r2z · w + z2w2)

(r4 − 2r2z · w + z2w2)2
.

Note that the denominators of the kernels are consistent with Theorem 3.4.

By the work of J.-D. Park [12], we have

G4(X) =
∞∑

k=0

√
π Γ (k/2 + 2)

Γ ((k + 1)/2)
Xk =

3X(π + 2arcsinX)

4(1 − X2)5/2
+

X2 + 2

2(1 − X2)2
.

Thus putting X1 = L(z, w)/(21/4r)2, X2 = M(z, w)/(21/4r)2, we have

B4,r,∆(z, w) =
3X1(π + 2arcsinX1)

4(1 − X2
1 )5/2

+
X2

1 + 2

2(1 − X2
1 )2

+
3X2(π + 2arcsinX2)

4(1 − X2
2 )5/2

+
X2

2 + 2

2(1 − X2
2 )2

− 1.

Next, consider the infinite sum

G4/3(X) =

√
π

12

∞∑

k=0

Γ (3(k + 1)/2 + 5/2)

Γ (3(k + 1)/2)
Xk.

Put

F (X) =
15X2(π + 2arcsinX)

4(1 − X2)7/2
+

X(−2X4 + 9X2 + 8)

2(1 − X2)3
.

Then employing an idea considered in Theorem 1 of Bell [1] for Bergman
kernels, we can sum up G4/3(X) in explicit form as follows: for ω = e2πi/3,

G4/3(X) =
1

72X
(F (ωX1/3) + F (ω2X1/3) + F (X1/3)).

Thus we have

B4/3,r,∆(z, w) = G4/3(L(z, w)/(23/2r2)) + G4/3(M(z, w)/(23/2r2)) − 1.

5.3. Szegő kernels and harmonic Szegő kernels in C
2. For the 2-dimen-

sional case, the coefficients αp
k,l,r can be calculated and Theorems 4.1 and 4.2

read as follows:
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Theorem 5.1. In C
2, the Szegő kernel Sp,r(z, w) is given as follows:

Sp,r(z, w) =
∞∑

k=0

[k/2]∑

l=0

N(k−2l, 1)Γ (2/p)2Γ ((2k+4)/p)(z2)l(w2)lT̃k−2l(z, w)

Γ (4/p)Γ ((2k − 2l + 2)/p)Γ ((2l + 2)/p)22k/pr2k

=

∞∑

k=0

∞∑

l=0

Γ (2/p)2Γ ((2k + 2l + 4)/p)L(z, w)kM(z, w)l

Γ (4/p)Γ ((2k + 2)/p)Γ ((2l + 2)/p)2(2k+2l)/pr2k+2l
.

By this theorem, (7) and (6), we have

S1,r(z, w) =
∞∑

k=0

∞∑

l=0

Γ (2k + 2l + 4)L(z, w)kM(z, w)l

6Γ (2k + 2)Γ (2l + 2)22k+2lr2k+2l

=
r8(3r8 − r6z · w − r4(z · w)2/4 + (z2w2)2/16)

3(r8 − r6z · w + r4(z · w)2/4 − (z2w2)2/16)2
,

S2,r(z, w) =
∞∑

k=0

∞∑

l=0

Γ (k + l + 2)L(z, w)kM(z, w)l

Γ (k + 1)Γ (l + 1)2k+lr2k+2l

=
r4

(r2 − z · w)2
=

r4

(r2 − (L(z, w) + M(z, w))/2)2
.

By [12], for p = 4/3, 4 we have

S4,r(z, w) =
∞∑

k=0

∞∑

l=0

πΓ ((k + l + 2)/2)L(z, w)kM(z, w)l

Γ ((k + 1)/2)Γ ((l + 1)/2)2(k+l)/2r2k+2l

=
πr4z2w2

2(r4 − 2(z · w)2 + z2w2)2
+

r4

(r4 − 2(z · w)2 + z2w2)

+
r4L(z, w)(r4 − 2zw

√
(z · w)2 − z2w2)(π + 2arcsin(L(z, w)/(21/2r2)))

2(r4 − 2(z · w)2 + z2w2)2(2r4 − L(z, w)2)1/2

+
r4M(z, w)(r4 + 2zw

√
(z · w)2 − z2w2)(π + 2arcsin(M(z, w)/(21/2r2)))

2(r4 − 2(z · w)2 + z2w2)2(2r4 − M(z, w)2)1/2
,

S4/3,r(z, w) =
∞∑

k=0

∞∑

l=0

πΓ (3(k + l + 2)/2)L(z, w)kM(z, w)l

8Γ (3(k + 1)/2)Γ (3(l + 1)/2)23(k+l)/2r2k+2l

=
1

72

3∑

j1=1

3∑

j2=1

S4,r(ω
j1(L(z, w)/(21/2r2))1/3, ωj2(M(z, w)/(21/2r2))1/3)

ωj1ωj2(L(z, w)/(21/2r2))2/3(M(z, w)/(21/2r2))2/3
.

Furthermore, for the two-dimensional Lie ball we have the following explicit
form:
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S∞,r(z, w) =
∞∑

k=0

∞∑

l=0

2(k + 1)(l + 1)

(k + l + 2)

L(z, w)kM(z, w)l

r2k+2l

= 2
r2L(z, w) + r2M(z, w) − 2L(z, w)M(z, w)

(1 − L(z, w)/r2)(1 − M(z, w)/r2)(L(z, w) − M(z, w))2

− 2
L(z, w)/r2 + M(z, w)/r2

(L(z, w) − M(z, w))3/r6
log

r2 − L(z, w)

r2 − M(z, w)

=
4r4(r2z · w − z2w2)

(r4 − 2r2z · w + z2w2)((z · w)2 − z2w2)

− 2r4z · w
((z · w)2 − z2w2)3/2

log
r2 − z · w − ((z · w)2 − z2w2)1/2

r2 − z · w + ((z · w)2 − z2w2)1/2
.

Recall that the Cauchy–Hua kernel related to the Shilov boundary of the
Lie ball (Lie sphere) mentioned in Section 4 is simpler:

Hr(z, w) =
r4

r4 − 2r2z · w + z2w2 .

Theorem 5.2. In C
2, the harmonic Szegő kernel S∆

p,r(z, w) is given as

follows:

S∆
p,r(z, w) =

∞∑

k=0

N(k, 1)Γ (2/p)Γ ((2k + 4)/p)

Γ (4/p)Γ ((2k + 2)/p)22k/pr2k
T̃k(z, w)

=
∞∑

k=0

Γ (2/p)Γ ((2k + 4)/p)

Γ (4/p)Γ ((2k + 2)/p)22k/pr2k
(L(z, w)k + M(z, w)k) − 1.

For harmonic Szegő kernels, we can also sum up the infinite series in
explicit form for p = 1, 4/3, 2, 4 and p = ∞:

S∆
1,r(z, w) =

∞∑

k=0

Γ (2k + 4)

6Γ (2k + 2)22kr2k
(L(z, w)k + M(z, w)k) − 1

=
r4L(z, w)(r2 − M(z, w)/4)3 + r4M(z, w)(r2 − L(z, w)/4)3

3(r4 − r2z · w + z2w2/16)3

+
r2L(z, w)(r2−M(z, w)/4)2 +r2M(z, w)(r2−L(z, w)/4)2

4(r4 − r2z · w + z2w2/16)2
−1,

S∆
2,r(z, w) =

∞∑

k=0

k + 1

2kr2k
(L(z, w)k + M(z, w)k) − 1

=
r8 − r4z2w2 + (z2w2)2/16 − r2z · wz2w2/2

(r4 − r2z · w + z2w2/4)2
,
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S∆
4,r(z, w) =

∞∑

k=0

√
π Γ ((k + 2)/2)

Γ ((k + 1)/2)2k/2r2k
(L(z, w)k + M(z, w)k) − 1

= F4(L(z, w)/(21/2r2)) + F4(M(z, w)/(21/2r2)) − 1,

where F4(x) = 1/(1 − x2) + x(π + 2arcsinx2)/(2(1 − x2)3/2);

S∆
4/3,r(z, w) =

∞∑

k=0

√
π Γ (3(k + 2)/2)

4Γ (3(k + 1)/2)23k/2r2k
(L(z, w)k + M(z, w)k) − 1

= F4/3(L(z, w)/(23/2r2)) + F4/3(M(z, w)/(23/2r2)) − 1,

where

F4/3(x) =
2

x2(1 − x2)2
+

2x(1 + x2)1/2

(1 − x2)2
+

3(π + 2arcsinx2)

2x(1 − x2)5/2
;

and

S∆
∞,r(z, w) =

∞∑

k=0

N(k, 1)2(k + 1)

(k + 2)r2k
T̃k(z, w)

=
2r4

(r2 − L(z, w))L(z, w)
+

2r4

(r2 − M(z, w))M(z, w)

+
2r4 log(1 − L(z, w)/r2)

L(z, w)2
+

2r4 log(1 − M(z, w)/r2)

M(z, w)2
− 1

= 4r4 r2z · w − 2(z · w)2 + z2w2

(r4 − 2r2z · w + z2w2)z2w2
− 1

+ 2r4 M(z, w)2 log(1 − L(z, w)/r2) + L(z, w)2 log(1 − M(z, w)/r2)

(z2w2)2
.

Recall that the Poisson kernel related to the Shilov boundary of the Lie ball
mentioned in Section 4 is simpler:

Kr(z, w) =
r4 − z2w2

r4 − 2r2z · w + z2w2 .

6. Appendix. In this section we quote some theorems to which we
referred in the proofs.

We denote by O′(B̃p(r)) and O′(B̃p[r]) the dual spaces of O(B̃p(r)) and

O(B̃p[r]), respectively. For T ∈ O′(B̃p[r]) define Bp
rT (w) = 〈Tz, B

p
r (z, w)〉,

where 〈 , 〉 is the canonical inner product on O′(B̃p[r]) × O(B̃p[r]). The
bilinear form

〈f, g〉
B̃p[r]

=
\

B̃p[r]

f(̺z)g(z/̺) dV
B̃p(r)

(z)

is well-defined for f ∈ O(B̃p(r)) and g ∈ O(B̃p[r]).
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6.1 (Theorem 4.1 in [2]). The Bergman transformation B
p
r : T 7→B

p
rT (w)

establishes the following topological linear isomorphisms:

Bp
r : O′(B̃p[r])

∼−→ O(B̃p(r)), Bp
r : O′(B̃p(r))

∼−→ O(B̃p[r]).

We have 〈T, f〉 = 〈f,Bp
rT 〉

B̃p[r]
for T ∈ O′(B̃p(r)) and f ∈ O(B̃p(r)), as well

as for T ∈ O′(B̃p[r]) and f ∈ O(B̃p[r]).

6.2 (Theorem 2.2 in [6]). Let fk−2l be the homogeneous harmonic poly-
nomial of degree k − 2l. Then

∞∑

k=0

[k/2]∑

l=0

(z2)lfk−2l(z) ∈ O(B̃p(r))

⇔ lim sup
k→∞

((
l!(k − l)!

k!

)1/p

‖fk−2l‖C(S1)

)1/k

≤ 1

21/pr
.

6.3 (Theorem 5.2 in [9]). Let fk be the homogeneous harmonic polyno-
mial of degree k. Then

∞∑

k=0

fk(z) ∈ O∆(B̃(r)) ⇔ lim sup
k→∞

(‖fk‖C(S1))
1/k ≤ 1/r.
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