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Constructions on second order connections

by J. KUREK (Lublin) and W. M. MikuLskI (Krakéw)

Abstract. We classify all F My n-natural operators D : J? ~s JQVA transforming

second order connections I : Y — J2Y on a fibred manifold Y — M into second order
connections D(I) : VAY — J2VAY on the vertical Weil bundle VAY — M correspond-
ing to a Weil algebra A.

0. Introduction. An rth order connection on a fibred manifold Y — M
is a section I' : Y — J"Y of the r-jet prolongation J'Y — Y of Y — M
(see [5]). In [6], we studied the problem how a first order connection I :
Y — J'Y on Y — M induces a first order connection D(I') : VAY —
JWAY on the vertical Weil bundle VAY — M corresponding to a Weil
algebra A. In the present paper we study the similar problem of how a
second order connection I' : Y — J2Y on a fibred manifold Y — M can
induce a second order connection D(I') : VAY — J2VAY on VAY — M.
This problem corresponds to the classification of FM,, ,,-natural operators
D : J? ~ J2VA in the sense of [5], where FM,,, ,, is the category of fibred
manifolds with n-dimensional fibres and m-dimensional bases and their fi-
bred local diffeomorphisms. We prove that the set of all #M,, ,-natural
operators D : J% ~ J2V4 forms a dimp A-dimensional affine space and we
explicitly describe this affine space. Thus we obtain a quite different result
than the one from [6], where it is proved that there is only one FM,, -
natural operator D : J! ~» J1VA,

All manifolds and maps are of class C'*°.

1. The main result. The general concept of natural operators is de-
scribed in [5]. In particular, an FM,, ,-natural operator D : J" ~» JrvA
transforming rth order general connections I" on FM,, ,-objects Y — M
to rth order connections D(I') on the vertical Weil bundle VAY — M
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corresponding to a Weil algebra A is a family of FM,, ,-invariant regu-
lar operators (functions) D : Con" (Y — M) — Con"(VAY — M) from
the space Con"(Y — M) of all rth order connections on ¥ — M into
the space Con”(VAY — M) of all rth order connections on VAY — M
for FM,, n-objects Y — M. By [6], any FM,, ,-natural operator D :
J' ~s J'WA is equal to the well-known A-vertical prolongation operator
VA J ~ J'VA. We have the following examples of F.M,,, ,-natural oper-
ators D : J? ~» J2VA,

ExAMPLE 1. Given a general second order connection I' : Y — J2?Y on
Y — M we define a second order general connection V42I" on VAY — M
by VA2D = (k42)y o VAT : VAY — J2VAY | where (k42)y : VAJ?Y —
J2VAY is the canonical exchange isomorphism [5], [1]. The correspondence
VA2 J2 ~s J2VA is the F M, n-natural operator in question.

To give the next such example we need some preparation. Let I' : Y —
J2Y be a second order connection on Y — M with first order underly-
ing connection I’ : Y — JW. Let I0 %I := J' [0 1° : Y — J?Y
be the second order semi-holonomic Ehresmann prolongation of I'% and
C®@ : J2Y — J?Y be the well-known symmetrization of second order semi-
holonomic jets [4], [3]. Then (I'°)? := C®® o (I'°*I'°) : Y — J?Y is another
second order connection on Y — M with the same underlying first order
connection I'%. Since J?Y — J'Y is an affine bundle with corresponding
vector bundle S?T*M ® VY over J'Y, we have the difference tensor field
El):=T-(I°?:Y — S?°T*M @ VY . Using this tensor, we construct
the next example.

ExAMPLE 2. For any a € A we have a tensor field £4(I") : VAY —
S2T*M @ VVAY  given by £4(I')(X1, X2)) = J, o VA(E(D) (X1, X2)) ,
where J, : VVAY — VVAY is a canonical “affinor” defined fibre-wise
from the canonical affinor J, : TTAN — TTAN, and VA(E(I') (X1, X)) is
the flow prolongation of the vertical vector field £(I")(X1, X2) to VAY for
any vector fields X1, X5 on M. Since J2VAY — J'VAY is an affine bundle
with the corresponding vector bundle S?T* M @VVAY over J'VAY, we can
define a second order connection D*(I') : VA2 + £4(I") on VAY — M.
The correspondence D® : J2 ~» J?V4 is an F M, n-natural operator.

The main result of the paper is the following classification theorem.

THEOREM 1. Every FM,, ,-natural operators D : J? s J2VA s D2
J? ~s J2VA for some a € A.

The proof of Theorem 1 will occupy the rest of the paper. We prove
three propositions. In Proposition 1, we show that any FM,, ,,-natural
operator D : J? ~» J2VA is of finite order. In Proposition 2, we ob-
serve that for any FM,, ,-natural operator D : J? ~» J?2VA the under-
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lying first order connection D(I')? of D(I') on VAY — M is equal to
the connection VAT, where I'° is the underlying first order connection
of the second order connection I' : Y — J2Y on Y — M. Thus we have
the difference FM,, ,-natural operator € : J? ~» S2T* @ VV4 given by
E(I) = D(I') — VA2 : VAY — S2T*M ® VVAY. In Proposition 3,
we prove that the vector space (over R) of all FM,, ,-natural operators
E:J? ~ S2T* @ VVA is of dimension < dimg A. Then Theorem 1 follows
by a dimension argument.

1. Finite order. We start the proof of Theorem 1 from the following
proposition.

PROPOSITION 1. Any FM,, »-natural operator D transforming second

order general connections I' on' Y — M into second order general connec-
tions D(I") on VAY — M is of finite order.

Proof. (See also the proof of Proposition 3 in [6].) This follows from the
proof of Proposition 23.7 in [5], which can be generalized to our situation
in the following way. Let x%,y7 (i = 1,...,m, j = 1,...,n) be the usual
fibre coordinates on R™™, the trivial bundle R™ x R™ — R™. Let z°, 3/, for
a € (NU{0})™ with 0 < |a| < 2 be the induced coordinates on JZR™™.
Consider the map ¢, : R™"™ — R™" @, (z,y) = (az,by). Fix some
r € N and choose a = b7", 0 < b < 1 arbitrary. Hence for every multiindex
a = a1 + a9, where a7 includes all the derivatives with respect to the base
coordinates while o those with respect to the fibre coordinates, and for
every second order general connection I' on R™",

02 01, D)(0,0)] = b DIl jgesea o 1) (0,0)
for all |5] = 1,2, and so for all |a] < r we get
0% (2,5 1)(0,0)] < [0*I(0,0)],

where [0°T7(0,0)| = >°7_; > 5212 \8“(% o I')(0,0)|. On the other hand,
there is a compact subset K C (VARm’”)(O,O) = T{'R" (K is a compact
neighbourhood of zg = j0) such that for any z € (VAR™™) o) we will
have VAp,4(2) € K for sufficiently small b. Hence Corollary 23.4 in [5]
implies our assertion. m

2. An underlying connection. Given a second order general connec-
tion I': Y — J2Y on Y — M we denote by I'° : Y — J'Y the underlying
first order general connection on Y — M.

PROPOSITION 2. Let D be an F.M,, ,,-natural operator transforming sec-
ond order general connections I' on'Y — M 1into second order general con-
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nections D(I") on VAY — M. Then
(D(I)°” = (v421)°
for any second order general connection I" on'Y — M.

Proof. Let z',47,yJ be as in the proof of Proposition 1. Let v' be a
coordinate system on A™. Then on J3 (R™, A™) we have the induced coordi-
nates v', vl where [ = 1,...,dim A", k = 1,...,m. Let I' be a second order
general connection on R™". We will study (D(I'))% € (JIVAR™"), =
Jg(R™, A™) for w € (VAR™")(g,0) = (T4R")o.

We fix an arbitrary w as above. By Proposition 1, £ is of finite order q.
So, we can assume that ya o F is a polynomial of degree ¢ for any j, « as
above, i.e. yl o I'(z,y) = > I’ w00 2Pye for (z,y) € R™", where the sum is

over all 5 € (NU{0})™ and o € (NU {0})™ with |5]| + |g[ < q, and ngﬁ 0

are real numbers determined by I'. Moreover, we have ygo) o'(z,y) = y.
We identify I" with (I") i 5.5.0)- Using the invariance of D with respect to the
base homotheties tidgm X idg» we obtain the homogeneity conditions

oo (DHIOILS 5 )5 = vl o (DI 5,))0

and ‘
vk o (DEHIPITI | ))%, = to), o (D(IY 5 ,)5-

Then by the homogeneous function theorem, (D(I"))9

w 1s independent of
r 3. for || = 2. This means that (D(I"))° over (0,0) € R™xR" depends on
a finite jet of I'* at (0, 0) only. Then we have a well-defined FM,,,, n—natural
operator D by DO(I') = (D(I"))° for any first order general connection I'
on Y — M, where I' is a second order general connection on Y — M with
I'° = I'. By the above-mentioned result of [6], D° = VA. This implies the

equality in the proposition. m

3. The main difficulty. The main difficulty in the proof of Theorem 1
is to establish the following proposition.

PROPOSITION 3. The vector space over R of all F .My, ,,-natural oper-
ators sending second order general connections I' on' Y — M into tensor

fields E(I') : VAY — S2T*M @ VVAY is of dimension < dimg A.

To prove Proposition 3 we need some lemmas.

Let 2%, 7, yJ, and v! be as in the proof of Proposition 2. We can of course
assume that the v! are obtained as follows. We choose a basis a1, ...,ax
of A over R. Let (a1,0,...,0),...,(ak,0,...,0), (0,ax+1,0,...,0), ...,
(0,...,0,a,x) be the corresponding basis of A”. Then v!, 1 =1, ...,dim A",
is the basis dual to the last one. Let £ be an FM,, ,-natural operator
transforming second order connections I' on ¥ — M into tensor fields
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E(IN) : VAY — S?T*M ® VVAY. We denote the order of £ by ¢ (q is
finite by Proposition 1).

LEmMmaA 1. If
(E(M)w,u®u) =0 € V,, VAR™" = T, TAR" = T,, A"

for all w € (VAR™") o) = Tg'R™, all u € ToR™ and all second order
general connections I' on R™™, then £ = 0.

Proof. This is an immediate consequence of the invariance of £ with
respect to charts. m

Using the invariance of £ with respect to FM,, ,-maps of the form
© X idgn for linear isomorphisms ¢ : R™ — R™, we have

LEmMA 2. If
(E(T)wyu0 © ug) = 0 € Ty A"

for all w € Té“R” and all second order general connections I' on R™™,

where ug := 83:1 0° then € = 0.

Define
L (1) == dpv' ((E(I)w, up © up)) € R
for all w € T{R", all second order connections I" on R™" and [ = 1,...,
dim A™.

LEMMA 3. If @ (I') = 0 for all w and ' as above and | = 1,...,dim A,
then £ = 0.

Proof. Because of the invariance of £ with respect to permutations of
the fibred coordinates, from the assumption of the lemma we deduce that
@l (I') = 0 for all w and I as above and [ = dim A™. Then (€ (1), uo ® uo)
=0 for all w and I" as, and Lemma 2 ends the proof. m

Because of the order of £ we can assume that in the above lemmas we

have
yhoL(w.y) =) I0 5,0

for all (z,y) € R™", where the sum is over all § € (NU {0})™ and ¢ €
(NU{0})™ with [8]+ |o| < ¢, and I}, 5 , are real numbers determined by I".

Moreover, we have ygo) ol'(z,y) =1
We identify I" with (I gt 5.0)- Using the invariance of & with respect to

the base homotheties (t'z!,... tma™ yt ... y") for / > 0, we get the
homogeneity condition

(¢1)?®,, (17 5,

,,6',9)
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Then by the homogeneous function theorem we can write

. . .
(*) (Pw(F) = Z a‘]QF€2,O,‘..,O),(O),Q + Z b‘?F(JLO-~'¢O)¢(1¢01"'70):Q

01,02 1J1 J2
+ Z cj17j2 F(1707"'70)7(0)791 F(1707"'70)7(O)7Q2

: : ! !
for some uniquely determined real numbers af = aJ"(w), b = by (w) and
01,02 __ 01,02,l

e, 52 (w) (smoothly depending on w), where the first sum is over
all 7 = 1,...,n and all p € (NU{0})" with |g| < ¢, the second sum is
over all j = 1,...,n and all p € (NU {0})"™ with |g] < ¢ — 1 and the
third sum is over all (g1,j1) < (02,J2) for j1,jo = 1,...,n and 01,02 €
(NU{0})™ with |o1] < g and |g2]| < g (here < means an ordering). Of course
(2,0,...,0),(1,0,...,0),(0) € (NU{0})™.

LEMMA 4. Assume that all af, all b5 and all c*7* defined by (x) are 0
for all w € T{R™ and all | = 1,...,dim A. Then £ = 0.

Proof. This is obvious in view of the previous lemma. =

LEMMA 5. We have
ai +b; =0

for all j, o, w in question and [ =1,...,dim A.

Proof. Fix po and jo. Choose I' = (Fg’ﬁ’g) such that I'7°

(1107“'10)1(0)¢QO = 17

and F(i,ﬂ,g = 0 for other (j,a,f, o) with |a| > 1. Let ¢ = (2! + 1(21)?,
22, o™yt .. y™) 7L Using the invariance of £ with respect to ¢ we
have

D, (u 1) = P, (I')

because reserves w, v' and uy © ug. Set
9

ol (I') = a.
We have j?ovo)(go*lj) = (fi’ﬁ’g), where
I’ =1, IP 1, 17

0 — —
(1707"'?0)7(0)790 (2a07'~'70)7(0)790 - (1707"'70)7(1707"'70)790 -

and other fO{’B’g are zero for |o| = 1,2. (Indeed,
I'(z,y) = ji(y + ygo(xl - Zl)ejo) € Jg(Rmm)y’

where {e;} is the canonical basis in R™. Then
1
(D)) = 23+ (o 4 5 2 = 2= 56 ).
This implies the formulas.) Then
! _ 0 e
Doy (0 I7) = af) + 057 +a.

Qo0 Qo __
Hence aj, + bj0 =0. m
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LEMMA 6. Suppose that all a;’ defined by (%) are zero for any w in
question and Il =1,...,dim A. Then £ = 0.

Proof. By assumption and Lemma 5, all b;’ are zero. Then it is sufficient
to show that cj"7? = 0 for all 01, 02, j1, j2, w and [ in question.

Fix 01, 02, j1, j2,1,w. Let a,b € R. Let I'° be the trivial second order
connection on R™"™ given by

I(z,y) = j2(y) € J2R™™),.
Then by (x) we have
@ (% =o.
Choose an F M,, ,-map 9 : R™"™ — R"" given by
b(z,y) = (z,y +az'y®ej, +brly®e),).
Then
Qsiu(w*FO) =0
because of the invariance of &, ug, w and v' with respect to 1. Write
¥z, y) = (2,¥). Then
W*FO)(Z’ y) = ]3@4— axlgglejl + bxlggzeh)‘
Then by (x), & (.I"°) is a polynomial in a and b with the coefficient of ab
equal to cf ¢ as all b7 are zero. Therefore c"?* = 0. m

»J2 J1:J2

LEMMA 7. Suppose that all a§0) defined by (x) are zero for any w in
question and 1 =1,...,dim A. Then £ = 0.

Proof. For any o € (NU{0})" and j = 1,...,n, let I'®J be the second
order connection on R given by

red(z,y) =32y + (@' = 2")%%;),  (z,y) €ER™".
By (%) and the assumption of the lemma we have
dyv' o <5(F(0)’j)(w);u0 O ug) = djiﬂ(F(O)’j) = ag»o)’l(w) =0

for any w € (VA]Rm’”)(O,O), j=1,....,nandl=1,...,dimg A. Then by the
invariance of £ with respect to the permutations of fibred coordinates we
have

dyv! 0 (E(TO9) (w), up ® ug) =0
for any w € (VARm’”)(O7O), j=1,...,nand I =1,...,dimg A". Therefore
(E D7) (w), up © ug) =0

for any w € (VA]Rm’")(O,O) and j=1,...,n. Let p € (NU{0})™, 1 < 0| < g,
j =1,...,n. Let 7 € R be sufficiently small. Consider an FM,, ,,-map
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T L R™ — R™" 00T (g, y) = (z,y+Ty% ;) (defined near (0,0)). We
see that
("I O9) (z,y) = 2y + (2" = 21)2e; +7(0; + (' = 21)Py%; + ).
Then using the invariance of £ with respect to ¢%7 we get
(E@FTIO) (w),up © ug) =0

for all w € (VAR™") ). The left hand side of the last formula is

a polynomial in 7. The coefficient of 7 = 7! in this polynomial is

(0j + 1{E(I27)(w), up ® ug). Then (E(I'%7)(w),up ® ug) = 0 for any w €
(VAR™™),0). Thus af = 0 for all [ and w in question. Then £ = 0 by
Lemma 6. =

LEMMA 8. Suppose that all ago) defined by (x) are zero for | =
1,...,dimA and w =0 € T{AR". Then £ = 0.

Proof. By (x) we have
(09 = o) = i (w),

where 97 is defined in the proof of Lemma 7. Let h; = idgm Xtidgr~ be
the fibre homothety. Then ((h¢).I(O7)(z,y) = j2(y + t(z' — 2')%e;), and
then by (%) we have

0L, ((he) IO9) = ta{? (tw).

Hence by the invariance of £ with respect to the fibre homotheties h; we get
@L (he)TO7) = t@l (1(97), and therefore

a§0)’l(w) = a§0)’l(tw).

Then putting ¢ — 0 and using the assumption of the lemma we see that
ago) = 0 for any [ and w in question. Then Lemma 7 ends the proof. m
LEMMA 9. Suppose that ago) =0 forw =0 € T{R" and | =
1,...,dim A. Then £ = 0.

Proof. Let a; = (x',tz?, ... tz™, y', ..., y") for t # 0 be FM,, ,-maps.
Clearly, ((a¢)« ") (y, 2) = j2(y + t(z* — 2%)2%e;) for j = 2,...,n. Then by
(*) and the invariance of £ with respect to a; we get

' (0) = tal”"(0)

for j = 2,...,n. Then ag-o)’l(O) =0forj=1,...,n (for j = 1 the equality

holds by assumption). Now Lemma 8 ends the proof. =

Proof of Proposition 3. This is an immediate consequence of Lemma 9. m
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Proof of Theorem 1. Let I'(©:! be the second order connection on R
as in the proof of Lemma 7. Let £% : J? ~» S?T* @ VV4 be the operators
from Example 2 for a € A. Let (a,) be a basis of A, and let (v!) correspond
to (a,) (as at the beginning of Section 3). One can show by a standard
argument that the numbers @) (I'(0):1) = ago)’l(O) (see (x)) for £ = £ are
proportional (with a non-zero coefficient) to the Kronecker delta ¢!. Hence
the operators £% are linearly independent. Theorem 1 is an immediate
consequence of Propositions 1-3 by a dimension argument. m
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