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Fite and Kamenev type oscillation criteria for

second order elliptic equations

by Zhiting Xu (Guangzhou)

Abstract. Fite and Kamenev type oscillation criteria for the second order nonlinear
damped elliptic differential equation

N
∑

i,j=1

Di[aij(x)Djy] +

N
∑

i=1

bi(x)Diy + p(x)f(y) = 0

are obtained. Our results are extensions of those for ordinary differential equations and
improve some known oscillation criteria in the literature. Several examples are given to
show the significance of the results.

1. Introduction. Consider the second order nonlinear damped elliptic
differential equation

(1.1)

N
∑

i,j=1

Di[aij(x)Djy] +

N
∑

i=1

bi(x)Diy + p(x)f(y) = 0

in Ω(a), where N ≥ 2, x = (x1, . . . , xN ) ∈ R
N , |x| = [

∑N
i=1 x

2
i ]

1/2, Di =
∂/∂xi for all i, and Ω(a) = {x ∈ R

N : |x| ≥ a} for some a > 0.

Throughout this paper we shall assume that

(A1) A = (aij)N×N is a real symmetric positive definite matrix function
with aij ∈ C1+ν

loc (Ω(a),R) for all i, j, ν ∈ (0, 1), and there exists a
function λ ∈ C1([a,∞),R+) such that

λ(r) ≥ max
|x|=r

λmax(x) for r ≥ a,

where λmax(x) denotes the largest eigenvalue of the matrix A;

(A2) BT =(bi(x))1×N , bi ∈ Cν
loc(Ω(a),R) for all i, and p ∈ Cν

loc(Ω(a),R);

(A3) f ∈ C(R,R) ∪C1(R − {0},R), f ′(y) ≥ k > 0, yf(y) > 0 for y 6= 0.
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A function y ∈ C2+ν
loc (Ω(a),R) is said to be a solution of (1.1) in Ω(a)

if y(x) satisfies (1.1) for all x ∈ Ω(a). For existence of solutions of (1.1),
we refer the reader to the monograph [5]. We restrict our attention to the
nontrivial solutions y(x) of (1.1), i.e. sup{|y(x)| : |x| > b} > 0 for any
b ≥ a. A nontrivial solution y(x) of (1.1) is called oscillatory if the set
{x ∈ Ω(a) : y(x) = 0} is unbounded; otherwise it is said to be nonoscillatory.

Equation (1.1) is oscillatory if all its solutions are oscillatory.
Equation (1.1) is a very important type of partial differential equations

(PDE), for such equations have wide applications in physics, biology and
glaciology (see [5]). In the qualitative theory of nonlinear PDE, one of the
important themes is to determine whether or not solutions of the equation
under consideration are oscillatory. In the last decades, there has been an in-
creasing interest in obtaining sufficient conditions for the oscillation and/or
nonoscillation of solutions for different classes of second order elliptic dif-
ferential equations (see for example, [1, 2, 7–14, 16–22] and the references
therein). In particular, for the semilinear elliptic differential equation

(1.2)
N

∑

i,j=1

Di[aij(x)Djy] + p(x)f(y) = 0,

in 1980, by using the N -dimensional vector partial Riccati transformation

(1.3) w(x) = − α(|x|)
f(y(x))

(A∇y)(x),

where α ∈ C2(0,∞) is an arbitrary positive function and ∇y denotes the
gradient of y, Noussair and Swanson [13] first extended the well-known Fite
theorem [4] to (1.2). Very recently, the author [19] obtained Kamenev type
theorems [6] for (1.2). Therefore, it is natural to ask if the results of Fite [4]
and Kamenev [6] can be extended to the general equation (1.1). However, to
the best of our knowledge, Fite and Kamenev type oscillation theorems have
not been well developed for (1.1). This is because the Riccati substitution
(1.3), which plays a key role in the proofs of the results for (1.2), is an
N -dimensional vector function, which prevents simple extensions of existing
work for ordinary differential equations.

In this paper, we will take the challenge of extending the work of Fite [4]
and Kamenev [6] to (1.1). By applying an N -dimensional vector inequality
(Lemma 2.1), and with a careful discussion of the Riccati inequality (Lemma
2.2), we will establish Fite and Kamenev type criteria for (1.1). The results
obtained are quite general; with the appropriate choice of the functions η,
φ and H, we can deduce a series of effective oscillation criteria for (1.2).
Obviously, our results cover the main results in [13, 19] for (1.2) as special
cases and are new even for (1.2). Three examples will be given to show the
significance of our main results.
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2. Fite type criteria. In this section we will establish generalized Fite
type oscillation criteria for equation (1.1). Our approach is based largely on
Coles’s technique [3]. For simplicity, we use the following notations. For any
given function η ∈ C1([a,∞),R), define

̺(r) = exp

(

− k

ωN

r\
a

η(s)s1−Nds

)

,

g(r) =
2ωN

k
λ(r)̺(r)rN−1,

pM (r) =
\

Sr

(

p(x) − 1

2k
λmax(x)|BTA−1|2

)

dσ,

θ(r) = ̺(r)

{

pM (r) +
k

2ωN
r1−N λ(r)η2(r) − (λ(r)η(r))′

}

,

where Sr = {x ∈ R
N : |x| = r} for r > 0, and ωN and dσ denote the

surface measure of the unit sphere and the spherical integral element in R
N ,

respectively.

Let ℑ denote the class of all positive and locally integrable, but not
integrable functions. Let φ ∈ ℑ and, for b ≥ a, define

α(r, b) =

r\
b

φ(s) ds, β(r, b) =
1

φ(r)

r\
b

g(s)φ2(s) ds,

and

Ψφ(r, b) =
1

α(r, b)

r\
b

φ(s)

s\
b

θ(u) du ds.

In order to establish our theorems, we need the following technical lem-
mas. The first is an N -dimensional vector inequality which plays a major
role in dealing with the damping terms of (1.1). The second provides re-
lations between positive solutions of (1.1) and of a 1-dimensional Riccati
inequality.

Lemma 2.1. Let u, v ∈ R
N , c > 0. Then

(2.1) c u · uT + u · vT ≥ c

2
u · uT − 1

2c
v · vT.

The proof Lemma 2.1 is straightforward and omitted.

Lemma 2.2. Let η ∈ C1([a,∞),R) and y(x) be a positive solution of

(1.1) in Ω(b0). Put

(2.2) Z(r) = ̺(r)
[ \

Sr

W (x) · ν(x) dσ + λ(r)η(r)
]

for r ≥ b0,
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where W (x) = (A∇y)(x)/f(y(x)), ν(x) = x/|x|, |x| 6= 0, denotes the out-

ward unit normal. Then Z(r) satisfies the Riccati inequality

(2.3) Z ′(r) ≤ −θ(r) − 1

g(r)
Z2(r), r > b0.

Proof. Differentiation of the ith component of W (x) with respect to xi

gives

DiW (x)i = − f ′(y)

f2(y)
Diy

(

N
∑

j=1

aij(x)Djy
)

+
1

f(y)
Di

(

N
∑

j=1

aij(x)Djy
)

for all i. Summation over i and application of (1.1) lead to

(2.4) divW (x)

= −f ′(y)(WTA−1W )(x) − (BTA−1W )(x) − p(x)

≤ −k(WTA−1W )(x) − (BTA−1W )(x) − p(x) (by (A3))

≤ − k

λmax(x)
(WTW )(x) − (BTA−1W )(x) − p(x) (by (A1))

≤ − k

2λmax(x)
(WTW )(x) +

1

2k
λmax(x)|BTA−1|2 − p(x),

where the last inequality follows by Lemma 2.1. Using the divergence theo-
rem in (2.2), by (2.4), we obtain

Z ′(r) =
̺′(r)

̺(r)
Z(r) + ̺(r)

{ \
Sr

divW (x) dσ + [λ(r)η(r)]′
}

≤ ̺′(r)

̺(r)
Z(r) − ̺(r)

{

k

2λ(r)

\
Sr

(WTW )(x) dσ + pM (r) − [λ(r)η(r)]′
}

.

By the Schwarz inequality,\
Sr

|W (x)|2 dσ ≥ r1−N

ωN

[ \
Sr

W (x) · ν(x) dσ
]2
.

Therefore,

Z ′(r) ≤ ̺′(r)

̺(r)
Z(r)

− ̺(r)

{

k

2ωN

r1−N

λ(r)

( \
Sr

W (x) · ν(x) dσ
)2

+ pM (r) − [λ(r)η(r)]′
}
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=
̺′(r)

̺(r)
Z(r)

− ̺(r)

{

k

2ωN

r1−N

λ(r)

(

Z(r)

̺(r)
− λ(r)η(r)

)2

+ pM (r) − [λ(r)η(r)]′
}

= − θ(r) − 1

g(r)
Z2(r),

that is, Z(r) satisfies the Riccati inequality (2.3).

Theorem 2.1. Suppose that there exist functions η ∈ C1([a,∞),R) and

φ ∈ ℑ such that

(2.5)

∞\
b

αµ(s, b)

β(s, b)
ds = ∞ for some b ≥ a, and 0 ≤ µ < 1,

and

(2.6) lim
r→∞

Ψφ(r, a) = ∞.

Then equation (1.1) is oscillatory.

Proof. Suppose y = y(x) is a nonoscillatory solution of (1.1). We may
assume that there exists a b0 ≥ a such that y(x) > 0 for x ∈ Ω(b0). A similar
argument holds for y(x) < 0. For x ∈ Ω(b0), define Z(r) by (2.2). In view
of Lemma 2.2, we know that (2.3) holds. It follows that

(2.7) Z(r) +

r\
b

1

g(s)
Z2(s) ds ≤ L1 −

r\
b

θ(s) ds for r ≥ b ≥ b0,

where L1 is a constant. Multiplying (2.7) by φ(s) and integrating from b
to r, we get

r\
b

φ(s)Z(s) ds+

r\
b

φ(s)

s\
b

1

g(u)
Z2(u) du ds ≤ α(r, b)[L1 − Ψφ(r, b)].

Note that by (2.6), there exists a b1 > b such that L1 − Ψφ(r, b) < 0 for all
r ≥ b1. Then, for any r ≥ b1,

G(r) :=

r\
b

φ(s)

s\
b

1

g(u)
Z2(u) du ds ≤ −

r\
b

φ(s)Z(s) ds.

Since G(r) is nonnegative, by Schwarz’s inequality we have

(2.8) G2(r) ≤
(

r\
b

φ(s)Z(s) ds
)2

≤
(

r\
b

g(s)φ2(s) ds
)

( r\
b

1

g(s)
Z2(s) ds

)

.
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On the other hand,

(2.9) G(r) ≥
r\
b

φ(s)

b1\
b

1

g(s)
Z2(s) ds = L2α(r, b),

where L2 =
Tb1
b (Z2(s)/g(s)) ds. From (2.8) and (2.9), we obtain

(2.10) Lµ
2

αµ(r, b)

β(r, b)
≤ Gµ−2(r)G′(r)

for all r ≥ b1 and 0 ≤ µ < 1. Integrating (2.10) from b1 to r yields

Lµ
2

r\
b1

αµ(s, b)

β(s, b)
ds ≤ 1

1 − µ

1

G1−µ(b1)
<∞,

which contradicts (2.5). Thus, we conclude that (1.1) is oscillatory.

The following theorem can be used when Theorem 2.1 cannot be applied.

Theorem 2.2. Suppose that there exist functions η ∈ C1([a,∞),R) and

φ ∈ C1([a,∞),R+) such that

∞\
a

g(s)

φ(s)
φ′ 2(s) ds <∞,(2.11)

∞\
a

φ(s)θ(s) ds = ∞,(2.12)

∞\
a

ds

g(s)φ(s)
= ∞.(2.13)

Then equation (1.1) is oscillatory.

Proof. Suppose to the contrary that there exist a solution y = y(x) of
(1.1) and a constant b0 ≥ a such that y(x) > 0 for x ∈ Ω(b0). By Lemma
2.2, (2.3) holds for r ≥ b0. Multiplying (2.3) by φ(s), and integrating both
sides of the resulting inequality over [b, r], b ≥ b0, we obtain

(2.14) φ(r)Z(r) ≤ L3 +

r\
b

φ′(s)Z(s) ds−
r\
b

φ(s)

g(s)
Z2(s) ds−

r\
b

φ(s)θ(s) ds,

where L3 is a constant. Schwarz’s inequality yields
r\
b

|φ′(s)Z(s)| ds ≤
( r\

b

g(s)

φ(s)
φ′2(s) ds

)1/2( r\
b

φ(s)

g(s)
Z2(s) ds

)1/2

≤ L4

( r\
b

φ(s)

g(s)
Z2(s) ds

)1/2

=: L4T
1/2(r),
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where L4 = (
T∞
b g(s)(φ′ 2(s)/φ(s)) ds)1/2 is finite by (2.11) and the function

T (r) is defined by the last equality. Hence, (2.14) implies that

(2.15) φ(r)Z(r) ≤ L3 + L4T
1/2(r) − T (r) −

r\
b

φ(s)θ(s) ds

for every r ≥ b. Since the function L4T
1/2(r) − T (r)/2 is bounded from

above on R
+, assumption (2.12) shows that the right hand side of (2.15)

tends to −∞ as r → ∞. So, we can find a constant b1 ≥ b0 such that for all
r ≥ b1,

φ(r)Z(r) ≤ −1

2
T (r).

Thus,

T ′(r) =
φ(r)

g(r)
Z2(r) ≥ 1

4

1

φ(r)g(r)
T 2(r).

Dividing both sides of the above inequality by T 2(r) and integrating from
b1 to r, we have

1

T (b1)
≥ 1

4

r\
b1

ds

φ(s)g(s)
,

which contradicts (2.13). Hence, (1.1) is oscillatory.

Remark 2.1. Putting φ(r) = 1 in Theorem 2.2, one improves Theo-
rem 4 in [13] for (1.2).

Remark 2.2. Theorems 2.1 and 2.2 are quite general; some interesting
corollaries can be drawn by choosing particular functions ̺ and φ. The
details are left to the interested reader.

3. Kamenev type criteria. In this section, we will establish analogues
of Kamenev type [6], and more generally, Philos type [15] criteria for oscil-
lation of (1.1). For this reason, we introduce a class H of functions. Let

D = {(r, s) : r ≥ s ≥ a}, D0 = {(r, s) : r > s ≥ a}.
A function H = H(r, s) ∈ C(D,R) is said to belong to a function class H if

(H1) H(r, r) = 0 for r ≥ a, H(r, s) > 0 on D0;
(H2) H has a continuous and nonpositive partial derivative on D0 with

respect to the second variable, and there exists a function h ∈
C(D0,R) such that

−∂H
∂s

(r, s) = h(r, s)H(r, s) for all (r, s) ∈ D0.
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Given H ∈ H and κ ∈ C(D0,R), we define an integral operator Πr
a as

Πr
a(κ) =

1

H(r, a)

r\
a

H(r, s)κ(r, s) ds for r > a.

Theorem 3.1. Suppose that there exist functions η ∈ C1([a,∞),R+)
and H ∈ H such that

(3.1) lim sup
r→∞

Πr
a

(

θ − 1

4
gh2

)

= ∞.

Then equation (1.1) is oscillatory.

Proof. Suppose y = y(x) is a nonoscillatory solution of (1.1). We may as-
sume that there exists a b0 ≥ a such that y(x) > 0 for x ∈ Ω(b0). By Lemma
2.2, (2.3) holds for r ≥ b0. Multiplying (2.3) by H(r, s) and integrating from
b (b ≥ b0) to r, by (H2), leads to

Πr
b (θ) ≤ Z(b) −Πr

b (hZ) −Πr
b (g−1Z2)(3.2)

= Z(b) +
1

4
Πr

b (gh2) −Πr
b

(

g−1

(

Z +
1

2
gh

)2)

.

Thus,

Πr
b

(

θ − 1

4
gh2

)

≤ Z(b).

Moreover, by (3.2) and (H2), for all r ≥ a, we obtain

H(r, a)Πr
a

(

θ − 1

4
gh2

)

= H(b0, a)Π
b0
a

(

θ − 1

4
gh2

)

+H(r, b0)Π
r
b0

(

θ − 1

4
gh2

)

≤ H(r, a)
[

b0\
a

|θ(s)| ds+ |Z(b0)|
]

.

This gives

lim sup
r→∞

Πr
a

(

θ − 1

4
gh2

)

≤
b0\
a

|θ(s)| ds+ |Z(a)|,

which contradicts (3.1). The proof is now complete.

From Theorem 3.1 the following corollary is immediate.

Corollary 3.1. Let the assumptions of Theorem 3.1 hold with (3.1)
replaced by

(3.3) lim sup
r→∞

Πr
a(θ) = ∞
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and

(3.4) lim sup
r→∞

Πr
a(gh2) <∞.

Then equation (1.1) is oscillatory.

It is clear that (3.3) is a necessary condition for (3.1) to hold. In case
(3.3) fails, the following theorem may be applicable.

Theorem 3.2. Suppose that there exist functions η ∈ C1([a,∞),R+)
and H ∈ H such that

(3.5) 0 < inf
s≥a

{

lim inf
r→∞

H(r, s)

H(r, a)

}

≤ ∞

and

(3.6) lim sup
r→∞

Πr
a(gh2) <∞.

Let ψ ∈ C([a,∞),R) be such that

(3.7)

∞\
a

ψ2
+(s)

g(s)
ds = ∞,

and that for all b ≥ a,

(3.8) lim sup
r→∞

Πr
b

(

θ − 1

4
gh2

)

≥ ψ(b),

where ψ+ = max{ψ, 0}. Then equation (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we see that (3.2) holds.
Furthermore, for r ≥ b ≥ b0,

Πr
b

(

θ − 1

4
gh2

)

≤ Z(b) −Πr
b

(

g−1

(

Z +
1

2
gh

)2)

.

Hence, for b ≥ b0,

lim sup
r→∞

Πr
b

(

θ − 1

4
gh2

)

≤ Z(b) − lim inf
r→∞

Πr
b

(

g−1

(

Z +
1

2
gh

)2)

.

By (3.8), we have

(3.9) Z(b) ≥ ψ(b) + lim inf
r→∞

Πr
b

(

g−1

(

Z +
1

2
gh

)2)

.

So, for all b ≥ a,

(3.10) Z(b) ≥ ψ(b).

By (3.9), we get

lim inf
r→∞

Πr
b0

(

g−1

(

Z +
1

2
gh

)2)

≤ Z(b0) − ψ(b0) <∞,
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and thus

(3.11) lim inf
r→∞

{Πr
b0(g

−1Z2) +Πr
b0(hZ)}

≤ lim inf
r→∞

Πr
b0

(

g−1

(

Z +
1

2
gh

)2)

<∞.

Now, we claim that

(3.12)

∞\
b0

Z2(s)

g(s)
ds <∞.

Suppose to the contrary that

(3.13)

∞\
b0

Z2(s)

g(s)
ds = ∞.

By (3.5), there exists a positive constant ξ such that

(3.14) inf
s≥a

{

lim inf
r→∞

H(r, s)

H(r, a)

}

> ξ > 0.

On the other hand, by (3.13) for any positive number γ there exists b1 > b0
such that

r\
b0

Z2(s)

g(s)
ds ≥ γ

ξ
for all r ≥ b1,

so, for all r ≥ b1,

Πr
b0(g

−1Z2) =
1

H(r, b0)

r\
b0

H(r, s) d

( s\
b0

1

g(u)
Z2(u) du

)

(3.15)

=
1

H(r, b0)

r\
b0

(

−∂H
∂s

(r, s)

)( s\
b0

1

g(u)
Z2(u) du

)

ds

≥ 1

H(r, b0)

r\
b1

(

−∂H
∂s

(r, s)

)( r\
b0

1

g(u)
Z2(u) du

)

ds

≥ γ

ξH(r, b0)

r\
b1

(

−∂H
∂s

(r, s)

)

ds =
γH(r, b1)

ξH(r, b0)
.

From (3.14), we have

lim inf
r→∞

H(r, b1)

H(r, a)
> ξ > 0.

Hence, there exists b2 > b1 such that H(r, b1)/H(r, a) > ξ for all r ≥ b2.
Therefore, by (3.15), Πr

b0
(g−1Z2) > γ for all r ≥ b2, and since γ is an

arbitrary constant, we conclude that

(3.16) lim
r→∞

Πr
b0(g

−1Z2) = ∞.
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Next, consider a sequence {rn}∞n=1 in (b0,∞) such that limn→∞ rn = ∞
and

lim
n→∞

{Πrn

b0
(g−1Z2) +Πrn

b0
(hZ)} = lim inf

r→∞
{Πr

b0(g
−1Z2) +Πr

b0(hZ)}.

In view of (3.11), there exists a constant M such that

(3.17) Πrn

b0
(g−1Z2) +Πrn

b0
(hZ) ≤M for n = 1, 2, . . . .

It follows from (3.16) that

(3.18) lim
n→∞

Πrn

b0
(g−1Z2) = ∞.

This and (3.17) yield

(3.19) lim
n→∞

Πrn

b0
(hZ) = −∞.

Then, by (3.17) and (3.18),

1 +
Πrn

b0
(hZ)

Πrn

b0
(g−1Z2)

≤ M

Πrn

b0
(g−1Z2)

<
1

2
for large enough,

and consequently,

Πrn

b0
(hZ)

Πrn

b0
(g−1Z2)

< −1

2
for n large enough.

This and (3.19) imply that

(3.20) lim
n→∞

[Πrn

b0
(hZ)]2

Πrn

b0
(g−1Z2)

= ∞.

Furthermore, by the Schwarz inequality, for any natural number n we have

(3.21)
[Πrn

b0
(hZ)]2

Πrn

b0
(g−1Z2)

≤ Πrn

b0
(gh2) ≤ Πrn

a (gh2).

It follows from (3.20) and (3.21) that

lim
n→∞

Πrn
a (gh2) = ∞,

and this implies

lim sup
r→∞

Πr
a(gh2) = ∞,

which contradicts assumption (3.6). Therefore we have proved that (3.13)
fails, so (3.12) holds true. Then it follows from (3.10) that ψ2

+(b) ≤ Z2(b)
for all b ≥ b0, hence

∞\
b0

ψ2
+(s)

g(s)
ds ≤

∞\
b0

1

g(s)
Z2(s) ds <∞,

which contradicts condition (3.7). This completes the proof.
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Using the same techniques, we may obtain two slightly different forms
of Theorem 3.2, which we state here for completeness.

Theorem 3.3. Suppose that there exist functions η ∈ C1([a,∞),R+)
and H ∈ H such that (3.5) holds, and

(3.22) lim inf
r→∞

Πr
a(θ) <∞.

Let ψ ∈ C([a,∞),R) be such that (3.7) holds and for all b ≥ a,

(3.23) lim inf
r→∞

Πr
b

(

θ − 1

4
gh2

)

≥ ψ(b).

Then equation (1.1) is oscillatory.

Theorem 3.4. Suppose that there exist functions η ∈ C1([a,∞),R+)
and H ∈ H such that (3.5) holds, and

(3.24) lim inf
r→∞

Πr
a(gh2) <∞.

Let ψ ∈ C([a,∞),R) be such that (3.7) and (3.23) hold. Then equation (1.1)
is oscillatory.

Remark 3.1. For (1.2), Theorems 3.1–3.4 reduce to Theorems 2.1–2.4
in [19].

Remark 3.2. From Theorems 3.1–3.4, by an appropriate choice of the
function H, we can deduce several different explicit sufficient conditions for
the oscillation of (1.1). For instance, choosing

H(r, s) = (r − s)m, [G(r) −G(s)]m, log

[

Q(r)

Q(s)

]m

, or

[ r\
s

dz

u(z)

]m

for r ≥ s ≥ a, where m > 1 is a constant, and

G(r) =

r\
a

ds

g(s)
, Q(r) =

∞\
r

ds

g(s)
<∞

for r ≥ a, and u ∈ C([a,∞),R+) satisfying
T∞
a dz/u(z) = ∞, we can derive

some effective oscillation criteria for (1.1).

Remark 3.3. The results obtained in this paper hold true if we replace
condition (A3) with the following one:

(A3′) f ∈ C(R,R), f(y)/y > k > 0 for y 6= 0.

But the function p should be nonnegative in this case.

4. Examples. In the last section, we give three examples to illustrate
our main results. As far as the author knows, no previously known criteria
for oscillation can be applied to these examples.
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Example 4.1. Consider equation (1.1) with

(4.1)

A = diag

(

1

|x|2 ,
1

|x|2
)

, B =

(

sin |x|
|x|9/4

,
cos |x|
|x|9/4

)

,

p(x) =
4 + cos |x| − 2|x| sin |x|

4|x|5/2
, f(y) = y + y3,

where N = 2 and x ∈ Ω(1). Let η(r) = −2π and φ(r) = 1/r. A direct
calculation implies that

̺(r) = r, g(r) = 4π, θ(r) =
π(2 + cos r − 2r sin r)

2r3/2
− 3π

r2
,

α(r, 1) = ln r, β(r, a) = 4π(r − 1).

Now, we can easily show that

r\
1

θ(s) ds = π[
√
r(2 + cos r) − (2 + cos 1)] + 3π

(

1

r
− 1

)

≥ π[
√
r − C1], C1 constant,

Ψφ(r, 1) ≥ π

ln r

r\
1

1

s
(
√
s− C1) ds

=
π

ln r

r\
1

(

1√
s
− C1

s

)

ds→ ∞ as r → ∞,

and
r\
1

αµ(s, 1)

β(s, 1)
ds =

1

4π

s\
1

lnµ s

s− 1
ds→ ∞ as r → ∞.

Thus, all conditions of Theorem 2.1 are satisfied, and hence equation (4.1)
is oscillatory.

Example 4.2. Consider equation (1.1) with

(4.2)
A = diag(1, 1), B =

(

1

|x|2 ,
1

|x|2
)

,

p(x) = τ |x|τ−2(2 − cos |x|) + |x|τ−1 sin |x|, f(y) = y + y3,

where N = 2, x ∈ Ω(1) and τ > 0. Let η(r) = 0. By a direct calculation,

̺(r) = 1, g(r) = 4πr, θ(r) = 2π

[

τrτ−1(2 − cos r) + rτ sin r − 1

r3

]

.

Hence, for r ≥ 1, we get
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r\
1

θ(s) ds = 2π

r\
1

d

(

sτ (2 − cos s) +
1

2s2

)

= 2π

[

rτ (2 − cos r) +
1

2r2
− (3 − cos 1)

]

≥ rτ − C2, with C2 a constant.

For Theorem 3.1, taking H(r, s) = (r − s)2, we obtain

Πr
1

(

θ − 1

4
gh2

)

=
1

r2

r\
1

(r − s)2
(

θ(s) − 1

4
g(s)h2(r, s)

)

ds

=
1

r2

r\
1

(

2(r − s)

s\
1

θ(u) du− 4πs
)

ds

≥ 2

r2

r\
1

(r − s)(sτ − C2) ds− 2π

(

1 − 1

r2

)

→ ∞

as r → ∞. Consequently, condition (3.1) is satisfied. Hence (4.2) is oscilla-
tory by Theorem 3.1.

Example 4.3. Consider equation (1.1) with

(4.3)
A = diag

(

1

|x|2 ,
1

|x|2
)

, B = (1, 1),

p(x) = |x|τ−1 cos |x|, f(y) = y + y3,

where N = 2, x ∈ Ω(1) and τ ≥ −1. Let η(r) = 2π. A straightforward
calculation yields

̺(r) =
1

r
, g(r) =

4π

r
, θ(r) = π

(

2rτ cos r +
3

r5

)

.

Furthermore, for simplicity, let H(r, s) = (r − s)2; then

lim sup
r→∞

1

r2
Πr

1(gh2) = 16π lim sup
r→∞

1

r2

r\
1

1

s
ds = 0,

so (3.6) holds. For any b ≥ 1,

lim sup
r→∞

Πr
b

(

θ − 1

4
gh2

)

= π lim sup
r→∞

1

r2

r\
b

(r − s)2
(

2sτ cos s+
3

s5
− 16

s(r − s)2

)

ds

≥ −πbτ sin b− C3,
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where C3 is a positive constant. Now let ψ(b) = −πbτ sin b−C3. Then there
exists an integer J such that (2nJ + 1)π + π/4 > 1 and, for all n ≥ J ,

ψ(b) ≥ −πbτ sin b− C3 ≥ ǫbτ for b ∈
[

(2n+ 1)π +
π

4
, 2(n+ 1)π − π

4

]

,

where ǫ is a small constant. Thus, taking into account that τ > −1, we get

lim
r→∞

r\
1

ψ2
+(s)

g(s)
ds =

1

4π
lim

r→∞

r\
1

sψ2
+(s) ds ≥ ǫ2

4π

∞
∑

n=J

2(n+1)π−π/4\
(2n+1)π+π/4

s2τ+1 ds

≥ ǫ2

4π

∞
∑

n=J

2(n+1)π−π/4\
(2n+1)π+π/4

s−1 ds = ∞,

so condition (3.7) is also satisfied. Thus (4.3) is oscillatory by Theorem 3.2.
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