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An example of a pseudoconvex domain whose

holomorphic sectional curvature

of the Bergman metric is unbounded

by Gregor Herbort (Wuppertal)

Abstract. Let a and m be positive integers such that 2a < m. We show that in
the domain D := {z ∈ C

3 | r(z) := Re z1 + |z1|
2 + |z2|

2m + |z2z3|
2a + |z3|

2m
< 0} the

holomorphic sectional curvature RD(z; X) of the Bergman metric at z in direction X

tends to −∞ when z tends to 0 non-tangentially, and the direction X is suitably chosen.
It seems that an example with this feature has not been known so far.

1. Introduction. The unit disc, equipped with the Poincaré metric, is
a first example of a domain with a metric of constant negative curvature.
The generalization to the unit ball in C

n with n ≥ 2 is given by the Bergman
metric. Its holomorphic sectional curvature R is also a negative constant. By
a result of Lu Qi-Keng [17] the ball is the only simply connected domain (up
to biholomorphic equivalence) whose Bergman metric has negative constant
holomorphic curvature (see also [9]).

Since the results of [5] and [12] it has become possible to determine, on
a bounded strongly pseudoconvex domain D, the boundary behavior of the
holomorphic sectional curvature RD(z;X) for (z,X) ∈ D × C

n. For a C∞-
smooth strongly pseudoconvex domain Klembeck [15] has shown, by means
of the Fefferman asymptotic formula for the Bergman kernel function, that
for any tangent vector X 6= 0 the quantity RD(z;X) tends to −2/(n+ 1)
when z tends to the boundary. His smoothness assumption was considerably
weakened later in [14].

Since the investigations of Bergman [1] it has been known that the holo-
morphic sectional curvature of the Bergman metric is always less than 2.
That it is bounded from below is known in the class of strongly pseudocon-
vex domains (this is obvious) and also (by [18]) in smooth bounded pseu-
doconvex domains of finite type in C

2. In [8] the case of smoothly bounded
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Reinhardt domains of finite type in C
2 was treated. The holomorphic sec-

tional curvature of the Bergman metric in such domains, in a neighborhood
of the boundary, can be estimated from above by a negative constant.

In the present note we give an example of a smooth bounded pseudo-
convex Reinhardt domain D of finite type in C

3 such that the holomorphic
sectional curvature RD(z;X) of the Bergman metric is not bounded from
below in certain directions X. The idea and the kind of argument used are
completely in the spirit of [10, 11] (see also [7]).

Theorem 1.1. Let a,m be positive integers such that 2a < m. Let

D := {z ∈ C
3 | r(z) := Re z1 + |z1|2 + P (z′) < 0}, where P (z′) := P (z2, z3)

:= |z2|2m + |z2z3|2a + |z3|2m. Then the holomorphic sectional curvature

RD(−te1;X) tends to −∞ as t ց 0 if X = (0, X ′) ∈ {0} × C
2 and

X ′ = (X2, X3) with X2, X3 6= 0. Here e1 = (1, 0, 0). More precisely ,

2 −RD(−te1; (0, X ′)) ≈ 1

log(1/t)

(
1 +

1

t1/a−2/m log(1/t)

|X2|2|X3|2
|X ′|4

)
.

The above domain is a Reinhardt domain with center at ζ0 = −1
2e1.

A phenomenon as described in the theorem is not possible in domains all of
whose boundary points are of finite semiregular type (see [2] or [16]). The
notion of semiregular type was defined in [6] (see also [19]). A point ζ in
a smooth hypersurface M is said to be of (finite) semiregular type if the
D’Angelo type ∆1(ζ,M) of M at ζ is finite, and the n-tuple (1, ∆n−1(ζ,M),
. . . , ∆1(ζ,M)) of the D’Angelo higher type numbers equals the Catlin mul-
titype (1,m2, . . . ,mn) of M at ζ. In dimension 3 a point ζ ∈M is of semireg-
ular type if the D’Angelo type at ζ is finite and equal to the entry m3 of the
Catlin multitype.

In our domain the assumption 2a < m implies 1/a−2/m > 0. It prevents
the origin from being a point of (finite) semiregular type. Indeed, the Catlin
multitype of ∂D at 0 is (1, 4a, 4a), while the D’Angelo type at this point
is 2m.

Stimulation for this article came from the paper [4], where for the first
time an example of a domain Ω was given in which the holomorphic sec-
tional curvature RΩ(z;X) of the Bergman metric tends to 2 as z tends to a
certain boundary point of D and the direction X is suitably chosen. Also,
in [4] it was asked whether there exists a bounded pseudoconvex domain
whose holomorphic sectional curvature with respect to the Bergman metric
is unbounded.

Acknowledgements. I would like to thank the referee for checking my
manuscript so carefully, and for valuable suggestions on the preparation of
the corrected version.
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2. Proof of Theorem 1.1

The relevant domain functionals. Let Ω ⊂⊂ C
n be a bounded domain.

We denote by H2(Ω) the Hilbert space of all holomorphic functions on Ω
that are square-integrable with respect to the Lebesgue measure. Put

‖f‖2
Ω :=

\
Ω

|f |2 d2nz.

For z ∈ Ω we consider the following subsets of H2(Ω):

A0(Ω) := {f ∈ H2(Ω) | ‖f‖Ω ≤ 1},
A1(Ω; z) := {f ∈ A0(Ω) | f(z) = 0},

A2(Ω; z) :=

{
f ∈ A1(Ω)

∣∣∣∣
∂f(z)

∂zj
= 0, j = 1, . . . , n

}
.

Then we have the well-known relationships between the Bergman kernel
KΩ : Ω → R, the Bergman metric B2

Ω(z;X) at z in direction X, and
the holomorphic sectional curvature RΩ(z;X) of the Bergman metric for
(z,X) ∈ Ω × C

n:

(a) KΩ(z) = sup{|f(z)|2 | f ∈ A0(Ω)},

(b) B2
Ω(z;X) =

J1,Ω(z;X)

KΩ(z)
,

(c) 2 −RΩ(z;X) =
KΩ(z)J2,Ω(z;X)

J1,Ω(z;X)2
,

where
J1,Ω(z;X) := sup{|X(f)(z)|2 | f ∈ A1(Ω; z)},
J2,Ω(z;X) := sup{|XX(f)(z)|2 | f ∈ A2(Ω; z)}.

For a vectorX := (X1, . . . , Xn) ∈ C
n we denote by X(f)(z) the derivative of

f at z in direction X, explicitly X(f)(z) :=
∑n

j=1
∂f(z)
∂zj

Xj , and XX(f)(z) =
∑n

j,k=1
∂2f(z)
∂zj∂zk

XjXk.

Splitting off the z1-direction. For s> 0 we putDs := {z′ ∈C
2 |P (z′)<s}.

Note that for 0 < t < 1/10 the domain

D̃t := ∆

(
− t,

t− t2

2

)
×D(t−t2)/4

is contained in D.

The following comparison lemma is needed for the proof of Lemma 2.2
below. Its proof is based on a standard ∂-argument. The idea is in the spirit
of [3, Sec. 6].
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Lemma 2.1. There exists a constant C > 0 such that , for any 0 < t <
1/10 and any function f ∈ H2(D̃t), we can find a function f̂ ∈ H2(D) such

that ‖f̂‖D ≤ C‖f‖
D̃t

, and f̂ − f vanishes to third order at the point −te1.
Proof. Step 1: We construct a plurisubharmonic weight function that

fits well the size of D̃t.

First we note that

−2t ≤ r(z) ≤ −t/4 on D̃t.

Let

Wt(z) :=
|z1 + t|2

t2
+

1

t
P (z′).

If now z ∈ C
3 and Wt(z) ≤ 1/5, then |z1 + t| < t/

√
5 < (t− t2)/2 when

t < 1/10. Because also P (z′) < t/5 < (t− t2)/4, we see that z ∈ D̃t. The
Levi form of the plurisubharmonic function ψt := er/t can be estimated on
the set {Wt ≤ 1/5} by

Lψt(z;X) = er/t
( |X1|2

t
+

1

t
LP (z′;X ′) +

∣∣∣∣
(1 + 2z1)X1

2t
+

〈∂P (z′), X ′〉
t

∣∣∣∣
2)

≥ er/t
(

1

t
LP (z′;X ′) +

|(1 + 2z1)X1|2
8t2

− 2
|〈∂P (z′), X ′〉|2

t2

)

≥ er/t
(

1

t
LP (z′;X ′) +

|(1 − 3t)X1|2
8t2

− 2
|〈∂P (z′), X ′〉|2

t2

)

≥ er/t
(

1

t
LP (z′;X ′) +

49|X1|2
800t2

− 2
P (z′)LP (z′;X ′)

t2

)

≥ er/t
(

1

t

(
1 − 2

P (z′)

t

)
LP (z′;X ′) + 0.06

|X1|2
t2

)

≥ e−2

(
0.06

|X1|2
t2

+
3

5t
LP (z′;X ′)

)
≥ 0.06e−2

LWt(z;X).

The estimate |〈∂P (z′), X ′〉|2 ≤ P (z′)LP (z′;X ′) follows from the fact
that logP is plurisubharmonic.

Next we choose an increasing smooth function χ : R → (−∞, 1] with

χ(s) =

{
s for s ≤ 1/10,

1 for s ≥ 3/20,

and put Vt := Mψt + logχ ◦Wt. It is possible to choose M independently
of t in such a way that Vt becomes plurisubharmonic throughout D, and
moreover,

LVt ≥ γLWt

on the set {W ≤ 1/5} for some constant γ > 0 that does not depend on t.
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To see this, we note that

LVt(z;X) = MLψt(z;X) + (logχ)′ ◦Wt · LWt(z;X)

+ (logχ)′′ ◦Wt · |〈∂Wt(z), X〉|2

for (z,X) ∈ D × C
3.

There are three cases to be considered:
(i) If Wt(z) ∈ [0, 1/10], we have (logWt is p.s.h.)

LVt(z;X) = MLψt(z;X) + LlogWt(z;X)

≥MLψt(z;X) ≥ 0.06e−2MLWt(z;X).

(ii) If 1/5 ≥Wt(z) ≥ 3/20, we have

LVt(z;X) = MLψt(z;X) ≥ 0.06e−2MLWt(z;X) .

(iii) Assume that 1/10 ≤ Wt(z) ≤ 3/20. With some constant C3 > 0,
we can estimate (logχ)′(s), (logχ)′′(s) ≥ −C3 for s ∈ [1/10, 3/20]. This in
conjunction with the log-plurisubharmonicity of P gives

LVt(z;X) ≥MLψt(z;X) − C3LWt(z;X) − C3|〈∂Wt(z), X〉|2

≥MLψt(z;X) − C3(1 +Wt(z))LWt(z;X)

≥MLψt(z;X) − 2C3LWt(z;X)

≥ (0.06e−2M − 2C3)LWt(z;X).

We can now choose M > 200C3e
2 and γ = C3.

Step 2: Let ξ ∈ C∞(R) be a non-negative cut-off function satisfying

ξ(s) = 1 for s ≤ 1/10 and χ(s) = 0 if s ≥ 1/5. Given a function f ∈ H2(D̃t)
we define the ∂-closed smooth (0, 1)-form

v = ∂(ξ ◦Wt) · f = ξ ′ ◦Wt · f · ∂Wt.

This form is defined onD. Measuring its length with respect to the hermitian
form Q := L|z|2+10Vt

, we will show that

(∗) |v|2Qe−|z|2−10Vt ≤ C1|f |2,
with an unimportant constant C1 > 0 (uniformly in t), where

|v|2Q :=
n∑

j,k=1

Qjk̄vjvk

and Qjk̄ are the coefficients of the inverse of the matrix associated to Q and
the vj are the coefficients of v.

Namely, on supp(v) ⊂ {1/10 ≤Wt ≤ 1/5} we have

LWt ≥
1

Wt
∂Wt ⊗ ∂Wt ≥ 5∂Wt ⊗ ∂Wt

and
Q = L|z|2 + 10LVt ≥ L|z|2 + 10γLWt ≥ L|z|2 + 50γ∂Wt ⊗ ∂Wt,
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hence

|v|2Q = (ξ′ ◦Wt)
2|f |2|∂Wt|2Q ≤ 1

50γ
(ξ′ ◦Wt)

2|f |2.

Because of the monotonicity of χ the function Vt is bounded from below
on supp(v) by

Vt = Mψt + logχ ◦Wt ≥ log(1/10).

This implies

|v|2Qe−|z|2−10Vt ≤ 1010

50γ
(ξ′ ◦Wt)

2|f |2,

which is (∗) with

C1 =
1010

50γ
max(ξ′ ◦Wt)

2.

A refinement in the proof of Lemma 4.4.1 from [13] (which is by now
standard) gives us a smooth solution u to the equation ∂u = v that satisfies

(L2)
\
D

|u|2e−|z|2−10Vt d6z ≤
\
D

|v|2Qe−|z|2−10Vt d6z ≤ C1‖f‖2
D̃t
.

Since Vt ≤ M , we have
T
D |u|2 d6z ≤ C1e

2(diamD)2+10M‖f‖2
D̃t

, where

diamD is the diameter of D. Furthermore, because of the term 10Vt in the
weight that appears on the left-hand side of (L2), the function u vanishes
to third order at the point −te1. Then the holomorphic function

f̂ := ξ ◦Wt · f − u

satisfies ‖f̂‖L2(D) ≤ C‖f‖
D̃t

, with C := 1 +
√
C1e

(diamD)2+5M , and hence
fulfills our requirements.

Lemma 2.1 is proved.

Corollary.

(i) For any function f ∈ A0(D̃t) let f̂ be the function from Lemma 2.1.

Then f̂/C ∈ A0(D), and

KD(−te1) ≥ C−2K
D̃t

(−te1).

(ii) Likewise, for k ∈ {1, 2} and any function f ∈ Ak(D̃t;−te1), the

function f̂/C belongs to the family Ak(D;−te1), and for all X ∈ C
3 we

have

Jk,D(−te1;X) ≥ C−2J
k,D̃t

(−te1;X), k = 1, 2.

This enables us to give lower and upper estimates for the domain func-
tionals in formulas (a), (b), and (c) at the point −te1 by the corresponding
domain functionals (evaluated at 0′) that belong to the domains Dt−t2 .
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Lemma 2.2. With a suitable constant C∗ > 0, for 0 < t < 1/10 we have

(1)
1

C∗t2
KD(t−t2)/4

(0′) ≤ KD(−te1) ≤
5

πt2
KD(t−t2)/4

(0′),

and for X ′ ∈ C
2 and k = 1, 2 we have

(2)
1

C∗t2
Jk,D(t−t2)/4

(0′;X ′) ≤ Jk,D(−te1; (0, X ′)) ≤ 5

πt2
Jk,D(t−t2)/4

(0′;X ′)

and

(3)
1

C∗

KD(t−t2)/4
(0′)J2,D(t−t2)/4

(0′;X ′)

J1,D(t−t2)/4
(0′;X ′)2

≤ 2 −RD(−te1; (0, X ′)) ≤ C∗

KD(t−t2)/4
(0′)J2,D(t−t2)/4

(0′;X ′)

J1,D(t−t2)/4
(0′;X ′)2

.

Proof. The fact that D̃t ⊂ D for 0 < t < 1/10 together with Lemma 2.1
and its corollary gives

1

C2
K
D̃t

(−te1) ≤ KD(−te1) ≤ K
D̃t

(−te1)

and
1

C2
J
k,D̃t

(−te1; (0, X ′)) ≤ Jk,D(−te1; (0, X ′))

≤ Jk,D̃t
(−te1; (0, X ′)), k = 1, 2,

for 0 < t < 1/10 and X ′ ∈ C
2. We use the product formulas

K
D̃t

(−te1) = K∆(−t,(t−t2)/2)(−t)KD(t−t2)/4
(0′)

and

J
k,D̃t

(−te1; (0, X ′)) = K∆(−t,(t−t2)/2)(−t)Jk,D(t−t2)/4
(0′;X ′), k = 1, 2.

The desired upper and lower bounds now follow from the estimate

4

π

1

t2
≤ K∆(−t,(t−t2)/2)(−t) =

4

π

1

(t− t2)2
≤ 5

πt2
,

which holds for 0 < t < 1/10.

Estimate (3) follows from (1) and (2) in conjunction with formula (c),
stated at the beginning of this section. This proves Lemma 2.2.

Estimation of the single domain functionals of Ds at 0′. For functions
f, g : (0, α) → (0,∞) we write f ≈ g if there is a constant C > 0 such that
C−1g(t) ≤ f(t) ≤ Cg(t) for all t ∈ (0, α).

Lemma 2.3. For 1/10 > s > 0 we have

(4) KDs(0
′) ≈ 1

s1/a log(1/s)
.
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For X ′ ∈ C
2 \ {0} we have

J1,Ds(0
′;X ′) ≈ |X ′|2

s1/m+1/a
,(5)

J2,Ds(0
′;X ′) ≈ |X ′|4

s2/m+1/a
+

|X2|2|X3|2
s2/a log(1/s)

.(6)

Proof. Since Ds is a Reinhardt domain, we have

(4′) KDs(0
′) =

1

Vol(Ds)

as well as

(5′) J1,Ds(0
′;X ′) =

3∑

j=2

|Xj |2
‖fj‖2

Ds

=
|X ′|2
‖f2‖2

Ds

,

where fj(z
′) := zj for j = 2, 3, and

J2,Ds(0
′;X ′) = 4

|X2|4
‖f2

2 ‖2
Ds

+ 4
|X3|4
‖f2

3 ‖2
Ds

+
|X2|2|X3|2
‖f2f3‖2

Ds

(6′)

= 4
|X2|4 + |X3|4

‖f2
2 ‖2

Ds

+
|X2|2|X3|2
‖f2f3‖2

Ds

.

Here we use the symmetry of Ds.

We have to estimate ‖fν2 ‖2
Ds

for ν = 0, 1, 2 and also ‖f2f3‖2
Ds

. Consider
the domains

D̂s :=

{
z′ ∈ C

2

∣∣∣∣ |z2| < s1/2m, |z3| <
1

s−1/2m + s−1/2a|z2|

}
.

Then for 0 < s < 1/10 one has

(7) D̂s/4 ⊂ Ds ⊂ D̂4ms.

This reduces our task to estimating ‖fν2 ‖2
D̂σ

for ν = 0, 1, 2 and ‖f2f3‖2
D̂σ

.

We have

‖fν2 ‖2
D̂σ

=
\̂
Dσ

|z2|2νd4z′ = π
\

|z2|<σ1/2m

|z2|2νd2z2

(σ−1/2m + σ−1/2a|z2|)2

= 2π2
σ1/2m\

0

r2ν+1 dr

(σ−1/2m + σ−1/2ar)2

= 2π2σ1/m
σ1/2m\

0

r2ν+1 dr

(1 + σ1/2m−1/2ar)2

= 2π2σ1/m+(ν+1)(1/a−1/m)Kν(σ),
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(substitute r =: σ1/2a−1/2m̺) with

Kν(σ) :=

σ1/m−1/2a\
0

̺2ν+1 d̺

(1 + ̺)2
=

1\
0

̺2ν+1 d̺

(1 + ̺)2
+

σ1/m−1/2a\
1

̺2ν+1 d̺

(1 + ̺)2

≈
σ1/m−1/2a\

1

̺2ν+1 d̺

(1 + ̺)2
.

Note that σ1/m−1/2a > 1 if 0 < σ < 1, since 2a < m.

But

σ1/m−1/2a\
1

̺2ν+1 d̺

(1 + ̺)2
≈

σ1/m−1/2a\
1

̺2ν−1d̺ ≈
{
σ2ν/m−ν/a if ν > 0,

log(1/σ) if ν = 0.

Thus we obtain

‖fν2 ‖2
D̂σ

≈
{
σν/m+1/a if ν ≥ 1,

σ1/a log(1/σ) if ν = 0.

For ν = 0, 1 this together with (4′) and (5′) implies (4) and (5). If we let
ν = 2, we find

4
|X2|4
‖f2

2 ‖2
Ds

+ 4
|X3|4
‖f2

3 ‖2
Ds

≈ |X ′|4
s2/m+1/a

.

Next we check the estimate for the norm ‖f2f3‖D̂σ
. Similarly to the above

we compute

‖f2f3‖2
D̂σ

=
\

|z2|<σ1/2m

|z2|2
( \

|z3|<(σ−1/2m+σ−1/2a|z2|)−1

|z3|2 d2z3

)
d2z2

= 2π
\

|z2|<σ1/2m

|z2|2
( (σ−1/2m+σ−1/2a|z2|)−1\

0

r3 dr
)
d2z2

=
π

2

\
|z2|<σ1/2m

|z2|2(σ−1/2m + σ−1/2a|z2|)−4d2z2

= π2
σ1/2m\

0

r3(σ−1/2m + σ−1/2ar)−4 dr

= π2σ2/m
σ1/2m\

0

r3(1 + σ1/2m−1/2ar)−4 dr

= π2σ2/a
σ1/m−1/2a\

0

̺3 d̺

(1 + ̺)4
(r =: σ1/2a−1/2m̺)
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≈ σ2/a
σ1/m−1/2a\

0

̺3 d̺

1 + ̺4
= σ2/a

σ4/m−2/a\
0

d̺′

1 + ̺′

≈ σ2/a log(1/σ).

This in conjunction with (6′) gives (6), and therefore proves the lemma.

End of the proof of Theorem 1.1. We only need to choose s = (t− t2)/4
and combine formulas (3) and (4) through (6).

Theorem 1.1 is proved.
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