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A symmetry problem

by A. G. RaAMM (Manhattan, KS)

Abstract. Consider the Newtonian potential of a homogeneous bounded body
D C R?® with known constant density and connected complement. If this potential equals
¢/|z| in a neighborhood of infinity, where ¢ > 0 is a constant, then the body is a ball. This
known result is now proved by a different simple method. The method can be applied to
other problems.

1. Introduction. Consider a bounded domain D C R? with a con-
nected complement and C'*-smooth boundary S. The smoothness assump-
tions on S can be weakened, but this is not the point of this paper. Let Bgr
be a ball of radius R, containing D, and B}, be its complement in R3. We
denote by S? a unit sphere, and by ¢ a unit vector. Let N be the outer unit
normal to S. Denote by x the characteristic function of D, and by N the
set of harmonic functions in Bg. Let the center O of Bgr be the origin, and
suppose it lies at the center of mass of D.

Consider the Newtonian potential

dy
u(x) =\ ———,
LS) |z =yl

(1)

where we have assumed that the density of the mass distribution in D is 1.
Assume that
u(z) = clz|™'  in B,

where ¢ = const. Then the question is:
Does this imply that D is a ball?

It is well known and easy to prove that if D is a ball B, of radius a,
then u(x) = c|z|~™! in B/, and ¢ = |By|, where |B,| is the volume of this
ball, | B,| = 47a®/3, so a = (3¢/4w)*/3. In [1] and [5] one can find different
proofs of the fact that the answer to the above question is yes. An especially
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simple proof, due to D. Zagier, is given at the end of this paper (see also
review [5], where one can find this proof).

Our goal is to give a simple new proof of this result by a method which
can be used in other problems (see, e.g., [4]). The literature on potential
theory and inverse potential theory is quite large, and we only mention a
few references [1]-[3], [5], where the reader can find additional bibliography,
and [4], where an argument similar to the one we use was applied to the
study of the Pompeiu problem.

We do not attempt to make the weakest assumption about the smooth-
ness of the boundary of D. In Zagier’s proof, given at the end of this paper,
no smoothness of the boundary is assumed.

We prove the following theorem:

THEOREM 1. Under the above assumptions, if u(x) = c|z|~ in Bl, then
D is a ball of radius a = (3¢/4m)'/3.

This result is proved in Section 2.

2. Proofs
Proof of Theorem 1. We have
Au = —4mx  in R3, (2)
Multiply (2) by a harmonic function h € A and integrate over Bg to get
—4w§h(x)da@: S hAuwdx = S uAhdx + 1, (3)
D Br Br

where we have used Green’s formula, and set

_ Ou ou

I:= S (hu, — uhy)ds, up = 5 = BN

OBr

)
OBR

where 0Bpg is the boundary of Bg. By our assumption,

ur = —cR™2, w=cR' ondBpg.
We also have
1
| heds=o, y | nds=n(0),
0BRr OBRr

where we have used the mean value theorem for harmonic functions and the
formula

| heds= | Ahdz =0,
dBgr Br

which is valid for harmonic functions h. Therefore, I = ¢;h(0), where ¢; is
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a constant, and (3) implies
| n(@)de = e2h(0) VhEN, ¢ := —Z—l. (4)
T
D
If h € N, then h(gz) € N for any rotation g. Let us check that if g = g(¢)
is the rotation through the angle ¢ about the straight line passing through
the origin in the direction ¢, then

d(g(¢))
do |49
where [/, z] is the cross product. To check (5), choose the coordinate system

with z-axis along ¢, and write the matrix g of the ¢-rotation about the
zZ-axis:

= [ﬁvx]v (5)

cos¢ —sing 0
g:=g(¢)=|sing cos¢p 0

0 0 1
Then
. 0 -1 0
ﬁ =11 0O 0] :=0d.
=0 \o 0 o0

Thus, Gz = [¢,z] in the chosen coordinate system. This formula does not
depend on the choice of coordinate system, so (5) is verified.
A proof of (5), similar to the one used in mechanics for the proof of the
conservation of angular momentum, is also possible.
Replacing h(z) by h(g(¢)z) in (4), differentiating with respect to ¢, then
setting ¢ = 0, and using (5), one gets
| Vi [0,a)dz =0, (6)
D
where - is the dot product of two vectors. Note that

Vh(z)-[¢,z] =V - h(x)[(, x].
Therefore, using the divergence theorem, one rewrites (6) as
Vn(s)N, - [0,s]ds = £\ h(s)[s,N,Jds =0, VheN,VieS?, (7)
S S

where Ny is the outer unit normal to S at the point s. Since £ is arbitrary,
equation (7) implies

[ n(s)[s,NJds =0, VheN. (8)
S
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We claim that the set of restrictions of all harmonic functions h € N to S
is dense in L?(S). For the convenience of the reader, this claim is verified
after the proof of Theorem 1 is finished. Thus, (8) implies

[s, N] =0 VseS. (9)

Let us prove that (9) implies that S is a sphere. Let r = r(p, q¢) be a para-
metric equation of S. Then s = r(p, q) and Ny = [rp,r4]/|[rp, r4]|. Thus, (9)
implies
0=[r,[rp,ry]] =rpr -1y —rer - I (10)
Since the surface S is assumed C'*-smooth, the normal N; is well defined
at every point s € S, and the vectors r, and r, are linearly independent.
Thus, (10) implies
r-rg=r-r,=0. (11)

It follows from (11) that
r-r=a’ (12)

where a > 0 is a constant. This is an equation of a sphere of radius a,
centered at the origin, i.e., at the center O of mass of D. So, D is a ball
of radius a centered at O. In our argument we do not assume that D is
connected.

Theorem 1 is proved. =

Let us now verify the claim that the set of restrictions of all harmonic
functions h € N to S is dense in L?(S). Assuming the contrary, one con-
cludes that there exists an f € L2(S) such that

| f(s)h(s)ds =0 VheN. (13)
S
Take
s = | 1
g lr—s|

where m > R, and p € L?(S,,) is arbitrary. Then h is harmonic in Bg, and
since p is arbitrary, equation (13) implies

v(x) = Sf(s)]w—s]_l ds=0 Vx &Sy, (14)
S

The function v is a single-layer potential which vanishes on S,,. Thus, it
vanishes everywhere outside S,,, and consequently, everywhere outside S.
Since v is continuous in R?, and vanishes everywhere outside S, it vanishes
on S. A function v which is harmonic in D and vanishes on S must vanish
in D. So, v = 0 in D and in D’ := R?®\ D. By the jump relation for the
normal derivative of v across the boundary S, one gets

0=(vn)" = (vn)” =4rf,
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where (vy)* is the limiting value of the normal derivative vy from the inside
(resp. outside) of D. So, f = 0, which proves the claim. =

REMARK. Equation (12) has been derived under the assumption that the
origin of the coordinate system is fixed: in this coordinate system wu(x) =
¢/|z| in Bj. Therefore the surfaces satisfying (12) in which a = const > 0,
can be concentric spheres. There cannot be more than two neighboring con-
centric spheres with different mass densities, because the density of the mass
distribution in D is assumed constant. There cannot be two such spheres,
i.e., D cannot be a spherical shell, because in this case the domain D’ is
not connected, contrary to our assumption. Thus, .S can only be one sphere,
and D can only be a ball.

D. Zagier’s proof ([5]). Assume that D is connected. If wu(z) =
$pdy/le —y| = ¢/|z| in Bj, then u(x) = ¢/|z| in D' by the unique con-
tinuation theorem for harmonic functions. Taking gradient, one gets

dy (x — cx

Dolr—yP 2P
in D'. Taking the dot product with x, one gets
X dy(@® —y-2) ¢ _ S dy S dylz —y*
— |3 o o _ o —_ 37 :
L P R P R G P
This implies
dy (—y? :
S vty ) oL

o ey

Let B C D be the largest ball, inscribed in D and centered at the origin,
and B¢ := D \ B. One has

S dy (—y* +y - x)
lz —yl?

=0 in B

Subtract this from the similar formula for D to get

S dy (—y* +y - x)
|z —y?

=0 inD"

Be
Since —y? +y-x < 0if y € B¢, & € D', one concludes that |B¢| = 0, so
D = B. Here |B¢| is the Lebesgue measure (volume) of the set B¢. =
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