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A decomposition of complex Monge-Ampére measures

by YANG XING (Umeé)

Abstract. We prove a decomposition theorem for complex Monge—Ampére measures
of plurisubharmonic functions in connection with their pluripolar sets.

1. Introduction. The purpose of this paper is to give a decomposi-
tion of complex Monge—Ampére measures associated to pluripolar sets of
plurisubharmonic functions in the class F({2) defined in [C1|. We denote by
PSH(£2) the class of plurisubharmonic functions in a hyperconvex domain
2 and by PSH™(2) the subclass of negative functions. Recall that a set
{2 C C" is said to be a hyperconver domain if it is open, bounded, connected
and there exists ¢ € PSH™(£2) such that {z € 2; o(2) < —¢} CC 2 for
any ¢ > 0. The class F(§2) consists of all plurisubharmonic functions  in 2
such that there exists a sequence u; € & (f2) with u; \, v as j — oo and
sup; §,(ddu;)" < oo, where £(§2) is the class of bounded plurisubharmonic
functions v with lim, .. v(z) = 0 for all { € 942 and {,(ddv)" < co. We
also need the subclass F(§2) of functions from F({2) whose Monge-Ampére
measures put no mass on pluripolar subsets of (2. It is known that Monge—
Ampére measures (ddu)"™ for u € F(S2) are well-defined finite measures in 2
(see [C1] for details).

Our main result is the following: Restriction of the complex Monge—
Ampére measure of a function u € F(§2) onto its pluripolar set is still a
Monge-Ampére measure of some function in F({2). As an application we
find that every Monge—Ampére measure of a function in F({2) can be writ-
ten as a sum of two Monge—-Ampére measures, one of which has zero mass
on any pluripolar set and the other is carried by the pluripolar set of the
corresponding function.

It is a great pleasure for me to thank Urban Cegrell for many fruitful
comiments.
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2. Theorems and proofs. We need an inequality.

LEMMA (|X2]|). Let u,v € PSH(§2) N L*>°(£2) be such that
. B >0
légé%f(u(z) v(z)) >0

Then for any —1 < w € PSH™ (£2) we have
()2 | (v —w)"ddw)" + | (—w)(ddv)” < | (~w)(ddw)".

u<v u<v u<v
Recall [X2]| that a sequence {u;} of functions in PSH({2) is said to be
convergent in Cy, to a function u on a subset E of {2 if for any § > 0 we have
Cn{z € E; |uj(z) —u(z)| > 6} — 0 as j — oo, where C), denotes the inner
capacity introduced by Bedford and Taylor in [BT].
We denote by x4 the characteristic function of the set A.

THEOREM 1. Let v € F(§2). Then there exists u € F(§2) with u > v in
{2 such that

(dd“u)™ = X {y=—oc} (dd“v)"™  in (2.
Furthermore, let g be the unique function in F(£2) with (ddg)" =
X{v>—oo}(ddv)™. Then v > u+ g in £2.

Proof. By Theorem 2.1 in [C1] we can take a sequence v; € &y(f2)
such that v; \, v as j — oo. By [C2], [K] there exist u;“ € &(£2) such
that (ddcué?)” = —max(v/k, —1)(ddv;)". From the comparison theorem
[BT] it follows that u?“ > uf > vj > v. By passing to a subsequence
if necessary, we assume that uf — uF € F(2) weakly as j — oo, and
uF /' u € F(2) as k — oo. Then Theorem 2 below shows that (dd°u*)" =
—max(v/k, —1)(dd°v)", which implies (dd“u)" = X{y=—_oc}(ddv)". If fur-
thermore X (> o0} (dd“v)" = (dd°g)" for g € F¢({2), then we take g;? € &)
such that

(ddcgé-“)” = max((v + k)/k,0)(ddv;)"
= max((v + k)/k,0)(dd° max(v;, —k — 1))".

By the comparison theorem [BT| we have 0 > gé? > max(vj, —k—1) > v. By
Theorem 2 again, we assume that gf converges to a bounded psh function
g* in C,, on each E CC 2. Letting j — oo we get

(dd°g")™ = max((v+ k) /k,0)(ddv)" = max((v+ k) /k,0)(ddg)"™ < (dd°g)",
which implies 0 > ¢* > g. Hence ¢g* decreases to some g1 € F?({2). By
Theorem 5.15 in [C1] we have g; = g. Since (ddc(gf + ué‘“))" > (ddcg}“)” +
(ddcué?)” = (ddv;)" we get v; > gf + u? and hence v > g + u. The proof of
Theorem 1 is complete.
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THEOREM 2. Suppose that v € F(£2), v; € &(§2) and -1 < o €
PSH™(§2) are such that v; \, v as j — oo and v is bounded on {z €
2;9(z) # —1}. If vy € E(82) are such that (ddu;)™ = —(ddv;)" and
uj — u € PSH($2) weakly in §2, then (dd°u)" = —¢(ddv)", u > v and hence
u e F(0).

Proof. By the comparison theorem [BT| we get 0 > u; > v; > v. Hence
u > v and u € F(£2). To prove (ddu)™ = —1p(dd°v)"™, by Theorem 7 in [X1]
or [C1] we have —(dd®v;)" — —1(dd“v)"™ weakly as j — oo, and hence it
is enough to show that u; — w in C,, on each E CC {2 as j — oo. Take
t <infgy,_1)v. Since

(dd“vj)™ = X {v;>1) (ddV;)" + X{v, <y (ddvj)"
< (dd“max(vj,t))" + (ddu;)" < (dd°(max(vj,t) + u;))",
we have v; > wuj + max(vj,t) and thus v > w+t. Given £ CC {2 and
0 < e < —t, Theorem 6.10 of [BT| shows that there exists 0 < § < 1 such

that Cp,{z € E; (1—0)v < —¢} < e. By quasicontinuity of psh functions and
Hartogs’ lemma, we only need to show that

Cn{z € E; u(z) > uj(z) + 3¢} — 0 as j — oo.

Let {; := ming(du;j + €). Since Cp {2z € E; uj(z) < duj(z) —e} < Cp{z € E;
(1 -96)v< —e} <e, we have

Cn{z € B u(z) > uj(2) + 3e} < Cp{z € 25 u(z) > duj(z) + 2e} + ¢,
which, by the definition of C),, does not exceed

1
sup{—n S (u —duj —e)"(dd“w)™; w € PSH(£2), 0 < w < 1} +e
u>0uj+-¢€
1
= supy — X (max(u,l;) — duj — )" (dd“w)™;

max(u,l;)>0uj+e

wGPSH(Q),O<w<1}+€,

which by the Lemma is less than

1\2sn 1\2sn
4(1”&)”(5 S (ddcuj')n +e< <n)n6 S (ddcvj)n +e€
c max(u,lj)>d0u;+e € u>duj+e
NH2Zsn
L
< u>duj+e

for some ¢ € C§°(§2) with 0 < ¢ < 1, where we have used the fact that
there exists Ey CC {2 such that SQ\El(dchj)” < e"tl/(n!)26™ for all j,
which follows from (ddv;)" — (dd°v)" weakly and lim;_.o {,(ddv;)" =
§(dd°v)" < co. Since v —t > u > v and u; > v, we have {u > duj+ ¢} C
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{v>a} fora:=(e+1t)/(1—0)<0. So the last integral equals

| ¢(ddvj)"
max(u,a)>0 max(uj,a)+e
1
<! g b(max(u, @) — max(uy, a))(dd ;)"

max(u,a)>0 max(uj,a)+e

Since v; > u;j +t and v; > v > u 4+t we have max(u, a) — max(u;,a) = 0 if
v; < a + t. By the quasicontinuity of u there exists an open subset O, C {2
such that C,,(O;) < &2 and u € C(£2\ O.). It then follows from Hartogs’
lemma that "2 + max(u,a) > max(u;,a) on supp¢ \ O. for all j large
enough. Hence by the definition of C,,, for all j large enough we have

Cn{z € E; u(z) > uj(z) + 3¢}
(n!)26m
- gntl

S o(e" "% 4+ max(u, a) — max(uj, a))(ddv;)"
2
+2¢ +e(n!)*(e"*? = a)(—a — )" sup [¢|

Q

(n!)25m

= S | elmax(u, @) — max(uy, 0))((dd° max(v, a +1))"
2
— (dd° max(v,a +t))")
(n!)26m . .
+ s, S ¢(max(u, a) — max(uj,a))(dd°max(v,a+t))" + O(e)
N

=0(e) asj— oo,

where the last estimate follows from Theorem 1 and Corollary 1 in [X1]
or |[C2]. By the arbitrariness of ¢ > 0 we see that u; — u in C),, on E as
j — o0, which concludes the proof of Theorem 2.

COROLLARY 1. A positive measure i in §2 can be written as p = (ddv)"
for v e F(£2) if and only if

p= (ddu1)™ + X {up=—oo} (dd uz)"
for some u; € F(£2) and ug € F(£2).

Proof. The “only if” part. By [C2], [K] there exists a decreasing sequence
gr. € &({2) such that g, > v in 2 and (dd°gx)" = X{v>—k}(ddv)™. Then
uy = limg oo gx € F(§2) and (ddu1)™ = X{y£—oo}(ddv)". Hence we have
= ()™ + X ooy (V)"

The “if” part. From Theorem 1 it turns out that there exists h € F({2)
such that p = (dd®u;)™ + (dd°h)". By Theorem 5.11 in [C1]| there exist
P € &(92) and f € Lioe((ddy)™) such that (dduq)™ = f(dd“yp)". Take a
sequence h; € & (§2) such that h; \, h as j — oo. Since min(f, k")(dd“y)" +
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(dd°hj)™ < (dd°(kv + hy))", by [C2], [K] there exist U;? € &(£2) such that
(ddcv;?)” = min(f, k") (dd“p)™ + (dd°h;)" and hence the comparison theo-
rems in [BT], [C1] imply that 0 > v;-“ > k1 + h > u; + h. Repeating the
proof of Theorem 2 we obtain an increasing sequence v* in F(£2) such that
(dd“v*)" = min(f, k™)(dd)" + (dd°h)™ and 0 > v¥ > uy + h. Therefore,
v = (limg_ o v*)* € F(N) and pu = (dd°v)™. The proof of Corollary 1 is
complete.

COROLLARY 2. For any set B = {z1,...,2zn} of points in 2 and nonneg-
ative constants ci, ..., cm there exists a function u € PSH($2) N LS (2\ B)

such that w =0 on 912 and (dd°u)" = >7., c;0,; in §2, where &,; denotes
the Dirac measure at z;.

Proof. Take the pluricomplex Green function g, of {2 with logarithmic

pole at z; and set v = 37", c;/ngzj. Then v € F(2)NLS.(2\ B) and v =0
on 0f2. By Lemma 5 in [X3], (dd“v)™ has zero mass at any point z ¢ B and
has mass c; at z;. Therefore, by Theorem 1 we get the required function u

and the proof is complete.
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