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Constructions on second order connections

by J. Kurek (Lublin) and W. M. Mikulski (Kraków)

Abstract. We classify all FMm,n-natural operators D : J
2
 J

2
V
A transforming

second order connections Γ : Y → J2Y on a fibred manifold Y → M into second order
connections D(Γ ) : V AY → J2V AY on the vertical Weil bundle V AY →M correspond-
ing to a Weil algebra A.

0. Introduction. An rth order connection on a fibred manifold Y →M

is a section Γ : Y → JrY of the r-jet prolongation JrY → Y of Y → M

(see [5]). In [6], we studied the problem how a first order connection Γ :
Y → J1Y on Y → M induces a first order connection D(Γ ) : V AY →
J1V AY on the vertical Weil bundle V AY → M corresponding to a Weil
algebra A. In the present paper we study the similar problem of how a
second order connection Γ : Y → J2Y on a fibred manifold Y → M can
induce a second order connection D(Γ ) : V AY → J2V AY on V AY → M .
This problem corresponds to the classification of FMm,n-natural operators
D : J2  J2V A in the sense of [5], where FMm,n is the category of fibred
manifolds with n-dimensional fibres and m-dimensional bases and their fi-
bred local diffeomorphisms. We prove that the set of all FMm,n-natural
operators D : J2  J2V A forms a dimRA-dimensional affine space and we
explicitly describe this affine space. Thus we obtain a quite different result
than the one from [6], where it is proved that there is only one FMm,n-
natural operator D : J1  J1V A.
All manifolds and maps are of class C∞.

1. The main result. The general concept of natural operators is de-
scribed in [5]. In particular, an FMm,n-natural operator D : J

r
 JrV A

transforming rth order general connections Γ on FMm,n-objects Y → M

to rth order connections D(Γ ) on the vertical Weil bundle V AY → M
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corresponding to a Weil algebra A is a family of FMm,n-invariant regu-
lar operators (functions) D : Conr(Y → M) → Conr(V AY → M) from
the space Conr(Y → M) of all rth order connections on Y → M into
the space Conr(V AY → M) of all rth order connections on V AY → M

for FMm,n-objects Y → M . By [6], any FMm,n-natural operator D :
J1  J1V A is equal to the well-known A-vertical prolongation operator
VA : J1  J1V A. We have the following examples of FMm,n-natural oper-
ators D : J2  J2V A.

Example 1. Given a general second order connection Γ : Y → J2Y on
Y → M we define a second order general connection VA,2Γ on V AY → M

by VA,2Γ = (κA,2)Y ◦ V
AΓ : V AY → J2V AY , where (κA,2)Y : V

AJ2Y →
J2V AY is the canonical exchange isomorphism [5], [1]. The correspondence
VA,2 : J2  J2V A is the FMm,n-natural operator in question.

To give the next such example we need some preparation. Let Γ : Y →
J2Y be a second order connection on Y → M with first order underly-
ing connection Γ 0 : Y → J1Y . Let Γ 0 ∗ Γ 0 := J1Γ 0 ◦ Γ 0 : Y → J 2Y

be the second order semi-holonomic Ehresmann prolongation of Γ 0 and
C(2) : J 2Y → J2Y be the well-known symmetrization of second order semi-
holonomic jets [4], [3]. Then (Γ 0)2 := C(2) ◦ (Γ 0 ∗Γ 0) : Y → J2Y is another
second order connection on Y → M with the same underlying first order
connection Γ 0. Since J2Y → J1Y is an affine bundle with corresponding
vector bundle S2T ∗M ⊗ V Y over J1Y , we have the difference tensor field
E(Γ ) := Γ − (Γ 0)2 : Y → S2T ∗M ⊗ V Y . Using this tensor, we construct
the next example.

Example 2. For any a ∈ A we have a tensor field Ea(Γ ) : V AY →
S2T ∗M ⊗ V V AY given by Ea(Γ )(X1, X2)) := Ja ◦ V

A(E(Γ )(X1, X2)) ,
where Ja : V V

AY → V V AY is a canonical “affinor” defined fibre-wise
from the canonical affinor Ja : TT

AN → TTAN , and VA(E(Γ )(X1, X2)) is
the flow prolongation of the vertical vector field E(Γ )(X1, X2) to V

AY for
any vector fields X1, X2 on M . Since J

2V AY → J1V AY is an affine bundle
with the corresponding vector bundle S2T ∗M⊗V V AY over J1V AY , we can
define a second order connection Da(Γ ) : VA,2Γ + Ea(Γ ) on V AY → M .
The correspondence Da : J2  J2V A is an FMm,n-natural operator.

The main result of the paper is the following classification theorem.

Theorem 1. Every FMm,n-natural operators D : J
2
 J2V A is Da :

J2  J2V A for some a ∈ A.

The proof of Theorem 1 will occupy the rest of the paper. We prove
three propositions. In Proposition 1, we show that any FMm,n-natural
operator D : J2  J2V A is of finite order. In Proposition 2, we ob-
serve that for any FMm,n-natural operator D : J

2
 J2V A the under-
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lying first order connection D(Γ )0 of D(Γ ) on V AY → M is equal to
the connection VAΓ 0, where Γ 0 is the underlying first order connection
of the second order connection Γ : Y → J2Y on Y → M . Thus we have
the difference FMm,n-natural operator E : J

2
 S2T ∗ ⊗ V V A given by

E(Γ ) = D(Γ ) − VA,2Γ : V AY → S2T ∗M ⊗ V V AY . In Proposition 3,
we prove that the vector space (over R) of all FMm,n-natural operators
E : J2  S2T ∗ ⊗ V V A is of dimension ≤ dimRA. Then Theorem 1 follows
by a dimension argument.

1. Finite order. We start the proof of Theorem 1 from the following
proposition.

Proposition 1. Any FMm,n-natural operator D transforming second
order general connections Γ on Y → M into second order general connec-

tions D(Γ ) on V AY →M is of finite order.

Proof. (See also the proof of Proposition 3 in [6].) This follows from the
proof of Proposition 23.7 in [5], which can be generalized to our situation
in the following way. Let xi, yj (i = 1, . . . ,m, j = 1, . . . , n) be the usual
fibre coordinates on R

m,n, the trivial bundle R
m×R

n → R
m. Let xi, yjα for

α ∈ (N ∪ {0})m with 0 ≤ |α| ≤ 2 be the induced coordinates on J2Rm,n.
Consider the map ϕa,b : R

m,n → R
m,n, ϕa,b(x, y) = (ax, by). Fix some

r ∈ N and choose a = b−r, 0 < b < 1 arbitrary. Hence for every multiindex
α = α1 + α2, where α1 includes all the derivatives with respect to the base
coordinates while α2 those with respect to the fibre coordinates, and for
every second order general connection Γ on R

m,n,

|∂α1+α2(yjβ ◦ ϕ
∗
a,bΓ )(0, 0)| = b

r(|β|+|α1|)+1−|α2||∂α1+α2(yjβ ◦ Γ )(0, 0)|

for all |β| = 1, 2, and so for all |α| ≤ r we get

|∂α(ϕ∗a,bΓ )(0, 0)| ≤ b|∂
αΓ (0, 0)|,

where |∂αΓ (0, 0)| =
∑n
j=1

∑
|β|=1,2 |∂

α(yjβ ◦ Γ )(0, 0)|. On the other hand,

there is a compact subset K ⊂ (V AR
m,n)(0,0) = TA0 R

n (K is a compact
neighbourhood of z0 = jA0) such that for any z ∈ (V AR

m,n)(0,0) we will
have V Aϕa,b(z) ∈ K for sufficiently small b. Hence Corollary 23.4 in [5]
implies our assertion.

2. An underlying connection. Given a second order general connec-
tion Γ : Y → J2Y on Y → M we denote by Γ 0 : Y → J1Y the underlying
first order general connection on Y →M .

Proposition 2. Let D be an FMm,n-natural operator transforming sec-
ond order general connections Γ on Y →M into second order general con-
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nections D(Γ ) on V AY →M . Then

(D(Γ ))0 = (VA,2Γ )0

for any second order general connection Γ on Y →M .

Proof. Let xi, yj , yjα be as in the proof of Proposition 1. Let v
l be a

coordinate system on An. Then on J10 (R
m, An) we have the induced coordi-

nates vl, vlk, where l = 1, . . . ,dimA
n, k = 1, . . . ,m. Let Γ be a second order

general connection on R
m,n. We will study (D(Γ ))0w ∈ (J

1V AR
m,n)0 =

J10 (R
m, An) for w ∈ (V AR

m,n)(0,0) = (T
A

R
n)0.

We fix an arbitrary w as above. By Proposition 1, E is of finite order q.
So, we can assume that yjα ◦ Γ is a polynomial of degree q for any j, α as
above, i.e. yjα ◦ Γ (x, y) =

∑
Γ
j
α,β,̺x

βy̺ for (x, y) ∈ R
m,n, where the sum is

over all β ∈ (N ∪ {0})m and ̺ ∈ (N ∪ {0})n with |β| + |̺| ≤ q, and Γ jα,β,̺
are real numbers determined by Γ . Moreover, we have yj(0) ◦ Γ (x, y) = yj .

We identify Γ with (Γ jα,β,̺). Using the invariance of D with respect to the
base homotheties t idRm × idRn we obtain the homogeneity conditions

vl ◦ (D(t|α|+|β|Γ jα,β,̺))
0
w = v

l ◦ (D(Γ jα,β,̺))
0
w

and
vlk ◦ (D(t

|α|+|β|Γ
j
α,β,̺))

0
w = tv

l
k ◦ (D(Γ

j
α,β,̺))

0
w.

Then by the homogeneous function theorem, (D(Γ ))0w is independent of
Γ
j
α,β,̺ for |α| = 2. This means that (D(Γ ))

0 over (0, 0) ∈ R
m×R

n depends on

a finite jet of Γ 0 at (0, 0) only. Then we have a well-defined FMm,n-natural

operator D0 by D0(Γ̃ ) = (D(Γ ))0 for any first order general connection Γ̃
on Y → M , where Γ is a second order general connection on Y → M with
Γ 0 = Γ̃ . By the above-mentioned result of [6], D0 = VA. This implies the
equality in the proposition.

3. The main difficulty. The main difficulty in the proof of Theorem 1
is to establish the following proposition.

Proposition 3. The vector space over R of all FMm,n-natural oper-
ators sending second order general connections Γ on Y → M into tensor

fields E(Γ ) : V AY → S2T ∗M ⊗ V V AY is of dimension ≤ dimR A.

To prove Proposition 3 we need some lemmas.
Let xi, yj , yjα and v

l be as in the proof of Proposition 2. We can of course
assume that the vl are obtained as follows. We choose a basis a1, . . . , aK
of A over R. Let (a1, 0, . . . , 0), . . . , (aK , 0, . . . , 0), (0, aK+1, 0, . . . , 0), . . . ,
(0, . . . , 0, anK) be the corresponding basis of A

n. Then vl, l = 1, . . . ,dimAn,
is the basis dual to the last one. Let E be an FMm,n-natural operator
transforming second order connections Γ on Y → M into tensor fields
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E(Γ ) : V AY → S2T ∗M ⊗ V V AY . We denote the order of E by q (q is
finite by Proposition 1).

Lemma 1. If

〈E(Γ )w, u⊙ u〉 = 0 ∈ VwV
A

R
m,n = TwT

A
R
n = TwA

n

for all w ∈ (V AR
m,n)(0,0) = TA0 R

n, all u ∈ T0R
m and all second order

general connections Γ on R
m,n, then E = 0.

Proof. This is an immediate consequence of the invariance of E with
respect to charts.

Using the invariance of E with respect to FMm,n-maps of the form
ϕ× idRn for linear isomorphisms ϕ : R

m → R
m, we have

Lemma 2. If

〈E(Γ )w, u0 ⊙ u0〉 = 0 ∈ TwA
n

for all w ∈ TA0 R
n and all second order general connections Γ on R

m,n,
where u0 :=

∂
∂x1 |0
, then E = 0.

Define

Φlw(Γ ) := dwv
l(〈E(Γ )w, u0 ⊙ u0〉) ∈ R

for all w ∈ TA0 R
n, all second order connections Γ on R

m,n and l = 1, . . . ,
dimAn.

Lemma 3. If Φlw(Γ ) = 0 for all w and Γ as above and l = 1, . . . ,dimA,
then E = 0.

Proof. Because of the invariance of E with respect to permutations of
the fibred coordinates, from the assumption of the lemma we deduce that
Φlw(Γ ) = 0 for all w and Γ as above and l = dimA

n. Then 〈E(Γ )w, u0⊙u0〉
= 0 for all w and Γ as, and Lemma 2 ends the proof.

Because of the order of E we can assume that in the above lemmas we
have

yjα ◦ Γ (x, y) =
∑

Γ
j
α,β,̺x

βy̺

for all (x, y) ∈ R
m,n, where the sum is over all β ∈ (N ∪ {0})m and ̺ ∈

(N∪{0})n with |β|+ |̺| ≤ q, and Γ jα,β,̺ are real numbers determined by Γ .

Moreover, we have yj(0) ◦ Γ (x, y) = y
j .

We identify Γ with (Γ jα,β,̺). Using the invariance of E with respect to

the base homotheties (t1x1, . . . , tmxm, y1, . . . , yn) for tj > 0, we get the
homogeneity condition

(t1)2Φlw(Γ
j
α,β,̺) = Φ

l
w(t
α+βΓ

j
α,β,̺).
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Then by the homogeneous function theorem we can write

Φlw(Γ ) =
∑

a
̺
jΓ
j

(2,0,...,0),(0),̺ +
∑

b
̺
jΓ
j

(1,0...,0),(1,0,...,0),̺(∗)

+
∑

c
̺1,̺2
j1,j2

Γ
j1
(1,0,...,0),(0),̺1

Γ
j2
(1,0,...,0),(0),̺2

for some uniquely determined real numbers a̺j = a
̺,l
j (w), b

̺
j = b

̺,l
j (w) and

c
̺1,̺2
j1,j2
= c̺1,̺2,lj1,j2

(w) (smoothly depending on w), where the first sum is over
all j = 1, . . . , n and all ̺ ∈ (N ∪ {0})n with |̺| ≤ q, the second sum is
over all j = 1, . . . , n and all ̺ ∈ (N ∪ {0})n with |̺| ≤ q − 1 and the
third sum is over all (̺1, j1) ≤ (̺2, j2) for j1, j2 = 1, . . . , n and ̺1, ̺2 ∈
(N∪{0})n with |̺1| ≤ q and |̺2| ≤ q (here ≤ means an ordering). Of course
(2, 0, . . . , 0), (1, 0, . . . , 0), (0) ∈ (N ∪ {0})m.

Lemma 4. Assume that all a̺j , all b
̺
j and all c

̺1,̺2
j1,j2
defined by (∗) are 0

for all w ∈ TA0 R
n and all l = 1, . . . ,dimA. Then E = 0.

Proof. This is obvious in view of the previous lemma.

Lemma 5. We have
a
̺
j + b

̺
j = 0

for all j, ̺, w in question and l = 1, . . . ,dimA.

Proof. Fix ̺0 and j0. Choose Γ = (Γ
j
α,β,̺) such that Γ

j0
(1,0,...,0),(0),̺0

= 1,

and Γ jα,β,̺ = 0 for other (j, α, β, ̺) with |α| ≥ 1. Let ϕ = (x
1 + 12 (x

1)2,

x2, . . . , xm, y1, . . . , yn)−1. Using the invariance of E with respect to ϕ we
have

Φlw(ϕ∗Γ ) = Φ
l
w(Γ )

because ϕ preserves w, vl and u0 ⊙ u0. Set

Φlw(Γ ) = a.

We have jq(0,0)(ϕ∗Γ ) = (Γ̃
j
α,β,̺), where

Γ̃
j0
(1,0,...,0),(0),̺0

= 1, Γ̃
j0
(2,0,...,0),(0),̺0

= 1, Γ̃
j0
(1,0,...,0),(1,0,...,0),̺0

= 1

and other Γ̃ jα,β,̺ are zero for |α| = 1, 2. (Indeed,

Γ (z, y) = j2z (y + y
̺0(x1 − z1)ej0) ∈ J

2
z (R

m,n)y,

where {ej} is the canonical basis in R
n. Then

(ϕ∗Γ )(z, y) = j
2
z

(
y + y̺0

(
x1 +

1

2
(x1)2 − z1 −

1

2
(z1)2
)
ej0

)
.

This implies the formulas.) Then

Φlw(ϕ∗Γ ) = a
̺0
j0
+ b̺0j0 + a.

Hence a̺0j0 + b
̺0
j0
= 0.
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Lemma 6. Suppose that all a̺j defined by (∗) are zero for any w in
question and l = 1, . . . ,dimA. Then E = 0.

Proof. By assumption and Lemma 5, all b̺j are zero. Then it is sufficient
to show that c̺1,̺2j1,j2

= 0 for all ̺1, ̺2, j1, j2, w and l in question.

Fix ̺1, ̺2, j1, j2, l, w. Let a, b ∈ R. Let Γ 0 be the trivial second order
connection on R

m,n given by

Γ 0(z, y) = j2z (y) ∈ J
2
z (R

m,n)y.

Then by (∗) we have

Φlw(Γ
0) = 0.

Choose an FMm,n-map ψ : R
m,n → R

m,n given by

ψ(x, y) = (x, y + ax1y̺1ej1 + bx
1y̺2ej2).

Then

Φlw(ψ∗Γ
0) = 0

because of the invariance of E , u0, w and v
l with respect to ψ. Write

ψ−1(x, y) = (x, ỹ). Then

(ψ∗Γ
0)(z, y) = j2z (ỹ + ax

1ỹ̺1ej1 + bx
1ỹ̺2ej2).

Then by (∗), Φlw(ψ∗Γ
0) is a polynomial in a and b with the coefficient of ab

equal to c̺1,̺2j1,j2
as all b̺j are zero. Therefore c

̺1,̺2
j1,j2
= 0.

Lemma 7. Suppose that all a
(0)
j defined by (∗) are zero for any w in

question and l = 1, . . . ,dimA. Then E = 0.

Proof. For any ̺ ∈ (N ∪ {0})n and j = 1, . . . , n, let Γ ̺,j be the second
order connection on R

m,n given by

Γ ̺,j(z, y) = j2z (y + (x
1 − z1)2y̺ej), (z, y) ∈ R

m,n.

By (∗) and the assumption of the lemma we have

dwv
l ◦ 〈E(Γ (0),j)(w), u0 ⊙ u0〉 = Φ

l
w(Γ

(0),j) = a
(0),l
j (w) = 0

for any w ∈ (V AR
m,n)(0,0), j = 1, . . . , n and l = 1, . . . ,dimR A. Then by the

invariance of E with respect to the permutations of fibred coordinates we
have

dwv
l ◦ 〈E(Γ (0),j)(w), u0 ⊙ u0〉 = 0

for any w ∈ (V AR
m,n)(0,0), j = 1, . . . , n and l = 1, . . . ,dimRA

n. Therefore

〈E(Γ (0),j)(w), u0 ⊙ u0〉 = 0

for any w ∈ (V AR
m,n)(0,0) and j = 1, . . . , n. Let ̺ ∈ (N∪{0})

n, 1 ≤ |̺| ≤ q,
j = 1, . . . , n. Let τ ∈ R be sufficiently small. Consider an FMm,n-map
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ϕ̺jτ : Rm,n → R
m,n, ϕ̺jτ (x, y) = (x, y+τy̺+1jej) (defined near (0, 0)). We

see that

(ϕ̺jτ∗ Γ (0),j)(z, y) = j2z (y + (x
1 − z1)2ej + τ(̺j + 1)(x

1 − z1)2y̺ej + · · ·).

Then using the invariance of E with respect to ϕ̺jτ we get

〈E(ϕ̺jτ∗ Γ (0),j)(w), u0 ⊙ u0〉 = 0

for all w ∈ (V AR
m,n)(0,0). The left hand side of the last formula is

a polynomial in τ . The coefficient of τ = τ1 in this polynomial is
(̺j + 1)〈E(Γ

̺,j)(w), u0 ⊙ u0〉. Then 〈E(Γ
̺,j)(w), u0 ⊙ u0〉 = 0 for any w ∈

(V AR
m,n)(0,0). Thus a

̺
j = 0 for all l and w in question. Then E = 0 by

Lemma 6.

Lemma 8. Suppose that all a
(0)
j defined by (∗) are zero for l =

1, . . . ,dimA and w = 0 ∈ TA0 R
n. Then E = 0.

Proof. By (∗) we have

Φlw(Γ
(0),j) = a

(0)
j = a

(0),l
j (w),

where Γ (0),j is defined in the proof of Lemma 7. Let ht = idRm ×t idRn be
the fibre homothety. Then ((ht)∗Γ

(0),j)(z, y) = j2z (y + t(x
1 − z1)2ej), and

then by (∗) we have

Φltw((ht)∗Γ
(0),j) = ta

(0),l
j (tw).

Hence by the invariance of E with respect to the fibre homotheties ht we get
Φltw((ht)∗Γ

(0),j) = tΦlw(Γ
(0),j), and therefore

a
(0),l
j (w) = a

(0),l
j (tw).

Then putting t → 0 and using the assumption of the lemma we see that

a
(0)
j = 0 for any l and w in question. Then Lemma 7 ends the proof.

Lemma 9. Suppose that a
(0)
1 = 0 for w = 0 ∈ TA0 R

n and l =
1, . . . ,dimA. Then E = 0.

Proof. Let at = (x
1, tx2, . . . , txm, y1, . . . , yn) for t 6= 0 be FMm,n-maps.

Clearly, ((at)∗Γ
(0),j)(y, z) = j2z (y + t(x

1 − z1)2ej) for j = 2, . . . , n. Then by
(∗) and the invariance of E with respect to at we get

a
(0),l
j (0) = ta

(0),l
j (0)

for j = 2, . . . , n. Then a
(0),l
j (0) = 0 for j = 1, . . . , n (for j = 1 the equality

holds by assumption). Now Lemma 8 ends the proof.

Proof of Proposition 3. This is an immediate consequence of Lemma 9.



Constructions on second order connections 223

Proof of Theorem 1. Let Γ (0),1 be the second order connection on R
m,n

as in the proof of Lemma 7. Let Ea : J2  S2T ∗ ⊗ V V A be the operators
from Example 2 for a ∈ A. Let (aν) be a basis of A, and let (v

l) correspond
to (aν) (as at the beginning of Section 3). One can show by a standard

argument that the numbers Φl0(Γ
(0),1) = a

(0),l
1 (0) (see (∗)) for E = E

aν are
proportional (with a non-zero coefficient) to the Kronecker delta δlν . Hence
the operators Eaν are linearly independent. Theorem 1 is an immediate
consequence of Propositions 1–3 by a dimension argument.
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