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The Lax–Phillips infinitesimal generator and the

scattering matrix for automorphic functions

by Yoichi Uetake (Poznań)

Abstract. We study the infinitesimal generator of the Lax–Phillips semigroup of
the automorphic scattering system defined on the Poincaré upper half-plane for SL2(Z).
We show that its spectrum consists only of the poles of the resolvent of the generator,
and coincides with the poles of the scattering matrix, counted with multiplicities. Using
this we construct an operator whose eigenvalues, counted with algebraic multiplicities
(i.e. dimensions of generalized eigenspaces), are precisely the non-trivial zeros of the Rie-
mann zeta function. We give an operator model on L

2(R) of this generator as explicit as
possible. We obtain a condition equivalent to the Riemann hypothesis in terms of cyclic
vectors for a weak resolvent of the scattering matrix.

1. Introduction. Since the scattering theoretic view of the theory of
automorphic functions was suggested by Gelfand [Ge] in 1962, Pavlov and
Faddeev [PavFa] showed in 1972 that the Lax–Phillips scattering theory,
applied to the non-Euclidean wave equation, is a natural tool in the theory
of automorphic functions. This was taken up and further studied by Lax
and Phillips themselves and culminated in their monograph [LP1] and its
important supplement [LP2].

In [LP1], the poles of the scattering matrix of the non-Euclidean wave
equation on the Poincaré upper half-plane are related to the poles of the
resolvent (and so to the eigenvalues) of the infinitesimal generator of the
Lax–Phillips semigroup. See also [LP2, Cor. 4.3]. In this paper we study
this relation in more detail.

To make the paper as self-contained as possible, we begin in §2 with a de-
scription of the Lax–Phillips scattering theory for automorphic functions on
the fundamental domain of SL2(Z). Then in §§3 and 4 we develop a general
spectral theory of discrete-time and continuous-time Lax–Phillips scatter-
ing, respectively, except that a unitary factor of the scattering matrix we
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have in mind consists of the non-trivial zeros of the Riemann zeta-function.
The only result we use from scattering theory is a translation representation
theorem (see e.g. Theorem 1.1 of Ch. II in [LP3]) for the discrete scattering
system. In §§5 and 6 we treat scattering theory in the setting of automorphic
functions.

In §2, we briefly review the Lax–Phillips scattering theory for automor-
phic functions. For more details, see [LP1], [LP2], Epilogue of [LP3] and the
references there. In the general case of a congruence subgroup Γ of SL2(Z),
the behavior of the eigenvalues for cusp forms is complicated. However in
our case (and in most of [LP1]), where Γ = SL2(Z), it is well-known (see
Motohashi [Mo], Zagier [Z]) that the eigenvalues λj of the non-Euclidean
Laplacian ∆ for the cusp forms ψj are all real and λj > 1/4. In §2 we apply
this fact to describe explicitly the subspaces P and I introduced in [LP1, 2].
We also use the Eisenstein transform to explain that the energy form E is
positive definite on the subspace corresponding to the continuous spectrum
of ∆.

In §3 we study discrete-time Lax–Phillips scattering systems correspond-
ing to their continuous-time counterparts. We define the subspace K of the
whole Hilbert space H (H is a subspace of the L2-space of functions on the
fundamental domain F for SL2(Z)) on which the Lax–Phillips semigroup and
generator will be defined. This space is defined by using a unitary causal
factor Sd0(z) of the discrete scattering matrix. We decompose Sd0(z) into a
weak resolvent form. This procedure allows one to carve out an operator Ad

on a Hilbert space K. We show in §6 that this Ad has a cyclicity property.
We base our development on the methods of shift operator realization of
linear systems from Helton [H] and [U2].

In §4 we define our Lax–Phillips semigroup and study some spectral
properties of its infinitesimal generator Ac. We call this generator the Lax–
Phillips (infinitesimal) generator, as in the title of the paper. We show that
the operator Ad carved out from the discrete scattering matrix is related to
Ac by the Cayley transform. Using this relation, we prove that the resolvent
of Ac is meromorphic. Then we show that the spectrum of Ac corresponds
precisely (i.e. counted with multiplicities) to the poles of the unitary causal
factor Sc0(s) of the continuous scattering matrix, corresponding to K.

In [LP1, 2], the original Lax–Phillips generator denoted by B′′ acting
on K ′′ is defined. There the meromorphy in C of its resolvent is proved by
showing compactness of the resolvent. It turns out that our space K is ob-
tained by discarding a one-dimensional non-essential generalized eigenspace
of B′′. Actually σ(B′′) \ σ(Ac) = {−1/2}. So the meromorphy of B′′’s re-
solvent proved in [LP1, 2] follows from that of Ac’s resolvent. Our proof of
Theorem 4.2(i) gives a simple proof of this.
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In §4 we also construct an operator acting on K with eigenvalues cor-
responding precisely to the non-trivial zeros of the Riemann zeta-function.
For discussions of this kind of operator, see e.g. Lax and Phillips [LP2, §6]
and Patterson [Pat, §5.18].

The underlying mechanism of pole correspondence between the scatter-
ing matrix and the resolvent of the Lax–Phillips generator is the cyclicity
of the two vectors in the weak resolvent decomposition of the scattering
matrix. This has been shown in [U1] and [U3]. In this paper we show this
pole correspondence directly in Lemma 4.1 used to prove Theorem 4.2(ii).
The cyclicity will be used in §6.

In §5 we represent Ac acting on K as minus the left L2-derivative re-
stricted to the subspace Kc of L2(R−), using the explicit formulas for trans-
lation representations for the scattering system in §2 obtained in [LP2].
Here Kc is the image of K under the outgoing representation. We give an
expression of Kc as explicit as possible.

In §6 we show cyclicity of the two vectors in the weak resolvent decom-
position of Sd0(z). Using these and the operator model in §5, we formulate
a condition equivalent to the Riemann hypothesis in terms of cyclic vectors.
To deduce this condition, we use a result on absence of zero-pole cancellation
in cascade connection of dynamical systems in Hilbert space [U3].

Notations. I denotes the identity operator; R+ = [0,∞) and R− =
(−∞, 0]; PW is the orthogonal projection onto the Hilbert space W ; Sd : ℓ2

→ ℓ2 is the (discrete) scattering operator; Sd : L2(T) → L2(T) is the (dis-
crete) scattering matrix; Sc : L2(R) → L2(R) is the (continuous) scattering
operator; Sc : L2(iR) → L2(iR) is the (continuous) scattering matrix.

2. Lax–Phillips scattering theory on the fundamental domain

of SL2(Z). Consider the fundamental domain F = Γ\H of Γ := SL2(Z),
where H = {w = x + iy; y > 0} is the Poincaré upper half-plane, and Γ is
the modular group defined by

Γ =

{[

a b

c d

]

; a, b, c, d ∈ Z, ad− bc = 1

}

,

H ∋ w 7→
[

a b

c d

]

w :=
aw + b

cw + d
∈ H.

F has a cusp at i∞.

Let L2(F) be the Hilbert space defined by

L2(F) =
{

u = u(w), w ∈ F; ‖u‖L2(F) :=
√

〈u, u〉L2(F) <∞
}
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with the inner product

〈u, v〉L2(F) =
\
F

uv
dx dy

y2
.

It is well-known that L2(F) has the following spectral decomposition
with respect to the non-Euclidean Laplacian ∆ = −y2(∂2/∂x2 + ∂2/∂y2)
(−∆ is called the Laplace–Beltrami operator):

L2(F) = L2
d(F) ⊕ L2

c(F), L2
d(F) = C ⊕ ◦L2(F),

◦L2(F) = cl span{ψj ; j ∈ N}.
Here cl means topological closure. Each subspace is an invariant subspace
of L2(F) with respect to ∆. ψj is a cusp form and it is known (Motohashi
[Mo], Zagier [Z]) that ∆ψj = (1/4 + κ2

j )ψj with κj > 0. Let

L = −∆+ 1/4.

Then Lψj = −κ2
jψj . Therefore the only non-negative eigenvalue of L is

1/4 with a constant eigenfunction c : Lc = (1/4)c. Note that ‖c‖L2(F) =
√

π/3 |c| ([Mo]).

The Eisenstein series of two variables E(z, s) on H is by definition

E(z, 1/2 + s) =
∑

γ∈Γ∞\Γ

[ℑγ(z)]1/2+s.

Here for γ ∈ Γ∞, γ(z) = z + n for some n ∈ Z. For convenience the second
variable s is shifted by 1/2. E(z, 1/2 + s) is an automorphic function, that
is, E(γ(z), 1/2 + s) = E(z, 1/2 + s) for all γ ∈ Γ , thus E(z, 1/2 + s) can be
viewed as a function on F.

The Eisenstein series is a (non-L2-)eigenfunction of ∆:

(∆− 1/4)E(z, 1/2 + iξ) = −(iξ)2E(z, 1/2 + iξ)

for all ξ ∈ C.

The Eisenstein transform Eis: L2
c(F) → L2(R+) is defined by

Eis[f ](ξ) =
1√
2π

\
F

f(z)E(z, 1/2 − iξ) dµ, dµ =
dx dy

y2
,

for f = f(z) ∈ L2
c(F) (Lang [La], Motohashi [Mo]). This transform is unitary

(see §4 for the inner product of L2(R) ⊃ L2(R+)) and the inverse is given
by

Eis−1[w](z) =
1√
2π

∞\
0

w(ξ)E(z, 1/2 + iξ) dξ

for w = w(ξ) ∈ L2(R+) ([Mo]).
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Note that by the above eigenfunction property of the Eisenstein series,

(∆− 1/4)Eis−1[w](z) =
1√
2π

(∆− 1/4)

∞\
0

w(ξ)E(z, 1/2 + iξ) dξ

=
1√
2π

∞\
0

w(ξ)(∆− 1/4)E(z, 1/2 + iξ) dξ

=
1√
2π

∞\
0

w(ξ)ξ2E(z, 1/2 + iξ) dξ

for w ∈ C∞
c (R+) (the space of compactly supported C∞-functions). Note

also that Eis−1[C∞
c (R+)] is dense in L2

c(F) ⊃ dom(∆). So we see that −L =
∆− 1/4 is still positive definite on L2

c(F). Consequently, the energy form E
defined below is positive definite on L2

c(F) × L2
c(F).

Consider the solutions of the following automorphic wave equation on F:

utt(w, t) = Lu(w, t), w = x+ iy ∈ F,

with initial values u(w, 0) and ut(w, 0). Rewrite the above wave equation in
the first order form as df/dt = Lf , where

f = f(t) = {f1(t), f2(t)} = {u(w, t), ut(w, t)} =

[

u(w, t)

ut(w, t)

]

and

L =

[

0 1

L 0

]

.

The operator L is denoted by A in [LP1, 2].
The bilinear energy form E is given by

E(f, g) = 〈f1,−Lg1〉L2(F) + 〈f2, g2〉L2(F)

for f = {f1, f2}, g = {g1, g2} ∈ L2(F) × L2(F).
The E-energy form E(f) := E(f, f) for data f = {f1, f2} will be zero for

e.g. f = {c,±c/2}. To avoid this disadvantage of indefiniteness, we introduce
another bilinear energy form defined by

G(f, g) = E(f, g) + 2K(f, g),

where

K(f, g) =
\

F0

f1g1

y2
dx dy, F0 = F ∩ {y ≤ a}, a > 1.

We denote by HG the completion with respect to the G-norm defined
via G(f) := G(f, f) of the space of C∞-solutions with compact support
in F. It is known ([LP1]) that the E- and G-forms are equivalent on any
closed subspace of HG on which E is positive. The operator L generates
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a one-parameter group {U(t)}t∈R of unitary operators with respect to the
indefinite energy form E. We also write U(t) as etL.

The incoming and outgoing solutions of the above wave equation are
given by

u−(w, t) = y1/2φ(yet) and u+(w, t) = y1/2φ(ye−t),

respectively, where φ is chosen to be C∞ and vanishing for y ≤ a. Then the
incoming and outgoing subspaces D0− and D0+ (denoted by D− and D+ in
[LP1, 2]) are defined to be the closure inHG of the initial data corresponding
to the above incoming and outgoing solutions, respectively:

D0− = cl{{y1/2φ(y), y3/2φ′(y)}}, D0+ = cl{{y1/2φ(y),−y3/2φ′(y)}},
where φ is chosen as above. Actually, instead of the above D0±, we will use
D± (denoted by D′

± or D′′
± in [LP1, 2]) defined below as our incoming and

outgoing subspaces.

In [LP1, 2], the case where L has a finite number of positive eigenvalues
λ2

j , j = 1, . . . ,m, is treated. Let qj , j = 1, . . . ,m, be the corresponding

eigenfunctions. As we saw above, in our case of Γ = SL2(Z),m = 1, λ2
1 = 1/4

and q1 = c. Then Lp±1 = ±λ1p
±
1 , where p±1 = {q1,±λ1q1} = {c,±c/2}.

Recall that E(p±1 ) = 0. Let P = span{p±j ; j = 1, . . . ,m} = span{p+
1 , p

−
1 } =

span{p, q}, where p = {1, 0}, q = {0, 1}. Note that E(p, q) = G(p, q) = 0
(i.e. p and q are E- andG-orthogonal). Denote the E-orthogonal complement
of P in HG by H ′

G. Define H ′
E to be the quotient space H ′

G/I, where I is
the finite-demensional subspace spanned by the null vectors of L. Note that
Lf = 0, f = {f1, f2} ⇔ Lf1 = 0, f2 = 0. However, neither the cusp form
ψj nor the constant c satisfies Lf1 = 0 as we saw above. Hence it turns
out that I = {0} and H ′

E = H ′
G after all. On H ′

E , E is positive definite
and equivalent to G. Thus U(t) is unitary on H ′

E . However the subspaces
D0− and D0+ do not lie in H ′

E . Thus we define two types of incoming and
outgoing subspaces in H ′

E as follows:

D′
± = PH′

E
D0± or D′′

± = D0± ∩H ′
E .

Here PH′

E
is the E-orthogonal projection onto H ′

E from HG. Define H (de-

noted by H ′
c in [LP1, 2]) to be the E-orthogonal complement of the eigen-

functions in H ′
E from the point spectrum of L. It is seen that the eigenfunc-

tions of L in H ′
E are g±j = {ψj ,±iκjψj} with eigenvalues ±iκj for the cusp

forms ψj . Since H is invariant under U(t), U(t) is also unitary on H. The
subspaces D± = D′

± or D′′
± satisfy the following conditions:

(2.1) U(t)D− ⊆ D−, ∀t ≤ 0, and U(t)D+ ⊆ D+, ∀t ≥ 0;

(2.2)
⋂

t≤0

U(t)D− = {0} =
⋂

t≥0

U(t)D+;
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(2.3) cl
[

⋃

t≥0

U(t)D−

]

= H = cl
[

⋃

t≤0

U(t)D+

]

.

Note that D′′
+ ⊥ D′′

− but D′
+ and D′

− are not orthogonal to each other.
We call this the continuous(-time) Lax–Phillips (automorphic) scattering

system.

3. The discrete-time Lax–Phillips scattering system. Recall that
L is the infinitesimal generator of the one-parameter group {U(t)}t∈R of
unitary operators acting on H, that is, L = limt↓0(U(t) − I)/t. Then the
Cayley transform V = (I + L)(I − L)−1 is a unitary operator on H ([LP3,
Chap. II, §3]). Moreover it can be shown that the same subspace D− (or
D+) of the continuous Lax–Phillips scattering system (2.1)–(2.3) will be
incoming (or outgoing) for V ([LP3, Lemma 3.2]) in the following sense:

(3.1) V nD− ⊂ D−, ∀n ≤ 0, and V nD+ ⊂ D+, ∀n ≥ 0;

(3.2)
⋂

n≤0

V nD− = {0} =
⋂

n≥0

V nD+;

(3.3) cl
[

⋃

n≥0

V nD−

]

= H = cl
[

⋃

n≤0

V nD+

]

.

We call this quadruple (V,H,D−, D+) the discrete(-time) Lax–Phillips (au-

tomorphic) scattering system.
In the case of the automorphic wave equation on the fundamental domain

F = SL2(Z)\H of §1, dim(D+⊖V D+) = dim(D−⊖V −1D−) = ♯{cusps} = 1.
In this case we have the following discrete incoming and outgoing represen-
tations.

First let

ℓ2 = ℓ2(−∞,∞) =
{

u =
∞

∑

⊕

n=−∞

(un)n;
∞

∑

n=−∞

|un|2 <∞
}

.

Here (α)n is the vector in ℓ2 that has α ∈ C in the nth place and zeros
elsewhere. Thus {(1)n}n∈Z constitutes an orthonormal basis of ℓ2. The inner
product of ℓ2 is given by 〈u, v〉ℓ2 =

∑∞
n=−∞ unvn for u =

∑⊕∞
n=−∞(un)n

and v =
∑⊕∞

n=−∞(vn)n. There exist unitary discrete incoming and outgoing
representations ([LP3, Theorem 1.1, pp. 38, 40])

Ψ− : H → ℓ2(−∞,∞) and Ψ+ : H → ℓ2(−∞,∞)
such that

Ψ−(D−) = ℓ2(−∞,−1) =: ℓ2− and Ψ+(D+) = ℓ2(0,∞) =: ℓ2+.

Furthermore, in these representations V is transformed into the bilateral
shift σ on ℓ2, that is, Ψ−V =σΨ− and Ψ+V =σΨ+. Here for u =

∑⊕∞
n=−∞(un)n

∈ ℓ2, σu =
∑⊕∞

n=−∞(un−1)n.
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The (discrete) scattering operator Sd : ℓ2 → ℓ2 is defined to be Sd =
Ψ+Ψ

−1
− ; it is unitary.

To define the discrete scattering matrix, we introduce the Fourier trans-
form (for the discrete case) Fd : ℓ2 → L2(T) defined by

Fd[u](z) =
∞

∑

n=−∞

unz
n, z ∈ T = {z; |z| = 1},

for u =
∑⊕∞

n=−∞(un)n ∈ ℓ2. Here L2(T) is the Hilbert space of square inte-
grable functions on the unit circle T equipped with the inner product

〈f, g〉L2(T) =
1

2π

2π\
0

f(eiθ)g(eiθ) dθ =
1

2πi

L
T

z−1f(z)g(z)dz =
∞

∑

n=−∞

fngn

for f(z) =
∑∞

n=−∞ fnz
n, g(z) =

∑∞
n=−∞ gnz

n, z ∈ T. Note that {zn}∞n=−∞,

z ∈ T, is an orthonormal basis of L2(T). The operator Fd is unitary. Then
Sd = FdSdF−1

d : L2(T) → L2(T) is a unitary operator, which we call the
(discrete) scattering matrix.

Now set Sd(1)0 =
∑⊕∞

n=−∞(tn)n. Define a complex-valued function Sd(z)

by Sd(z) = Fd[Sd(1)0](z) =
∑∞

n=−∞ tnz
n.

We collect some known facts in the following lemma with proof.

Lemma 3.1.

(i) The discrete scattering operator Sd commutes with σn, that is, σnSd

= Sdσ
n, for all n ∈ Z.

(ii) For Fd[u] ∈ L2(T), u ∈ ℓ2, we have (SdFd[u])(z) = Sd(z) · Fd[u](z).
(iii) The following are equivalent : (a) D− ⊥ D+; (b) Sdℓ

2
− ⊂ ℓ2−; and

(c) tn = 0 for n ≥ 1, that is, Sd(z) =
∑0

n=−∞ tnz
n.

Proof. (i) Since σΨ+ = Ψ+V and σΨ− = Ψ−V , we get σSdσ
−1 = Sd. The

assertion follows by using this recursively.

(ii) Write u =
∑⊕∞

n=−∞(un)n. Since Fd[σ
nu](z) = znFd[u](z) for all n ∈

Z, we have, by using (i),

(SdFd[u])(z) = Fd[Sdu](z) = Fd

[

Sd

(

∞
∑

⊕

n=−∞

(un)n

)]

(z)

= Fd

[

Sd

(

∞
∑

⊕

n=−∞

unσ
n(1)0

)]

(z)

= Fd

[

∞
∑

n=−∞

unσ
nSd(1)0

]

(z) =
∞

∑

n=−∞

unz
nFd[Sd(1)0](z)

= Fd[Sd(1)0](z) · Fd[u](z) = Sd(z) · Fd[u](z).
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(iii) Since Ψ+ is unitary, if D− ⊥ D+ then

Sdℓ
2
− = SdΨ−(D−) = Ψ+Ψ

−1
− Ψ−(D−) = Ψ+(D−) ⊂ [Ψ+(D+)]⊥ = ℓ2−,

from which (a)⇒(b) follows. If Sdℓ
2
− ⊂ ℓ2− then Ψ+(D−) = Sdℓ

2
− ⊂ ℓ2− =

[Ψ+(D+)]⊥. Thus (b)⇒(a). (b)⇔(c) follows from (ii).

By Lemma 3.1(ii), we also write Sd(z) for the discrete scattering matrix
with a slight notation abuse.

Suppose that the discrete scattering matrix decomposes as Sd(z) =
Sd1(z)Sd0(z), where Sdj(z) (j = 0, 1) are unitary. Then the discrete scat-
tering operator has the corresponding decomposition Sd = Sd1Sd0 with
Sdj (j = 0, 1) unitary. Let us call Sd0 (or Sd0(z)) causal if Sd0ℓ

2
− ⊂ ℓ2−.

For causal Sd0, let Kd = ℓ2− ⊖ Sd0ℓ
2
− and K = Ψ−1

+ Kd.

If Sd0 is causal, then Sd0 is written as Sd0(z) =
∑0

n=−∞ snz
n by the

same argument of Lemma 3.1(iii) and its proof. Set βd =
∑⊕−1

n=−∞(sn)n and
δd = s0. Thus Sd0(1)0 = βd ⊕ (δd)0. Let Pℓ2

−

be the orthogonal projection of

ℓ2 onto ℓ2−.

Lemma 3.2. Let

Xd = cl span{(Pℓ2
−

σ)nβd; n ≥ 0} := cl
{

N
∑

n=0

αn(Pℓ2
−

σ)nβd; αn ∈ C, N <∞
}

.

Then for causal Sd0, we have

Kd = Pℓ2
−

Sd0ℓ
2
+ = Xd.

Proof. We have Kd ⊕Sd0ℓ
2
−⊕ ℓ2+ = ℓ2. So, since Sd0 is unitary, S−1

d0 Kd ⊕
ℓ2−⊕S−1

d0 ℓ
2
+ = S−1

d0 ℓ
2 = ℓ2, from which we see S−1

d0 Kd⊕S−1
d0 ℓ

2
+ = ℓ2+. Therefore

Kd ⊕ ℓ2+ = Sd0ℓ
2
+, which proves the first equality.

On the other hand,

Pℓ2
−

Sd0ℓ
2
+ =

{

Pℓ2
−

Sd0

∞
∑

⊕

n=0

(αn)n

} (

for

∞
∑

⊕

n=0

(αn)n ∈ ℓ2+

)

=
{

Pℓ2
−

Sd0

∞
∑

⊕

n=0

αnσ
n(1)0

}

=
{

Pℓ2
−

∞
∑

⊕

n=0

αnσ
nSd0(1)0

}

(Lemma 3.1(i))

=
{

∞
∑

n=0

αn(Pℓ2
−

σ)nPℓ2
−

Sd0(1)0

}

(since Pℓ2
−

σn = (Pℓ2
−

σ)nPℓ2
−

, ∀n ≥ 0)

⊂ cl span{(Pℓ2
−

σ)nβd; n ≥ 0} = Xd.
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We also see that span{(Pℓ2
−

σ)nβd; n ≥ 0} ⊂ Pℓ2
−

Sd0ℓ
2
+. Since Pℓ2

−

Sd0ℓ
2
+ =

ℓ2− ⊖ Sd0ℓ
2
− is closed, we have Xd ⊂ Pℓ2

−

Sd0ℓ
2
+ by taking closure. Thus Xd =

Pℓ2
−

Sd0ℓ
2
+. This proves the second equality.

Theorem 3.3. There exist a bounded operator Ad : K → K, bd, cd ∈ K
and dd ∈ C such that Sd0(z) = 〈(zI − Ad)

−1bd, cd〉K + dd for |z| > 1. Here

〈·, ·〉K is the restriction of the inner product on H to K. The function Sd0(z)
is holomorphic in |z| > 1.

Proof. Note that Xd = Kd is Pℓ2
−

σ-invariant by construction. Thus we

can define Ad : Kd → Kd by Adx = Pℓ2
−

σx. Set γd = PKd
(1)−1. Since βd =

∑⊕−1
n=−∞(sn)n ∈ Kd, we have, for n ≤ −1,

sn = 〈(Pℓ2
−

σ)−(n+1)βd, (1)−1〉ℓ2 = 〈PKd
(Pℓ2

−

σ)−(n+1)βd, (1)−1〉ℓ2

= 〈(Pℓ2
−

σ)−(n+1)βd, PKd
(1)−1〉ℓ2 = 〈A−(n+1)

d βd, γd〉Kd

(〈·, ·〉Kd
is the restriction of 〈·, ·〉ℓ2 to Kd). Since Ad is obviously a contrac-

tion, we see that

Sd(z) =
0

∑

n=−∞

snz
n =

−1
∑

n=−∞

〈znA
−(n+1)
d βd, γd〉Kd

+ δd

= 〈(zI − Ad)
−1βd, γd〉Kd

+ δd

for |z| > 1 and hence that Sd(z) is holomorphic in |z| > 1. Since Ψ+|K : K →
Kd is unitary, the weak resolvent form in the theorem can be obtained by
setting Ad = (Ψ+|K)−1AdΨ+|K , bd = (Ψ+|K)−1βd, cd = (Ψ+|K)−1γd and
dd = δd. This completes the proof.

4. The continuous-time Lax–Phillips scattering system. We now
recall the continuous incoming and outgoing translation representations for
continuous(-time) Lax–Phillips scattering systems. Let L2(R) be the Hilbert
space of square integrable complex-valued functions on R with the inner
product 〈f, g〉L2(R) =

T∞
−∞ f(τ)g(τ) dτ for f, g ∈ L2(R). For f ∈ L2(R), we

define the Fourier transform (for the continuous case) Fc : L2(R) → L2(iR)
by

Fc[f ](s) =
1√
2π

∞\
−∞

esτf(τ) dτ, s ∈ iR, i =
√
−1.

Here L2(iR) is the Hilbert space of square integrable complex-valued func-

tions of iR with the inner product 〈F,G〉L2(iR) = i−1
Ti∞
−i∞ F (s)G(s) ds =T∞

−∞ F (−iξ)G(−iξ) dξ for F,G ∈ L2(iR). The operator Fc is unitary with
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respect to these inner products and its inverse is given by

F−1
c [F ](τ) =

1√
2πi

i∞\
−i∞

e−τsF (s) ds =
1√
2π

∞\
−∞

eiτξF (−iξ) dξ.

Recall that L2(T) is the Hilbert space of square integrable functions on
T (see §3). Define the Cayley transform C : L2(iR) → L2(T) by

f(s) 7→ 2
√
π

z + 1
f

(

z − 1

z + 1

)

.

Then C is unitary. Its inverse is given by

f(z)
C−1

7−→ 1√
π(1 − s)

f

(

1 + s

1 − s

)

.

Now we define the continuous incoming spectral representation Φ− : H
→ L2(iR) for the continuous Lax–Phillips scattering system by Φ− =
C−1FdΨ−. The continuous outgoing spectral representation Φ+ : H→L2(iR)
is defined by Φ+ = C−1FdΨ+. The continuous incoming and outgoing trans-
lation representations T− : H → L2(R) and T+ : H → L2(R) are defined
respectively by T− = F−1

c Φ− and T+ = F−1
c Φ+.

We recall that H2 ⊂ L2(T) is the Hardy space (p = 2) with the orthonor-
mal basis {zn}∞n=0. Let H2

− be its orthogonal complement (the conjugate

Hardy space) in L2(T) with the orthonormal basis {zn}−1
n=−∞. We see that

H2
− ∋ zn C−1

7−→ (1 − s)|n|−1

√
π(1 + s)|n|

for n < 0,

H2 ∋ zn C−1

7−→ (1 + s)n

√
π(1 − s)n+1

for n ≥ 0.

Now define a unitary operator G : ℓ2 → L2(R) by G = F−1
c C−1Fd. Then

we see that G(ℓ2−) = L2(R−) and G(ℓ2+) = L2(R+). Since T− = GΨ− and
Ψ−(D−) = ℓ2−, we see that T−(D−) = L2(R−). Similarly, we have T+(D+) =
L2(R+).

For the incoming representations, we have the following commutative
diagram:

L2(F) ⊃ H = H
Ψ−−−−→ ℓ2

Fd−−−→ L2(T)
C−1

−−−→ L2(iR)
F−1

c−−−→ L2(R)




y

I+L

I−L





y
V





y

σ





y

z





y

1+s
1−s





y

1−dℓ/dτ

1+dℓ/dτ

L2(F) ⊃ H = H
Ψ−−−−→ ℓ2

Fd−−−→ L2(T)
C−1

−−−→ L2(iR)
F−1

c−−−→ L2(R)

Here all the maps are unitary. By replacing Ψ− by Ψ+, we get a commutative
diagram for the outgoing representations. From this we have similarities
between generators L ∼ s ∼ −dℓ/dτ . Here ∼ means that two operators are
similar, and dℓ/dτ is the left L2-derivative. Thus we also have similarities
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between one-parameter groups U(t) = etL ∼ ets ∼ T (t), where [T (t)f ](τ) =
f(τ − t), f ∈ L2(R), for each of the incoming and outgoing representations.
We therefore have T−U(t) = T (t)T− and T+U(t) = T (t)T+.

The (continuous) scattering operator Sc : L2(R) → L2(R) is defined to
be Sc = T+T −1

− . It is obviously unitary. Now the operator Sc : L2(iR) →
L2(iR) is defined to be Sc = FcScF−1

c . Since Fc is unitary with respect
to the above inner products, Sc is also unitary. From the definition we see
that Sc = C−1SdC. Thus we can check that its action is multiplication by
the complex-valued function Sc(s) = Sd

(

1+s
1−s

)

, s ∈ iR. We call Sc(s) the
(continuous) scattering matrix. Thus we also see that the action of Sc is
realized as a convolution.

Summarizing all the incoming and outgoing representations, we have the
following commutative diagram:

H
Ψ−−−−→ ℓ2

Fd−−−→ L2(T)
C−1

−−−→ L2(iR)
F−1

c−−−→ L2(R)

‖




y

Sd





y

Sd





y
Sc





y
Sc

H
Ψ+−−−→ ℓ2

Fd−−−→ L2(T)
C−1

−−−→ L2(iR)
F−1

c−−−→ L2(R)

Here all the maps are unitary.

Suppose that the scattering matrix decomposes as Sc(s) = Sc1(s)Sc0(s),
where Scj(s) (j = 0, 1) are unitary. Then equivalently Sc = Sc1Sc0 with
Scj (j = 0, 1) unitary. Let us say Sc0 is causal if Sc0L

2(R−) ⊂ L2(R−). This
is equivalent to Sd0ℓ

2
− ⊂ ℓ2− for Sd0 = G−1Sc0G.

For the above Sc0, let Kc = L2(R−) ⊖ Sc0L
2(R−). Note that T −1

+ Kc =

K (= Ψ−1
+ Kd), defined in §3.

Let PK be the orthogonal projection of H onto K. Define the Lax–

Phillips semigroup {Z(t)}t≥0 by Z(t) = PKU(t)|K for t ≥ 0, and let Ac

be its infinitesimal generator; that is, Ack = limt↓0 t
−1(PKU(t) − I)k with

dom(Ac) ⊂ K consisting of those k ∈ K for which the above limit exists.
Note that Ac = PKL|K and dom(Ac) = dom(L|K) = dom(L) ∩ K. Since
Z(t) is strongly continuous (because U(t) is), dom(Ac) is dense in K (see
e.g. [LP3, App. 1]).

Note that if Sc1 = 1 and Sc0 = Sc itself is causal then D− ⊥ D+ and
K = H ⊖ (D− ⊕D+) by Lemma 3.1(iii), and {Z(t)}t≥0 coincides with the
original Lax–Phillips semigroup.

Now we go back to the continuous Lax–Phillips automorphic scattering
system for SL2(Z) described in §2. If D± = D′′

±, then the scattering matrix
is

Sc(s) = −
(

s− 1/2

s+ 1/2

)2 Γ (1/2)Γ (s)ζ(2s)

Γ (s+ 1/2)ζ(2s+ 1)
= −s− 1/2

s+ 1/2

ξ(2s)

ξ(−2s)
,

where ξ(s) = ξ(1 − s) = 1
2s(s − 1)π−s/2Γ (s/2)ζ(s). In [LP1] it is denoted
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by S ′′(z) = Sc(iz). ξ(s) is an entire function, and its zeros are non-trivial
zeros of the Riemann zeta-function ζ(s). So ξ(2s)/ξ(−2s) has non-real poles
in −1/2 < ℜs < 0. The Riemann hypothesis is equivalent to saying that all
the poles (or zeros) of ξ(2s)/ξ(−2s) lie on ℜs = −1/4 (or 1/4). The case of
D± = D′

± will be treated in §5.

It is easy to see that K ′′ in [LP1] is given by T −1
+ (L2(R−) ⊖ ScL

2(R−))
since Sc itself is causal. The corresponding Z(t) and Ac are denoted by
Z ′′(t) and B′′ respectively in [LP1]. It has been shown in [LP1, Th. 6.17]
that (sI −B′′)−1 is meromorphic in the whole complex plane C.

Throughout the rest of this paper, let

Sc0 = F−1
c

ξ(2s)

ξ(−2s)
Fc.

For this Sc0, let Kc = L2(R−) ⊖ Sc0L
2(R−) and K = T −1

+ Kc.

For Ad : K → K obtained in Theorem 3.3, we have the following lemma.

Lemma 4.1.

(i) (zI −Ad)
−1 is meromorphic in C ∪ {∞} \ {−1}.

(ii) (zI − Ad)
−1 has a pole of order m(z0) at z0 if and only if Sd0(z)

has a pole of order m(z0) at z0.
(iii) σ(Ad) \ {−1} consists only of the poles of the resolvent (thus the

eigenvalues) of Ad. The closure of the set of finite linear combina-

tions of generalized eigenvectors (i.e., the vectors from the subspaces

Ker (z0I −Ad)
m(z0) with aforementioned poles z0) is K.

Proof. Recall the Hadamard product formula (e.g. [Pat, p. 34])

ξ(s) =
1

2

∞
∏

n=0

(

1 − s

̺n

)(

1 − s

̺n

)

,

the product being absolutely convergent for all s ∈ C. Here ̺n, 0 < ℜ̺n < 1,
ℑ̺n > 0, n = 0, 1, 2, . . . , are the non-trivial zeros counted with multiplicities
of the Riemann zeta-function in {s; ℑs ≥ 0}. Hence

Sc0(s) =
ξ(2s)

ξ(−2s)
=

∞
∏

n=0

(1 − 2s/̺n)(1 − 2s/̺n)

(1 + 2s/̺n)(1 + 2s/̺n)
.

However, it is easy to check that if λ = ̺n/2 then

(1 − s/λ)(1 − s/λ)

(1 + s/λ)(1 + s/λ)
=

|α|
α

α− z

1 − αz
· |α|
α

α− z

1 − αz
,

where

s =
z−1 − 1

z−1 + 1
=

1 − z

1 + z
, α =

1 − λ

1 + λ
∈ {z ∈ C; |z| < 1}.
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Since ξ(s) = ξ(s), Sc0(s)Sc0(s) = 1 for all s ∈ iR. Thus Sd0(z
−1) ∈ H∞

and is inner. Since the decomposition of an inner function into Blaschke and
singular parts is unique,

Sd0(z
−1) = Sc0

(

z−1 − 1

z−1 + 1

)

= Sc0

(

1 − z

1 + z

)

consists only of the Blaschke product.

Kd = ℓ2− ⊖ Sd0ℓ
2
− is isometrically isomorphic to Md := H2 ⊖Sd0(z

−1)H2

via u 7→ z−1Fd[u](z
−1). It is known that Md ⊂ L2(T) is PH2z−1-invariant

(e.g.Radjavi and Rosenthal [RaRo], Nikol’skĭı [N]). Let αd := PH2z−1|Md
=

PMd
z−1|Md

. Then we have Ad ∼ Ad = PKd
σ|Kd

∼ αd. (Ad is defined in the
proof of Theorem 3.3.)

It is known that z0 ∈ σ(αd) if and only if z0 is a zero of order m0

of the Blaschke product Sd0(z
−1), and in that case dimKer(z0 − αd)

m0 =
dim span{(1− z0z)

−ν ; 1 ≤ ν ≤ m0} = m0, which is the algebraic multiplic-
ity and the Riesz index (e.g.Theorem 3.14 of [RaRo] and its proof). The
operator αd is bounded and σ(αd) accumulates at −1. So it is easy to see
that (z − αd)

−1 is meromorphic in C∪ {∞} \ {−1}, and that z0 is a pole of
order m0 of (z −αd)

−1 if and only if z0 is a pole of order m0 of Sd0(z). It is
known that the generalized eigenvectors of αd span Md densely if a singular
part does not exist (see Nikol’skĭı [N, p. 83]). Thus the proof is complete.

From the above proof, we see that the dimension of K ′′ in [LP1] is 1
greater than that of our K. The main result of this section is the following
theorem.

Theorem 4.2.

(i) (sI −Ac)
−1 is meromorphic in the whole complex plane C.

(ii) (sI−Ac)
−1 has a pole of order m(s0) at s0 if and only if Sc0(s) has

a pole of order m(s0) at s0.
(iii) The closure of the set of finite linear combinations of generalized

eigenvectors (i.e., the vectors from Ker (s0I − Ac)
m(s0) with afore-

mentioned poles s0) is K.

From (i) of the above theorem, we also see that (sI−B′′)−1 is meromor-
phic in C since B′′ acts on a space of dimension only 1 greater than that
of K. To prove this theorem, we need (i) of the following lemma. (ii) will be
used in §6.

Lemma 4.3.

(i) (sI − Ac)
−1 has a pole of order m at s0 = (z0 − 1)/(z0 + 1) 6= ∞ if

and only if (zI −Ad)
−1 has a pole of order m at z0 6= −1.

(ii) σc(Ad) = {−1}, that is, −1 is in the continuous spectrum of Ad.
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Proof. Recall that V = (I + L)(I − L)−1. From this V (I − L) = I + L

on dom(L), and so

PKV |K − PKV L|K = IK + PKL|K on dom(L|K).

Let L1 be the infinitesimal generator of T (t). Recall L1 = −dℓ/dτ . Let
V = (I+L1)(I−L1)

−1, which is a unitary operator on L2(R) since L1 ∼ L.
First note that VL2(R+) ⊂ L2(R+) [this follows from V ∼ σ, L2(R+)

∼→ ℓ2+
(
∼→ denotes isometric isomorphism) and σℓ2+ ⊂ ℓ2+] and Kc ⊂ L2(R−). Hence

we have

PKcVL1k = PKcVPL2(R−)L1k + PKcVPL2(R+)L1k = PKcVPL2(R−)L1k

for k ∈ dom(L1).
Note that Kc = GKd, Kd = ℓ2− ⊖ Sd0ℓ

2
− for Sd0 = G−1Sc0G and G =

F−1
c C−1Fd : ℓ2 → L2(R). However, Kd = Pℓ2

−

Sd0ℓ
2
+ (Lemma 3.2). If y =

Pℓ2
−

x for some x ∈ ℓ2 then Gy=PGℓ2
−

Gx=PL2(R−)Gx since G is unitary. Thus

GPℓ2
−

Sd0ℓ
2
+ = PGℓ2

−

G(G−1Sc0G)ℓ2+ = PL2(R−)Sc0L
2(R+).

Hence we have Kc = PL2(R−)Sc0L
2(R+).

So any f ∈ Kc can be written as f = PL2(R−)Sc0g for some g ∈ L2(R+).

Since T (t) and Sc0 carry over to multiplication by ets and Sc0(s) respectively
in the Fourier transforms, they commute: T (t)Sc0g = Sc0T (t)g. So, since
T (t)g ∈ L2(R+) for t ≥ 0, we have

PL2(R−)T (t)PL2(R−)Sc0g = PL2(R−)T (t)Sc0g = PL2(R−)Sc0T (t)g ∈ Kc.

Hence Kc is PL2(R−)T (t)-invariant for t ≥ 0.
Therefore, since Kc is closed, for k ∈ dom(L1|Kc) we have

PL2(R−)L1k = lim
t↓0

PL2(R−)
1

t
(T (t)k − k) ∈ Kc.

Therefore

PKcVPKcL1k = PKcVPKcPL2(R−)L1k + PKcVPKcPL2(R+)L1k

= PKcVPKcPL2(R−)L1k = PKcVPL2(R−)L1k = PKcVL1k.

Going back to L, this means that PKV Lk=PKV PKLk for k∈dom(L|K).
Therefore we have PKV L|K = PKV |KPKL|K . Since V ∼ σ and K

∼→ Kd,
we have Ad = PKV |K . Consequently, Ad−AdAc = I+Ac on dom(Ac) ⊂ K.

Since Z(t) is a contraction for all t ≥ 0, the spectrum σ(Ac) of the
generator Ac is contained in the left half-plane (see e.g. [LP3, App. 1]). Thus
1 /∈ σ(Ac). Since for z = (1 + s)/(1 − s),

(zI −Ad)
−1 =

1 − s

2
(I −Ac)(sI −Ac)

−1 =
1

z + 1
(I −Ac)(sI −Ac)

−1,

1 − s

2

1

(s− s0)m
= 2−m(z0 + 1)m [(z − z0) + (z0 + 1)]m−1

(z − z0)m
,
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where z0 = (1 + s0)/(1 − s0), and I − Ac has a bounded inverse 1
2(I +

Ad) on K, it follows that (zI − Ad)
−1 has a pole of order m at z0 =

(1 + s0)/(1 − s0) 6= ∞,−1 if and only if (sI − Ac)
−1 has a pole of order

m at s0 6= 1,∞. Note that z = ∞ (resp. s = 1) is not a singular point
of the resolvent of Ad (resp. Ac). This completes the proof of (i). Since
I +Ad = 2(I −Ac)

−1, we see that I +Ad is one-to-one, cl[Im(I +Ad)] = K
but Im(I +Ad) 6= K. Thus −1 is in the continuous spectrum of Ad.

Proof of Theorem 4.2. (i) follows from Lemma 4.1(i) and Lemma 4.3(i)
and its proof. Given that (zI − Ad)

−1 is meromorphic in C ∪ {∞} \ {−1},
it can be seen that the equality Sd0(z) = 〈(zI − Ad)

−1bd, cd〉K + dd for
|z| > 1 (Theorem 3.3) extends uniquely to C∪{∞}\{−1} as a meromorphic
function. It is clear that Sc0(s) has a pole of order m at s0 ∈ C if and only
if Sd0(z) has a pole of order m at z0 = (1 + s0)/(1 − s0). Thus (ii) follows
from Lemma 4.1(ii) and Lemma 4.3(i).

By Theorem 4.2(i), s0 ∈ σ(Ac) if and only if s0 is a pole of (sI −Ac)
−1.

So each s0 ∈ σ(Ac) is isolated. Since Ac ∼ −PKcd
ℓ/dτ |Kc , it is easy to

see that Ac is a closed operator. So we can use the theorem of Gohberg,
Goldberg and Kaashoek [GGK, Th. XV.2.1] (see also [U3, Th. 3.1]) to get
Ac = Diag(Ac(s0), Ac(τ)), where Ac(s0) (bounded) is the Riesz projection
(2πi)−1

T
Γ (sI − Ac)

−1 ds, where the path of integration Γ is a small circle
about s0 containing no other spectral point of Ac, and σ(Ac(τ)) = τ :=
C \ {s0}. Let Ad(z0) = [I +Ac(s0)][I −Ac(s0)]

−1. Note that

z0I −Ad =
2

1 − s0
(s0I −Ac)(I −Ac)

−1, 1 − s0 6= 0.

Since [s0I − Ac(s0)][I − Ac(s0)]
−1 = [I − Ac(s0)]

−1[s0I − Ac(s0)], we see
that [z0I − Ad(z0)]

mx = 0 if and only if [s0I −Ac(s0)]
mx = 0, m ≥ 0. This

together with Lemma 4.1(iii) proves (iii).

The operator Ac = PKL|K has the following properties, where IK stands
for the identity operator on K.

Theorem 4.4.

(i) The resolvent of −2Ac is meromorphic in C. So the spectrum of

−2Ac consists of eigenvalues of finite algebraic multiplicities.

(ii) s0 is a non-trivial zero of multiplicity m0 of ζ(s) if and only if s0 is

an eigenvalue of algebraic multiplicity m0 of −2Ac. The set of the

generalized eigenvectors corresponding to each eigenvalue is a basis

of K.

(iii) The spectrum of 2Ac+
1
2IK consists of eigenvalues on the imaginary

axis if and only if the Riemann hypothesis is true.

(iv) The algebraic multiplicity of any eigenvalue of 2Ac + 1
2IK is one if

and only if all the non-trivial zeros of ζ(s) are simple.
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Proof. Sc0(s) has non-real poles in {s; −1/2 < ℜs < 0} which corre-
spond one-to-one, counted with multiplicities, to the non-trivial zeros of ζ(s).
The critical line ℜs = 1/2 of ζ(s) corresponds to the line ℜs = −1/4. Hence
assertions (i)–(iv) are immediate consequences of Theorem 4.2(i)–(iii).

5. An operator model for Ac on L2(R−). In [LP2] Lax and Phillips
obtained explicit formulas for translation representations for the continuous
scattering system in §2 with H = H ′

c and D± = D′
±. In this section, us-

ing their representations, we give expressions as explicit as possible for Kc

defined in §4.
Let u(x, y, t) be the solution to the non-Euclidean wave equation with

automorphic initial data f = {f1, f2}:
utt = Lu, u(0) = f1, ut(0) = f2.

Here f = {f1, f2} is defined on H with finite G-norm. The solution u(x, y, t)
is periodic in x with period 1 for all y > 0. Thus the zero Fourier coefficient

u(0)(y, t) =
T1/2
−1/2 u(x, y, t) dx, 0 < y <∞, satisfies the equation

u
(0)
tt = y2u(0)

yy +
1

4
u(0) for all y > 0.

The change of variables τ = log y, v = v(τ, t) = u(0)/
√
y transforms the

non-Euclidean wave equation into the classical wave equation vtt = vττ .
The initial data goes over into

v(τ, 0) = e−τ/2f
(0)
1 (eτ ) and vt(τ, 0) = e−τ/2f

(0)
2 (eτ ),

where

f
(0)
i (y) =

1/2\
−1/2

fi(x, y) dx, 0 < y <∞, i = 1, 2.

Since vτ + vt (resp. vτ − vt) is a function of τ + t (resp. τ − t), it can be
shown that T− : H ′

c → L2(R) defined by

T−f =
1√
2

[vτ (−τ, 0) + vt(−τ, 0)] =
1√
2

[−∂τ (v(−τ, 0)) + vt(−τ, 0)]

= − 1√
2

[∂τ (e
τ/2f

(0)
1 (e−τ )) − eτ/2f

(0)
2 (e−τ )], −∞ < τ <∞,

for the initial data f = {f1, f2} is an incoming translation representation.
Here vτ (−τ, 0) = (∂τv)(−τ, 0) = (∂v/∂τ)(−τ, 0). Similarly, for f = {f1, f2},

T+f =
1√
2

[vτ (τ, 0) − vt(τ, 0)] =
1√
2

[∂τ (e
−τ/2f

(0)
1 (eτ )) − e−τ/2f

(0)
2 (eτ )]

for −∞ < τ < ∞ defines an outgoing translation representation T+ : H ′
c →

L2(R).
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Given k− ∈ L2(R), h = T−1
− k− ∈ H ′

c is obtained as follows: Set

g0(w) = {y1/2φ(y), y3/2φ′(y)}, y = ℑw,
where

φ(y) =
1√
2

log y\
−∞

k−(−σ) dσ =
1√
2

∞\
− log y

k−(τ) dτ.

Then define

g(w) =
∑

Γ∞\Γ

g0(γw).

Lastly project g onto H ′
E : h = PH′

E
g. Then h ∈ H ′

c. Similarly, given k+ in

L2(R), h = T−1
+ k+ ∈ H ′

c is obtained as follows: Set

g0(w) = {y1/2φ(y),−y3/2φ′(y)}, y = ℑw,
where

φ(y) =
1√
2

log y\
−∞

k+(τ) dτ.

Then define

g(w) =
∑

Γ∞\Γ

g0(γw).

Lastly project g onto H ′
E : h = PH′

E
g. Then h ∈ H ′

c.

Note that in the last step of inversion of T± into an element h ∈ H ′
c,

it suffices to project g onto H ′
E = H ′

G, not onto H ′
c. See p. 277 of [LP2].

Thanks to this, we do not need any knowledge about the cusp forms ψj and
their eigenvalues.

For the above two translation representations T− : H ′
c → L2(R) and

T+ : H ′
c → L2(R), one can define the scattering operator Sc : L2(R) → L2(R)

by Sc = T+T
−1
− . The corresponding scattering matrix Sc(s) (denoted by

S ′(z) = Sc(s), s = iz in [LP3]) is given by

Sc(s) = − Γ (1/2)Γ (s)ζ(2s)

Γ (s+ 1/2)ζ(2s+ 1)
= Sc0(s)Sc1(s),

Sc0(s) =
ξ(2s)

ξ(−2s)
, Sc1(s) =

1/2 + s

1/2 − s
.

Note Sc1(s) is different from that in §4.

Take en = en(τ) ∈ L2(R+), n ≥ 0, that span L2(R+) densely; e.g.,
we can choose en = en(τ) = F−1

c C−1Fd[(1)n] = G[(1)n] = F−1
c C−1[zn] ∈

L2(R+). Hence by Lemma 3.2, κn = κn(τ) = PL2(R−)Sc0en, n ≥ 0, span Kc.

Note that κn = PL2(R−)Sccn = PL2(R−)T+T
−1
− cn = PL2(R−)T+hn, where we
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set cn = S−1
c1 en and hn = T−1

− cn. Since

en(τ) = F−1
c C−1[zn] = F−1

c

[

(1 + s)n

√
π(1 − s)n+1

]

for n ≥ 0,

en is a finite linear combination of

F−1
c

[

k!

(1 − s)k+1

]

=

{

τke−τ (τ > 0),

0 (τ ≤ 0),

0 ≤ k ≤ n. From en, cn is easy to calculate: cn(τ) = F−1
c [Sc1(s)

−1Fc[en]].
Note that

F−1
c [Sc1(s)

−1] = F−1
c

[

1

s+ 1/2
− 1

]

=
√

2π(w(τ) − δ(τ)),

where δ(τ) is the Dirac function and

w(τ) =

{

0 (τ > 0),

eτ/2 (τ ≤ 0).

Using this as an integral kernel, we have

cn(τ) =
√

2

0\
−∞

en(τ − σ)w(σ) dσ −
√

2 en(τ).

To obtain hn = T−1
− cn ∈ H ′

c, we start with a solution of the wave equa-

tion given by u0,n(w, t) = y1/2φn(yet) for

φn(y) =
1√
2

∞\
− log y

cn(τ) dτ.

To make this solution automorphic, we sum over the right cosets Γ∞\Γ as
in [LP2, p. 186]:

un(w, t) = u0,n(w, t)

+
∑

(c,d)=1
0≤d<c

∞
∑

m=−∞

[

y

{c(x+m) + d}2 + c2y2

]1/2

φn

(

yet

{c(x+m) + d}2 + c2y2

)

.

Hence we have

gn = gn(w) = {gn,1(w), gn,2(w)} = {un(w, 0), (∂tun)(w, 0)}
and

hn = PH′

E
gn = gn − E(gn, p)

E(p, p)
p− E(gn, q)

E(q, q)
q.

We recall that p = {1, 0}, q = {0, 1} span P and E(p, q) = 0. Here

E(gn, p) = −1

4
〈gn,1, 1〉L2(F), E(p, p) = − π

12
,



118 Y. Uetake

E(gn, q) = 〈gn,2, 1〉L2(F), E(q, q) =
π

3
.

Pulling back κn = PL2(R−)T+hn = PKcT+hn ∈ Kc to K ⊂ H ′
c, we see

that PKhn (n ≥ 0) span K.

To get g
(0)
n = g

(0)
n (y) = {g(0)

n,1(y), g
(0)
n,2(y)}, note that u

(0)
n (y, t) =T1/2

−1/2 un(x, y, t) dx is obtained as in [LP2, p. 187]:

u(0)
n (y, t)=y1/2φn(yet)+ y1/2

∞
∑

m=1

E(m)

m

∞\
−∞

1

(r2 + 1)1/2
φn

(

et

ym2(r2 + 1)

)

dr.

Here E is the Euler function, E(m) =
∑

(c,m)=1 1. Thus

g
(0)
n,1(y) = y1/2φn(y) + y1/2

∞
∑

m=1

E(m)

m

∞\
−∞

1

(r2 + 1)1/2
φn

(

1

ym2(r2 + 1)

)

dr

g
(0)
n,2(y) = y3/2φn(y) + y−1/2

∞
∑

m=1

E(m)

m3

∞\
−∞

1

(r2 + 1)3/2
φ′n

(

1

ym2(r2 + 1)

)

dr.

Hence

h(0)
n = g(0)

n − E(gn, p)

E(p, p)
p(0) − E(gn, q)

E(q, q)
q(0).

Note that p = p(0), q = q(0). Now applying the outgoing representation,

using this h
(0)
n , we obtain κn = PL2(R−)T+hn. This construction is summa-

rized in the following theorem. We recall that dℓ/dτ is the left L2-derivative
(see §4).

Theorem 5.1. Using the aforementioned h
(0)
n , Kc ⊂ L2(R−) can be ex-

pressed as the closure of the span of

κn(τ)=
1√
2

[

d

dτ
(e−τ/2h

(0)
n,1(e

τ )) − e−τ/2h
(0)
n,2(e

τ )

]

(−∞ < τ ≤ 0), n ≥ 0.

The operator −dℓ/dτ restricted to Kc satisfies all the spectral properties in

Theorems 4.2 and 4.4, which Ac satisfies.

Proof. Since Kc is PL2(R−)T (t)-invariant for t ≥ 0, as we saw in the proof
of Lemma 4.3, we infer that

PKc

(

− dℓ

dτ

)∣

∣

∣

∣

Kc

= PL2(R−)

(

− dℓ

dτ

)∣

∣

∣

∣

Kc

= − dℓ

dτ

∣

∣

∣

∣

Kc

.

Since this operator is similar to Ac on K, the remaining assertions follow
from Theorems 4.2 and 4.4.

6. Cyclic conditions for weak resolvent decomposition. First we
recall the notion of a cyclic vector for a bounded operator.
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Definition 6.1. Let X be a separable complex Hilbert space. Let A : X
→ X be a bounded operator on X and b ∈ X. We say that b is cyclic for A
if X = cl span{Anb; n ≥ 0}.
Lemma 6.2. For Ad : K → K and bd, cd ∈ K as in Theorem 3.3, the

following properties hold;

(i) bd is cyclic for Ad.

(ii) cd is cyclic for A∗
d. Here A∗

d denotes the adjoint operator of Ad.

Proof. (i) βd is obviously cyclic for Ad (cf. the proof of Theorem 3.3) by
definition. (See Lemma 3.2.) The assertion readily follows from this.

(ii) It suffices to show that γd is cyclic for A∗
d. Suppose that there exists

a ξ =
∑⊕−1

n=−∞(ξn)n ∈ Kd ⊂ ℓ2− such that 〈ξ,A∗k
d γd〉Kd

= 0 for all k ≥ 0.
Then, since

〈ξ,A∗k
d γd〉Kd

= 〈Ak
dξ, γd〉Kd

= 〈Ak
dξ, PKd

(1)−1〉ℓ2
= 〈PKd

Ak
dξ, (1)−1〉ℓ2 = ξ−(k+1),

we have ξ = 0. This completes the proof.

Recall that V = (I + L1)(I − L1)
−1 is a unitary operator on L2(R) for

L1 = −dℓ/dτ . Note that

Ad = Pℓ2
−

σ|Kd
= PKd

σ|Kd
∼ PL2(R−)V|Kc = PKcV|Kc =: Fcd.

Let βc := G(βd) = G[Pℓ2
−

Sd0(1)0] = PL2(R−)Sc0e0, where e0 = G[(1)0]. Then

since (Pℓ2
−

σ)nPℓ2
−

= Pℓ2
−

σn, σnSd = Sdσ
n and σn(1)0 = (1)n for n ≥ 0, we

have

Fn
cdβc = (PL2(R−)V)nPL2(R−)Sc0e0 = PL2(R−)VnSc0e0

= PL2(R−)Sc0Vne0 = PL2(R−)Sc0en = PL2(R−)Sccn = κn.

Set γc = G[PKd
(1)−1] = PKce−1 and δc = δd (= dd). (See the proof of

Theorem 3.3.) Here

e−1 = G[(1)−1] = F−1
c C−1[z−1] = F−1

c

[

1√
π(1 + s)

]

=

{

0 (τ > 0),

eτ/
√
π (τ ≤ 0).

Then we see from the proof of Theorem 3.3 that Sd0(z) = 〈(zI−Fcd)
−1βc, γc〉

+ δc. Let c : Kc → C be defined by cx = 〈x, γc〉L2(R), and until the end of
this paper let

A = Fcd, b = βc, d = δc.

Then Sd0(z) = c(zI −A)−1b+ d.
Now let Sd2(z) = 1/(z − z0). Then it is easy to check that Sd2(z)Sd0(z)

is expressed as a weak resolvent of an augmented operator Aaug of A as
follows:

Sd2(z)Sd0(z) = caug(zI −Aaug)
−1baug,
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where

Aaug =

[

A 0

c z0

]

, baug =

[

b

d

]

, caug = [0 1],

Xaug = Kc ⊕ C, Aaug : Xaug → Xaug, baug ∈ Xaug, caug : Xaug → C.

This construction has a dynamical system theoretic interpretation, namely
a cascade connection of two dynamical systems (see e.g. [U3]).

Note that the zeros of the Riemann zeta-function on the critical line
ℜs = 1/2 correspond to the zeros of the discrete scattering matrix

Sd0(z) =
ξ(2s)

ξ(−2s)

∣

∣

∣

∣

s= z−1

z+1

on Cz =

{

z; z =
1 + s

1 − s
, ℜs = 1/4

}

,

and that the zeros of ζ(s) in the critical strip 0 < ℜs < 1 correspond to the
zeros of Sd0(z) in

Sz = {z; z = (1 + s)/(1 − s), 0 < ℜs < 1/2}.

Thus the Riemann hypothesis is true if and only if Sd0(z) has no zero in
Sz \ Cz.

We can restate the Riemann hypothesis in terms of cyclicity as follows.

Theorem 6.3.

(i) For a given parameter z0 ∈ Sz \ Cz, construct (Aaug, baug) as above.

Then z0 is not a zero of Sd0(z) if and only if baug is cyclic for Aaug.

(ii) The Riemann hypothesis is true if and only if for each z0 ∈ Sz \Cz,
baug is cyclic for Aaug.

Proof. First note that σ(Aaug) = σp(Aaug)∪{−1} and σp(Aaug) = {z0}∪
σp(A). Here σp(Aaug) consists of the poles of (zI − Aaug)

−1, and −1 is in
the continuous spectrum of Aaug arising from the continuous spectrum of
A ∼ Ad (see Lemma 4.3(ii)).

Note that for a fixed z0 ∈ Sz \Cz, zero-pole cancellation between Sd0(z)
and Sd2(z) may occur only at z0 by construction. So it is easily seen that z0
is not a zero of Sd0(z) if and only if zero-pole cancellation does not occur at
any spectral point z1 in σp(A) ∪ {z0}.

Now it is known [U3, Theorem 4.8, Lemmas 3.3 and 3.7] that such zero-
pole cancellation at z1 does not occur if and only if baug is cyclic for Aaug and

c∗aug =
[0

1

]

is cyclic for A∗
aug, when restricted to the generalized eigenspace

corresponding to the spectrum point z1. In [U3] the notions of local approxi-
mate controllability and observability at z1 are used. Since our operators are
all bounded, all subtle conditions to apply Theorem 4.8 in [U3] are satisfied.
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Since γc (= c∗) is cyclic for A∗ by Lemma 6.2, and

[

A∗ c∗

0 z0

]0[ 0

1

]

=

[

0

1

]

,

[

A∗ c∗

0 z0

]k+1[ 0

1

]

=

[

A∗kγc + z0A
∗(k−1)γc + · · · + zk

0γc

zk+1
0

]

, k ≥ 0,

we see that caug is also cyclic for A∗
aug independently of z0.

Suppose z0 is not a zero of Sd0(z). Then zero-pole cancellation does not
occur at any spectral point z1 ∈ σp(Aaug). If baug fails to be cyclic for Aaug,
then one can decompose (Aaug, baug) into

([

F11 F12

0 F22

]

,

[

b1

0

])

,

where b1 is cyclic for F11. Then σ(F22) ∩ σp(Aaug) = ∅ by Theorem 4.8 in
[U3]. Thus σ(F22) = {−1}. (Note that −1 /∈ Sz \ Cz.) It is easily seen that
for k ≥ 0,

Ak
augbaug =

[

A 0

c z0

]k[ b

d

]

=

[

Akb

cAk−1b+ z0cA
k−2b+ · · · + zk−1

0 cb+ zk
0d

]

.

Hence, as b is cyclic for A by Lemma 6.2, the dimension of the space on
which F22 acts is one. We thus see that F22 = −1 and −1 ∈ σp(Aaug), which
is a contradiction. Therefore baug is cyclic for Aaug.

The converse can be shown similarly, again using Theorem 4.8 in [U3].
This completes the proof of (i). Assertion (ii) readily follows from (i).

Now, cAnb, n ≥ 0, in Ak
augbaug can be expressed as follows: Recall

Fn
cdβc = Anb = κn, n ≥ 0. Hence, since κn ∈ Kc,

cAnb = 〈κn, γc〉L2(R) = 〈κn, PKce−1〉L2(R) = 〈κn, e−1〉L2(R)

(= 〈T−1
+ κn, T

−1
+ e−1〉L2(F) = 〈PKhn, T

−1
+ e−1〉L2(F)).

The constant d is calculated from

d = δc = 〈Sd0(1)0, (1)0〉ℓ2 = 〈Sc0e0, e0〉L2(R) = 〈T+h0, e0〉L2(R)

(= 〈h0, T
−1
+ e0〉L2(F)),

where T+h0 is given by the right-hand side of the expression (n = 0) with
τ ≥ 0 in Theorem 5.1, and e0 = F−1

c [1/(
√
π(1 − s))] = e−τ/

√
π is supported

on R+.
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