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The transmission problem withboundary onditions given by real measuresby Dagmar Medková (Praha)Abstrat. The unique solvability of the problem ∆u = 0 in G+
∪G−, u+ −au− = fon ∂G+, n+

· ∇u+ − bn+
· ∇u− = g on ∂G+ is proved. Here a, b are positive onstantsand g is a real measure. The solution is onstruted using the boundary integral equationmethod.1. Introdution. V. G. Maz'ya, J. Král and their ollaborators studiedthe weak Neumann problem for the Laplae equation with boundary ondi-tion given by a real measure µ using the integral equation method (see [8℄,[9℄, [13℄): The funtion u is a weak solution of the Neumann problem

∆u = 0 in G,

∂u

∂n
= µ on ∂G,if u is a harmoni funtion in G, |∇u| ∈ L1(H) for eah bounded opensubset H of G, and for eah in�nitely di�erentiable funtion ϕ with ompatsupport we have \

G

∇u · ∇ϕdHm =
\

∂G

ϕdµ.For a given open set G with ompat boundary ∂G they looked for a solutionin the form of a single layer potential Uν orresponding to a real measure
ν on ∂G. They proved that one obtains an integral equation T̃ ν = µ witha bounded linear operator T̃ on the spae of �nite real measures on ∂G ifand only if the set G has bounded yli variation. They restrited onsid-erations to this ase. (Note that open sets with pieewise-smooth boundaryhave bounded yli variation.) A neessary and su�ient ondition for thesolvability of the equation T̃ ν = µ has been stated under the assumption2000 Mathematis Subjet Classi�ation: 31B10, 35J05.Key words and phrases: Laplae equation, transmission problem, boundary integralequation method. [243℄ © Instytut Matematyzny PAN, 2007



244 D. Medkováthat the essential spetral radius of the operator T̃ − 1
2I, where I is theidentity operator, is smaller than 1

2 (see [14℄). (Observe that this onditionis ful�lled for G with boundary of lass C1+α, for onvex domains, for do-mains with pieewise-smooth boundary in R
3 and for some lass of domainswith pieewise-smooth boundary in higher dimensional spaes; see [8℄, [22℄,[26℄, [14℄, [6℄. We remark that suh sets may not have Lipshitz boundary.)The solution of the integral equation T̃ ν = µ was expressed in the form of aNeumann series �rst for onvex domains by J. Král and I. Netuka (see [11℄,[8℄) and later for general open sets by D. Medková (see [15℄, [16℄). Similarresults have been proved for the Robin problem for the Laplae equation(see [23℄�[25℄, [15℄).A solution of the weak Neumann problem with homogeneous boundaryondition may be nononstant. This is evident for G unbounded beause wehave no restrition on the behaviour of a solution at in�nity. For G boundedthis is a bit surprising result, proved in [21, Example 2.1℄. Uniqueness upto an additive onstant was proved under the ondition that a solution u isontinuously extendible onto the losure of G and u(x) → 0 as |x| → ∞ (see[18, Theorem 2℄ and [19, Lemma 3℄).In this paper, the following transmission problem is studied using theintegral equation method:

∆u = 0 in G+ ∪G−,

u+ − au− = f on ∂G+,

∂u+

∂n+
− b

∂u−
∂n+

= µ on ∂G+.Here µ is a real measure on ∂G+, and a, b are positive onstants. To en-sure the uniqueness of the solution we will suppose that u is ontinuouslyextendible onto the losure of G+ and onto the losure of G− and that
u(x) → 0 as |x| → ∞. Here u± is the limit of u with respet to G±. The �rstboundary ondition is satis�ed in the lassial sense and the seond one issatis�ed in the weak sense. We suppose that G+ is a bounded open set withbounded yli variation, and G− = R

m \ clG+. (We do not suppose that
G+ and G− are onneted.) We look for a solution in the form u = Df +Uνin G+, u = (Df +Uν)/a in G−, where Df is the double layer potential withdensity f and Uν is a single layer potential orresponding to an unknownmeasure ν on ∂G+. We get an integral equation Tν = µ̃ (see �4). Underthe assumption that the essential spetral radius of the operator T̃ − 1

2I issmaller than 1
2 neessary and su�ient onditions for the solvability of theproblem are stated and the uniqueness of the solution is proved. Moreover,the solution of the equation Tν = µ̃ is expressed in the form of a Neumannseries. More preisely, if α > α0, where α0 is a onstant depending on G+,
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a and b (see Theorem 5.3), then

ν = α−1
∞∑

n=0

(I − α−1T )nµ̃.This enables us to use the suessive approximation method for obtainingan approximate solution of the equation Tν = µ̃.2. Formulation of the problem. Suppose that G+ ⊂ R
m (m > 2) isa bounded open set. Set G− = R

m \ clG+, where clG+ is the losure of G+.We suppose that ∂G+ = ∂G− where ∂G+ is the boundary of G+. If u is afuntion on R
m \ ∂G+ and x ∈ ∂G+ we denote by u+(x) the limit of u at xwith respet to G+ and by u−(x) the limit of u at x with respet to G−.We study generalized solutions of the following transmission problem:

∆u = 0 in G+,(1)
∆u = 0 in G−,(2)
u+ − au− = f on ∂G+,(3)
∂u+

∂n+
− b

∂u−
∂n+

= g on ∂G+,(4)
lim

|x|→∞
u(x) = 0.(5)Here n+ is the unit outer normal of G+, and a, b are positive onstants.Denote by Hk the k-dimensional Hausdor� measure normalized so that

Hk is the Lebesgue measure in R
k. If G+ has a smooth boundary and u is alassial solution of the above problem then Green's formula yields\

G+

∇u · ∇ϕdHm + b
\

G−

∇u · ∇ϕdHm =
\

∂G+

gϕ dHm−1for eah ϕ ∈ D (= the spae of all ompatly supported in�nitely di�eren-tiable funtions on R
m).Suppose that G ⊂ R

m is an open set with ompat boundary. If u is aharmoni funtion in G suh that(6) \
H

|∇u| dHm <∞for all bounded open subsets H of G, we de�ne the weak normal derivative
NGu of u as the distribution(7) 〈NGu, ϕ〉 =

\
G

∇u · ∇ϕdHm for ϕ ∈ D.
Suppose that G+ has a smooth boundary and u is a lassial solution ofthe problem (1)�(5). Denote by H the restrition of Hm−1 onto ∂G+. Then
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NG+

u+bNG−

u = gH. This motivates the following weak formulation of theproblem:Let G+ be a bounded open set with Hm−1(∂G
+) < ∞. Denote by Hthe restrition of Hm−1 onto ∂G+. If K ⊂ R

m is a ompat set denote by
C′(K) the Banah spae of all �nite real Borel measures with support in K,with the total variation norm. Let a, b be positive onstants, f ∈ C(∂G+),
µ ∈ C′(∂G+). We say that a funtion u de�ned in R

m \ ∂G+ is a weaksolution of the transmission problem
∆u = 0 in G+,(8)
∆u = 0 in G−,(9)
u+ − au− = f on ∂G+,(10)
∂u+

∂n+
− b

∂u−
∂n+

= µ,(11)
lim

|x|→∞
u(x) = 0(12)if u ∈ C∞(G+∪G−), u is ontinuously extendible onto clG+ and onto clG−,there are NG+

u,NG−

u ∈ C′(∂G+), the relations (8), (9), (10), (12) hold and
NG+

u+ bNG−

u = µ. If µ = gH we an say that u is a weak solution of theproblem (1)�(5).3. Potentials. For x, y ∈ R
m and r > 0 de�ne Ω(x; r) = {z ∈ R

m;
|z − x| < r} and

hx(y) =

{
(m− 2)−1(Hm−1(∂Ω(0; 1)))−1|x− y|2−m for x 6= y,

∞ for x = y.If ν is a �nite real Borel measure, write
Uν(x) =

\
Rm

hx(y) dν(y)whenever this integral makes sense.Suppose that G is an open subset of R
m with ompat boundary and

ν ∈ C′(∂G). Then the single layer potential Uν orresponding to ν is aharmoni funtion in R
m \∂G and |∇Uν| is integrable in eah bounded opensubset of G (see [8, Remark on p. 9℄).For x ∈ R

m put
vG(x) = sup

{\
G

∇φ · ∇hx dHm; φ ∈ D, |φ| ≤ 1, sptφ ⊂ R
m \ {x}

}
,

V G = sup
x∈∂G

vG(x).It was shown in [8℄ that NGUν ∈ C′(∂G) for eah ν ∈ C′(∂G) if and onlyif V G < ∞. There are more geometrial haraterizations of vG(x) whih



Transmission problem 247ensure V G <∞ for G onvex or for G with ∂G ⊂
⋃k

i=1 Li, where the Li are
(m− 1)-dimensional Lyapunov surfaes (i.e. of lass C1+α). Denote by

∂eG = {x ∈ R
m; dG(x) > 0, dRm\G(x) > 0}the essential boundary of G where

dM (x) = lim sup
r→0+

Hm(M ∩Ω(x; r))

Hm(Ω(x; r))is the upper density of M at x. Then(13) vG(x) = (Hm−1(∂Ω(0; 1)))−1
\

∂Ω(0;1)

n(θ, x) dHm−1(θ),

where n(θ, x) is the number of points of ∂eG∩{x+ tθ; t > 0} (see [2℄). Thisexpression is a modi�ation of a similar expression in [8℄. As a onsequenewe see that V G ≤ 1/2 if G is onvex. Sine vG(x) ≤ V G + 1/2 by [8,Theorem 2.16℄, we see that if
∂G ⊂

n⋃

i=1

∂Giand G1, . . . , Gn are onvex then V G ≤ n.Let us reall another haraterization of vG(x) using the notion of anexterior normal in Federer's sense. If z ∈ R
m and θ is a unit vetor suh thatthe symmetri di�erene of G and the half-spae {x ∈ R

m; (x− z) · θ < 0}has m-dimensional density zero at z then nG(z) = θ is termed the exteriornormal of G at z in Federer's sense. (The symmetri di�erene of B and Cis (B \ C) ∪ (C \ B).) If there is no exterior normal of G at z in this sense,we denote by nG(z) the zero vetor in Rm. (Note that the exterior normalin the lassial sense is an exterior normal in Federer's sense.)If Hm−1(∂G) <∞ then(14) vG(x) =
\

∂G

|nG(y) · ∇hx(y)| dHm−1(y)for eah x ∈ R
m (see [8, Lemma 2.15℄).Suppose

V G <∞.Then Hm−1(∂eG) <∞ and (14) holds (see [8, Chapter 2℄). For eah x ∈ R
mthe density of G at x,

dG(x) = lim
r→0+

Hm(G ∩Ω(x; r))

Hm(Ω(x; r))
,exists (see [8, Lemma 2.9℄). If ν ∈ C′(∂G) and M is a Borel set then
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NGUν(M) =

\
M∩∂G

dG(x) dν(x)(15)
+
\

∂G

\
M∩∂G

nG(y) · ∇hx(y) dHm−1(y) dν(x)(see [8, pp. 73�74℄).Denote by C′
c(∂G) the set of all ν ∈ C′(∂G) for whih there is a boundedand ontinuous funtion Ucν in R

m suh that Uν = Ucν in R
m \ ∂G. If ν ∈

C′(∂G) and there are onstants α > m−2 and k > 0 suh that |ν|(Ω(x; r)) ≤
krα for all x ∈ R

m and all r > 0 then ν ∈ C′
c(∂G) (see [8, Lemma 2.18℄).For f ∈ C(∂G) de�ne(16) DGf(x) =

1

Hm−1(Ω(0; 1))

\
∂G

nG(y) · (y − x)

|x− y|m
f(y) dHm−1(y),the double layer potential with density f . Then DGf is a harmoni funtionin G whih is ontinuously extendible onto clG. If x ∈ ∂G then(17) lim

y→x, y∈G
DGf(y) = DGf(x) + dG(x)f(x)(see [8, Theorem 2.19, Lemma 2.15, Proposition 2.8, Lemma 2.9℄).If L is a bounded linear operator on a Banah spae X we denote by

‖L‖ess the essential norm of L, i.e. the distane of L from the spae of allompat linear operators on X. The essential spetral radius of L is de�nedby
ressL = lim

n→∞
‖Ln‖1/n

ess .The operator NGU : ν 7→ NGUν is a bounded linear operator in C′(∂G)(see [8, Theorem 1.13℄). We shall need the ondition ress(N
GU − 1

2I) <
1
2 .(Here I denotes the identity operator.) It is well-known that it holds forsets with a smooth boundary (of lass C1+α) (see [9℄) and for onvex sets(see [22℄). A. Rathsfeld showed in [26℄, [27℄ that polyhedral ones in R

3 havethis property. (By a polyhedral one in R
3 we mean an open set Ω whoseboundary is loally a hypersurfae (i.e. every point of ∂Ω has a neighbour-hood in ∂Ω whih is homeomorphi to R
2) and ∂Ω is formed by a �nitenumber of plane angles. By a polyhedral open set with bounded boundaryin R

3 we mean an open set Ω whose boundary is loally a hypersurfaeand ∂Ω is formed by a �nite number of polygons. (Observe that a polyhe-dral open set may not have Lipshitz boundary.) In [14℄ it was shown thatthe ondition ress(NGU − 1
2I) <

1
2 has a loal harater. Hene it holds for

G ⊂ R
3 suh that for eah x ∈ ∂G there are r(x) > 0, a domain Dx whih ispolyhedral or smooth or onvex or a omplement of a onvex domain and adi�eomorphism ψx : Ω(x; r(x)) → R

3 of lass C1+α, where α > 0, suh that
ψx(G∩Ω(x; r(x))) = Dx ∩ψx(Ω(x; r(x))). V. G. Maz'ya and N. V. Grahev



Transmission problem 249proved this ondition for several types of sets with pieewise-smooth bound-ary in Eulidean spae (see [6℄).Lemma 3.1. Let G ⊂ R
m be an open set with ompat boundary. Put

C = R
m \ clG. Suppose ∂G = ∂C, V G <∞ and ress(NGU − 1

2I) <
1
2 . Then

Hm−1(∂G) <∞, V C <∞, ress(NCU − 1
2I) <

1
2 ,

0 < inf
x∈∂G

dG(x) ≤ sup
x∈∂G

dG(x) <∞and G ∪ C has �nitely many omponents. Denote by H the restrition of
Hm−1 onto ∂G. If f ∈ L1(H) then

T̃ f(x) = dG(x)f(x) −
\

∂G

f(y)nG(x) · ∇hx(y) dHm−1(y)makes sense for almost all x ∈ ∂G, and NGU(fH) = (T̃ f)H. If G is boundedtheñ
Tf(x) = −

\
∂G

(f(x)nG(y) · ∇hx(y) + f(y)nG(x) · ∇hx(y)) dHm−1(y).Proof. We have Hm−1(∂G) <∞ and
0 < inf

x∈∂G
dG(x) ≤ sup

x∈∂G
dG(x) <∞,and G has �nitely many omponents by [15, Corollary 1℄ and [18, Lemma 3℄.SineHm−1(∂G) <∞ we obtain ∂eG = ∂eC and thus V C <∞ by (13). Sine

Hm−1(∂G) <∞ we dedue that NCU = I−NGU . Hene ress(NCU − 1
2I) =

ress(N
GU−1

2I) <
1
2 . If f ∈ L1(H) then T̃ f ∈ L1(H) andNGU(fH) = (T̃ f)Hby [10℄. Suppose that G is bounded and x ∈ ∂G. Aording to [8, Lemma 2.9and Proposition 2.8℄ we have
dG(x) = −

\
∂G

nG(y) · ∇hx(y) dHm−1(y).Lemma 3.2. Let G ⊂ R
m be an open set with ompat boundary ∂G =

∂(Rm\clG), V G <∞ and ress(NGU− 1
2I) <

1
2 . If H is a bounded omponentof G then there is ν ∈ C′

c(∂G) so that Uν = 1 in H and Uν = 0 in G \H.Proof. The set G has �nitely many omponents by Lemma 3.1. Let
G1, . . . , Gn be all bounded omponents of G. The odimension of the rangeof NGU is n by [14, Theorem 1.14℄. Sine ress(NGU − 1

2I) <
1
2 the operator

NGU is a Fredholm operator with index 0 by [14, Lemma 1.2℄. Thereforethe dimension of its kernel is n. If ν is a real measure in this kernel then
ν ∈ C′

c(∂G) and there are onstants c1, . . . , cn+1 suh that Uν = ci in Gi,
i = 1, . . . , n, and Uν = cn+1 in G \

⋃
Gi (see [14, Theorem 1.12℄ and [16,Lemma 4℄). Sine Uν(x) → 0 as |x| → ∞ we dedue that cn+1 = 0. If

c1 = · · · = cn = 0 then ν = 0 by [14, Theorem 1.12℄. Sine the dimension of



250 D. Medkováthe kernel of NGU is n we have ν ∈ C′
c(∂G) so that Uν = 1 in H and Uν = 0in G \H.Lemma 3.3. Let G ⊂ R

m be an open set with ompat boundary. Put
C = R

m \ clG. Suppose ∂G = ∂C, V G < ∞ and ress(NGU − 1
2I) <

1
2 . Let

w ∈ C(Rm) be a harmoni funtion in G∪C suh that w(x) → 0 as |x| → ∞.If there is NGw ∈ C′(∂G) then there is NCw ∈ C′(∂G).Proof. Aording to [19, Lemma 3℄ there is p ≥ 1 suh that w ∈ Lp(Rm).[19, Theorem 2℄ implies that NGw∈C′
c(∂G). [18, Theorem 2℄ and Lemma 3.2show that there is ν ∈ C′(∂G) suh that w = Sν in G. Aording to [18,Theorem 1℄ we have ν ∈ C′

c(∂G). The funtions w and Ucν are harmoniin C, ontinuous in clC, w = Ucν on ∂G, and w(x) → 0 and Ucν(x) → 0as |x| → ∞. The uniqueness of the Dirihlet problem implies that w = Ucνin C. Lemma 3.1 gives V C <∞. Hene NCw = NCUν ∈ C′(∂G).Proposition 3.4. Let G ⊂ R
m be an open set with ompat boundary.Put C = R

m \ clG. Suppose ∂G = ∂C, V G < ∞ and ress(NGU − 1
2I) <

1
2 .Let u ∈ C(clG) be a harmoni funtion in G. If G is unbounded , supposemoreover that u(x) → 0 as |x| → ∞. Then there is NGu ∈ C′(∂G) if andonly if there are NGDGu ∈ C′(∂G) and NCDGu ∈ C′(∂G).Proof. We have ress(NCU − 1

2I) = ress(N
GU − 1

2I) <
1
2 by Lemma 3.1.Aording to [17, Theorem 1℄ the funtion u an be extended onto R

m so that
u ∈ C(Rm), u is a harmoni funtion in G∪C and u(x) → 0 as |x| → ∞. Sinethere is NGu ∈ C′(∂G) if and only if there is NCu ∈ C′(∂G) by Lemma 3.3and DGu = −DCu we an suppose that G is bounded.Put

w(x) =

{
u(x) −DGu(x) for x ∈ G,

−DGu(x) for x ∈ C.The funtion w is harmoni in G ∪ C and w(x) → 0 as |x| → ∞. Let
x ∈ ∂G. Sine Hm(∂G) = 0, using the boundary behaviour of the doublelayer potential we get

lim
y→x, y∈G

w(y) = (1 − dG)u(x) −DGu(x) = lim
y→x, y∈C

w(y).Thus w ∈ C(Rm).Suppose �rst that there are NGDGu ∈ C′(∂G) and NCDGu ∈ C′(∂G).Sine there is NCw ∈ C′(∂G) Lemma 3.3 shows that there is NGw ∈ C′(∂G).Therefore NGu = NGw +NGDGu ∈ C′(∂G).Suppose now that there is NGu ∈ C′(∂G). Then u = U(NGu)−DGu in Gby [18, Lemma 4℄. Sine V G <∞ we have NGDGu = NGU(NGu)−NGu ∈
C′(∂G). Sine NGw(x) = NGu(x) − NGDGu ∈ C′(∂G) Lemma 3.3 gives
NCDGu = −NCw ∈ C′(∂G).



Transmission problem 251Notation 3.5. If G is an open subset of R
m, 1 ≤ p ≤ ∞, and k ∈ N,denote by W k,p(G) the set of all funtions u ∈ Lp(G) for whih the partialderivatives up to order k in the sense of distributions are in Lp(G).Lemma 3.6. Let K ⊂ R

m be a ompat set with Hm−1(K) < ∞. Put
F = {y ∈ R

m−1; {t ∈ R
1; [t, y] ∈ K} is in�nite}. Then Hm−1(F ) = 0.Proof. Denote by π the projetion from R

m onto R
m−1 de�ned by π(t, y)

= y. If n is a positive integer and j is an integer, set Kn,j = K ∩ {[t, y]; y ∈
R

m−1, t ∈ [j2−n, (j + 1)2−n)} and Fn,j = π(Kn,j). As |π(t1, y1) − π(t2, y2)|
≤ |[t1, y1] − [t2, y2]| we have Hm−1(Fn,j) ≤ Hm−1(Kn,j). If k, n are positiveintegers denote by F k

n the set of y ∈ R
m−1 whih are in m sets Fn,j . Then

kHm−1(F
k
n ) ≤

∑

j

Hm−1(Fn,j) ≤
∑

j

Hm−1(Kn,j) = Hm−1(K) <∞.

Sine F ⊂
⋂∞

k=1

⋃∞
n=1 F

k
n and

Hm−1

( ∞⋂

k=1

∞⋃

n=1

F k
n

)
≤ lim

k→∞
lim

n→∞
Hm−1(F

k
n ) ≤ lim

k→∞
lim

n→∞
Hm−1(K)/k = 0we obtain Hm−1(F ) = 0.Lemma 3.7. Let G ⊂ R

m be an open set with ompat boundary. Put
C = R

m \ clG. Suppose ∂G = ∂C, V G < ∞ and ress(NGU − 1
2I) <

1
2 . Let

ν ∈ C′
c(∂G) and ϕ ∈ D be suh that ϕ = 1 on a neighbourhood of ∂G. Then

ϕUcν ∈W 1,2(Rm) ∩ C(Rm) and |∇Ucν| ∈ L2(Rm).Proof. For z ∈ R
m−1 write Vz = {t ∈ R

1; [t, z] ∈ R
m \ ∂G} and vz(t) =

ϕ(t, z)Ucν(t, z) for t ∈ R
1. Sine Hm−1(∂G) <∞ by Lemma 3.1, we see fromLemma 3.6 that there is F ⊂ R

m−1 with Hm−1(F ) = 0 suh that R
1 \ Vz is�nite for eah z ∈ R

m−1 \ F . We infer from [8, Lemma 5.8℄ that |∇Ucν| ∈
L2(Rm \ ∂G). Sine Ucν ∈ C(Rm) ∩ C∞(Rm \ ∂G) and ϕ ∈ D we deduethat |∇(ϕUcν)| ∈ L2(Rm \ ∂G) ∩ L1(Rm \ ∂G). Using Fubini's theorem weonlude that there is F̃ ⊂ R

m−1 with Hm−1(F̃ ) = 0 suh that v′z ∈ L1(Vz)for eah z ∈ R
m−1 \ F̃ . If z ∈ R

m−1 \ (F ∪ F̃ ) then vz ∈ C(R1) ∩ C∞(Vz),
v′z ∈ L1(Vz) and R

1 \ Vz is a �nite set, whih fores that vz is an absolutelyontinuous funtion in R
1. Similarly, ϕUcν is absolutely ontinuous on almostall lines parallel to the oordinate axes. Sine its partial derivatives belongto L2(Rm), using [29, Theorem 2.1.4℄ we �nd that ϕUcν ∈W 1,2(Rm).Proposition 3.8. Let G ⊂ R

m be an open set with ompat boundary.Put C = Rm \ clG. Suppose ∂G = ∂C, V G < ∞ and ress(NGU − 1
2I) <

1
2 .Denote by C∇(∂G) the set of all f ∈ C(∂G) for whih there are NGDGf ∈

C′(∂G) and NCDGf ∈ C′(∂G). If f ∈ C(∂G) then f ∈ C∇(∂G) if andonly if f an be extended to an f ∈ C(Rm) ∩ W 1,2(Rm) suh that ∆f in



252 D. Medkováthe sense of distributions is a real measure. Thus C2(Rm) ⊂ C∇(∂G) and
C(Rm) ∩W 1,2(Rm) ∩W 2,1(Rm) ⊂ C∇(∂G).Proof. Sine V C < ∞ and ress(N

CU − 1
2I) <

1
2 by Lemma 3.1, and

DCu = −DGu, we an suppose that G is bounded.Suppose �rst that f ∈ C(Rm) ∩W 1,2(Rm) and ∆f in the sense of distri-butions is a real measure. Fix ϕ ∈ D with ϕ = 1 on a neighbourhood of clG.Put u = fϕ. Sine ∂ju = f∂jϕ+ ϕ∂jf and ∆u = f∆ϕ+ 2∇ϕ · ∇f + ϕ∆fwe an suppose that the support of f is ompat. Set µ = ∆f . Then f = Uµon R
m \F where F = {x ∈ R

m; U|µ|(x) = ∞}. Sine F is a polar set, it haszero Newton apaity (see [12, Chapters I, III and VI℄; f. also [4℄). Sine
Uµ ∈W 1,2(Rm) the real measure µ has �nite energy (see [12, Chapter VI℄).Let µ = µ+−µ− be the Jordan deomposition. The nonnegative measures
µ+, µ− have �nite energy (see [12, Chapters I and VI℄). The potentials Uµ+,
Uµ− are lower semiontinuous in R

m (see [12, Theorem 1.3℄) and �nite on
R

m \ F . Sine Uµ+ − Uµ− is �nite and ontinuous in R
m \ F the funtions

Uµ+, Uµ− are ontinuous in R
m \ F .Denote by µ̃+, µ̃− the balayages of the measures µ+, µ− relative to

clG (see [7, Chapter 11, �3℄). Then µ̃+, µ̃− are nonnegative measures from
C′(clG) with �nite energy suh that U µ̃+ ≤ Uµ+, U µ̃− ≤ Uµ− and U µ̃+ =
Uµ+, U µ̃− = Uµ− in G (see [7, Theorem 11.16℄ and [1, Theorem VIII.3℄).The funtions U µ̃+, U µ̃− are ontinuous with respet to the �ne topology(see [7, Chapter 10℄). This topology is stronger than the ordinary topology.Fix x ∈ ∂G\F . Sine dG(x) > 0 every �ne neighbourhood of x intersets
G (see [7, Corollary 10.5℄ and [12, Theorem 5.11℄) and the �ne topologyis stronger than the ordinary topology, and Uµ+, Uµ− are ontinuous, wededue that U µ̃+(x) = Uµ+(x), U µ̃−(x) = Uµ−(x). Thus U(µ̃+ − µ̃−) =
Uµ = f on G∪(∂G\F ). Sine spt µ̃+ ⊂ clG and spt µ̃− ⊂ clG the funtions
U µ̃+, U µ̃− are harmoni in R

m \ clG.Fix R > 0 so that clG ⊂ Ω(0;R). Denote by µ̂+, µ̂− the balayages ofthe measures µ̃+, µ̃− relative to clΩ(0;R)\G. Then µ̂+, µ̂− are nonnegativemeasures in C′(clΩ(0;R) \ G) with �nite energy suh that U µ̂+ ≤ U µ̃+,
U µ̂− ≤ U µ̃− and U µ̂+ = U µ̃+ and U µ̂− = U µ̃− in Ω(0;R)\clG. In the sameway as above we prove that U µ̂+ = U µ̃+ and U µ̂− = U µ̃− on (clΩ(0;R) \
clG) ∪ (∂G \ F ). Thus U(µ̂+ − µ̂−) = f on ∂G \ F . Sine U µ̂+, U µ̃+ areharmoni funtions in R

m \ clΩ(0;R), ontinuous in R
m \Ω(0;R), tendingto 0 at in�nity, and U µ̂+ = U µ̃+ on ∂Ω(0;R), the uniqueness of the solutionof the Dirihlet problem implies that U µ̂+ = U µ̃+ in R

m \ Ω(0;R). Sine
U µ̂+ = U µ̃+ in R

m\clG the potential U µ̂+ is harmoni in R
m\∂G. Therefore

µ̂+ ∈ C′(∂G). Similarly, µ̂− ∈ C′(∂G).Denote by u the lassial solution of the Dirihlet problem for the Laplaeequation in G with the boundary ondition f . Then u = U(µ̂+ − µ̂−) on
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∂G \ F . Thus u = U(µ̂+ − µ̂−) in G by [18, Lemma 1℄. Sine V G < ∞ wehave NGu = NGU(µ̂+ − µ̂−) ∈ C′(∂G). Proposition 3.4 shows that thereare NGDGu ∈ C′(∂G) and NCDGu ∈ C′(∂G). Sine u = f on ∂G we obtain
f ∈ C∇(∂G).Suppose onversely that f ∈ C∇(∂G). Denote by u the lassial solutionof the Dirihlet problem in G with the boundary ondition f . Then there is
NGu ∈ C′(∂G) by Lemma 3.4. Aording to [18, Theorem 2℄ and Lemma 3.2,there is ν ∈ C′(∂G) suh that u = Uν in G. Fix ϕ ∈ D suh that ϕ = 1 ona neighbourhood of ∂G. Then ϕUcν is an extension of f suh that ϕUcν ∈
C(Rm)∩W 1,2(Rm) (see Lemma 3.7). Aording to [8, Remark 5.7℄, we have
∆Uν = ν in the sense of distributions. Sine Ucν and Uν di�er on a set ofzero Lebesgue measure we obtain ∆Ucν = ν. Sine ϕ ∈ D, Ucν ∈ W 1,2(Rm)and ∆(ϕUcν) = (∆ϕ)Ucν + 2∇ϕ · ∇Ucν + ϕ∆Ucν we dedue that ∆(ϕUcν)in the sense of distributions is a real measure.Remark 3.9. Let G ⊂ R

m be an open set with ompat boundary. Put
C = R

m \ clG. Suppose that ∂G = ∂C is loally the graph of a Lipshitzfuntion, V G < ∞, ress(NGU − 1
2I) <

1
2 and f ∈ C(∂G) ∩W 1,p(∂G) with

1 < p <∞. The nontangential maximal funtions of |∇DGf | with respet to
G and C are from Lp(∂G) by [5, p. 149℄. Aording to [3, Lemma 2.10℄ thenontangential limits of ∇DGf with respet to G and with respet to C existon ∂G. Sine DGf is an Lp-solution of some Neumann problem in G and in Cwe onlude by [20, Lemma 4.1℄ that there are NGDGf,NCDGf ∈ C′(∂G).Thus f ∈ C∇(∂G).Proposition 3.10. Let G ⊂ R

m be an open set with ompat boundary.Put C = R
m \ clG. Suppose ∂G = ∂C, V G < ∞ and ress(NGU − 1

2I) <
1
2 .If f ∈ C∇(∂G) then NGDGf = NCDCf = −NCDGf .Proof. We an suppose that G is bounded. If x ∈ G then

DGf(x) = U(NGDGf)(x) + DG(DGf + dGf)(x)(see [18, Lemma 4℄ and (17)). De�ne C(r) = C ∩ Ω(0; r). Put f = 0 on
R

m \ ∂G. If x ∈ C then
DCf(x) = lim

r→∞
[U(NC(r)DCf)(x) + DC(r)(DCf + dCf)(x)]

= U(NCDCf)(x) + DC(DCf + dCf)(x).Sine
U(NGDGf)(x) = DGf(x) −DG(DGf + dGf)(x)in G we have NGDGf ∈ C′

c(∂G) (see [18, Theorem 1℄) and
U(NGDGf)(x) = DGf(x) + dG(x)f(x) −DG(DGf + dGf)(x)

− dG(x)(DGf + dGf)



254 D. Medkováon ∂G. Sine dG = 1/2 a.e. on ∂G (see [16, Lemma 2℄),
U(NGDGf) =

1

4
f −DG(DGf)a.e. on ∂G. Similarly, NCDCf ∈ C′

c(∂G) and
U(NCDCf) =

1

4
f −DC(DCf)a.e. on ∂G. Sine U(NCDCf) = U(NGDGf) a.e. on ∂G and NCDCf ∈

C′
c(∂G) and NGDGf ∈ C′

c(∂G), we dedue that NGDGf−NCDCf ∈ C′
c(∂G)and Uc(N

GDGf − NCDCf) = 0 on ∂G. Sine Uc(N
GDGf − NCDCf) is aontinuous funtion in R

m, harmoni in R
m \ ∂G and vanishing at in�nitythe maximum priniple implies that Uc(N
GDGf − NCDCf) = 0 in R

m.Therefore
NGDGf −NCDCf

= NGU(NGDGf −NCDCf) +NCU(NGDGf −NCDCf) = 0.4. Redution of the problemProposition 4.1. Let V G+

< ∞, ress(NG+

U − 1
2I) <

1
2 , u be a weaksolution of the transmission problem (8)�(12) with a = 1, and f ≡ 0. Thenthere is ν ∈ C′

c(∂G
+) suh that u = Uν.Proof. Aording to [19, Lemma 3℄, there is p ≥ 1 suh that u ∈ Lp(Rm).[18, Theorem 2℄ and Lemma 3.2 yield a ν ∈ C′(∂G) suh that u = Uν in G−.[18, Theorem 1℄ shows that ν ∈ C′

c(∂G). The funtion Uν is a solution ofthe Dirihlet problem for the Laplae equation in G+ with the boundaryondition Uν = u− = u+. The uniqueness of the solution of the Dirihletproblem implies that u = Uν in G+.We look for a solution of the problem (8)�(12) in the form of the sum ofa single layer potential and a double layer potential. For this we need(18) V G+

<∞, ress(N
G+

U − 1
2I) <

1
2 .In the remainder of the paper we suppose that these onditions are satis�ed.If there is a weak solution of the problem (8)�(12) then u+, u−∈ C∇(∂G+)by Proposition 3.4. Hene f ∈ C∇(∂G+). So, we an suppose that f ∈

C∇(∂G+). We look for a solution in the form
u =

{
DG+

f + v in G+,

DG+

f/a+ v/a in G−.Then u is a weak solution of (8)�(12) if and only if v is a weak solution ofthe problem
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∆v = 0 in G+,(19)
∆v = 0 in G−,(20)
v+ − v− = 0 on ∂G+,(21)
∂v+
∂n+

− c
∂v−
∂n+

= µ̃,(22)
lim

|x|→∞
v(x) = 0,(23)where c = b/a and(24) µ̃ = µ−NG+

DG+

f − cNG−

DG+

f = µ− (1 − c)NG+

DG+

f(see �3). Aording to Proposition 4.1 we an look for a solution of thisproblem in the form v = Uν where ν ∈ C′
c(∂G

+). The problem (19)�(23)redues to the equation(25) Tν = µ̃where(26) Tν = NG+

Uν + cNG−

Uν = cν + (1 − c)NG+

Uν.Now, T is a bounded linear operator in C′(∂G) suh that T (C′
c(∂G

+)) ⊂
C′

c(∂G
+). Sine T (C′

c(∂G
+)) ⊂ C′

c(∂G
+) a neessary ondition for the solv-ability of the problem (19)�(23) is µ̃ ∈ C′

c(∂G
+).5. Solution of the problemNotation 5.1. Let X be a real Banah spae. Denote by complX theomplexi�ation of X, i.e. complX = {x + iy; x ∈ X, y ∈ X}. If A is alinear operator on X, we extend A onto complX by A(x+ iy) = Ax+ iAy.Denote by σ(A) the spetrum of A and by r(A) the spetral radius of A.Lemma 5.2. Let V G+

< ∞, ress(NG+

U − 1
2I) <

1
2 , and c be a positiveonstant. Let ν ∈ compl C′

c(∂G
+) and β ∈ C be suh that Tν = βν. If

|ν|(∂G+) > 0 then β is real and min(1, c) ≤ β ≤ max(1, c).Proof. Denote by Uν the omplex onjugate of Uν. As ν∈compl C′
c(∂G

+),using [8, Lemma 5.8℄ and [16, Lemma 7℄ we get
β

\
G+∪G−

|∇Uν|2 dHm = β
\

∂G+

Ucν dν =
\

∂G+

Ucν dTν

=
\

∂G+

Ucν d(N
G+

Uν + cNG−

Uν)

=
\

G+

|∇Uν|2 dHm + c
\

G−

|∇Uν|2 dHm.If∇Uν = 0 in R
m\∂G+ then Uν is onstant on eah omponent of R

m\∂G+.Sine Uν(x) → 0 as |x| → ∞ we dedue that Uν ≡ 0 on the unbounded
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m \ ∂G+. Sine Ucν ∈ C(Rm) is onstant on eah omponentof R

m \∂G+ we infer that Ucν ≡ 0 in R
m. Hene 0 = NG+

Uν+NG−

Uν = ν,whih is a ontradition. Therefore
0 <

\
G+∪G−

|∇Uν|2 dHm <∞.Sine
β =

[ \
G+

|∇Uν|2 dHm + c
\

G−

|∇Uν|2 dHm

][ \
G+∪G−

|∇Uν|2 dHm

]−1
,we get min(1, c) ≤ β ≤ max(1, c).Theorem 5.3. Let V G+

<∞, ress(NG+

U − 1
2I) <

1
2 , and c be a positiveonstant. De�ne by

‖ν‖C′

c(∂G+) = ‖ν‖C′(∂G+) + ‖Ucν‖C(∂G+)the norm on C′
c(∂G

+). Then C′
c(∂G

+) is a Banah spae. The operator T is abounded ontinuously invertible linear operator in C′(∂G+) and in C′
c(∂G

+).Fix α > max(1, c)/2. Then there are onstants q ∈ (0, 1) and M > 1 suhthat(27) ∥∥(I − α−1T )n
∥∥ ≤Mqnfor eah nonnegative integer n and(28) T−1 = α−1

∞∑

n=0

(I − α−1T )n

in C′(∂G+) and in C′
c(∂G

+).Proof. C′
c(∂G

+) is a Banah spae and T is a bounded linear operator in
C′

c(∂G
+) by [15, Corollary 2℄. We have

ress(T − ((1 + c)/2)I) = |1 − c|ress(N
G+

U − 1
2I).If β ∈ σ(T − ((1 + c)/2)I) is a omplex number suh that

|β| > |1 − c|ress(N
G+

U − 1
2I)then β is an eigenvalue of the operator T − ((1+ c)/2)I by [14, Lemma 1.2℄.Aording to [15, Lemmas 5 and 10℄ there is a nontrivial ν ∈ compl C′

c(∂G
+)suh that [T − ((1 + c)/2)I]ν = βν. Sine Tν = [β + (1 + c)/2]ν Lemma 5.2gives min(1, c) ≤ β + (1 + c)/2 ≤ max(1, c) and

σ(T − ((1 + c)/2)I) ⊂ {β ∈ C; |β| ≤ |1 − c|ress(N
G+

U − 1
2I)}

∪ [min(1, c) − (1 + c)/2,max(1, c) − (1 + c)/2]

⊂ {0} ∪ {β; |β| < |c− 1|/2}.



Transmission problem 257The spetral mapping theorem (see [28, Theorem 9.5℄) gives σ(T −αI) ⊂
{(1 + c)/2 − α} ∪ {β; |β + (c + 1)/2 − α| < |c − 1|/2} ⊂ {β ∈ C; |β| < α}in C′(∂G+). Aording to [15, Lemmas 5 and 8℄, we have σ(T − αI) ⊂
{β ∈ C; |β| < α} in C′

c(∂G
+). Sine r(α−1T − I) < 1 in C′(∂G+) and in

C′
c(∂G

+), there are onstants q ∈ (0, 1) and M > 1 suh that (27) holds.Sine T = α[(α−1T − I) + I], an easy alulation yields (28).Theorem 5.4. Let V G+

<∞, ress(NG+

U − 1
2I) <

1
2 , and a, b be positiveonstants. Let µ ∈ C′(∂G+) and f ∈ C(∂G+). Then there is a weak solutionof the problem (8)�(12) if and only if µ ∈ C′

c(∂G
+) and f ∈ C∇(∂G+). Inthat ase, let µ̃ be given by (24), c = b/a and T−1 be given by Theorem 5.3.Then u = Df + UT−1µ̃ is a unique weak solution of the problem (8)�(12).This solution satis�es |∇u| ∈ L2(G+ ∪G−).Proof. Suppose �rst that there is a weak solution u of (8)�(12). It wasshown in �4 that f ∈ C∇(∂G+). Aording to [19, Lemma 3℄ there is p ≥ 1suh that u ∈ Lp(Rm). [19, Theorem 2℄ shows that NG+

u,NG−

u ∈ C′
c(∂G

+).Thus µ ∈ C′
c(∂G

+).Let now µ ∈ C′
c(∂G

+) and f ∈ C∇(∂G+). Then u = Df + UT−1µ̃ is aweak solution of (8)�(12) by �4 and Theorem 5.3. We now show that |∇u| ∈
L2(G+∪G−). It was proved in �4 that µ̃ ∈ C′

c(∂G
+). Sine T−1µ̃ ∈ C′

c(∂G
+)by Theorem 5.3, we have |∇UT−1µ̃| ∈ L2(G+ ∪G−) by [8, Lemma 5.8℄. A-ording to [19, Lemma 3℄ there is p ≥ 1 suh that Df ∈ Lp(Rm). [19, Theo-rem 2℄ shows that NG+

Df ∈ C′
c(∂G

+) and NG−

Df ∈ C′
c(∂G

+). [18, The-orem 2℄ and Lemma 3.2 imply that there are ν+, ν− ∈ C′(∂G+) suh that
Df = Sν+ in G+ and Df = Sν− in G−. Aording to [18, Theorem 1℄we have ν+, ν− ∈ C′

c(∂G
+). Thus |∇Df | ∈ L2(G+ ∪G−) by [8, Lemma 5.8℄.This gives |∇u| ∈ L2(G+∪G−). Now we show the uniqueness of a solution ofthe problem (8)�(12). Let u be a solution of (8)�(12) with f ≡ 0 and µ ≡ 0.Then there is ν ∈ C′

c(∂G
+) suh that u = Uν by Theorem 4.1. Theorem 5.3and �4 imply that ν ≡ 0 and therefore u ≡ 0.Remark 5.5. Let V G+

< ∞, ress(NG+

U − 1
2I) < 1

2 , µ ∈ C′
c(∂G

+),
f ∈ C∇(∂G+), and a, b be positive onstants. Let µ̃ be given by (24) and
c = b/a. If ν ∈ C′

c(∂G
+) is a solution of the equation Tν = µ̃ then Df + Uνis a weak solution of the problem (8)�(12). Fix α > max(1, c)/2. We anrewrite the equation Tν = µ̃ as ν = (I−α−1T )ν+α−1µ̃. Fix ν0 ∈ Cc(∂G

+).Put
νn+1 = (I − α−1T )νn + α−1µ̃for nonnegative integers n. Let M ∈ [1,∞) and q ∈ (0, 1) be the onstantsfrom Theorem 5.3. Then

‖νn+1 − νn‖ = ‖(I − α−1T )(νn − νn+1)‖ = ‖(I − α−1T )n(ν1 − ν0)‖

≤Mqn‖ν1 − ν0‖



258 D. Medkováin C′(∂G+) and in C′
c(∂G

+). Sine {νn} is a Cauhy sequene it has a limit
ν in C′(∂G+) (and in C′

c(∂G
+)) and Tν = µ̃. Moreover,

‖ν − νn‖ ≤
M‖ν1 − ν0‖

1 − q
qn.
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