Bundle functors on all foliated manifold morphisms have locally finite order

by J. KUREK (Lublin) and W. M. MIKULSKI (Kraków)

Abstract. We prove that any bundle functor $F : \mathcal{F}ol \to \mathcal{FM}$ on the category $\mathcal{F}ol$ of all foliated manifolds without singularities and all leaf respecting maps is of locally finite order.

Let $\mathcal{M}f_m$ be the category of *m*-dimensional manifolds and their embeddings and \mathcal{FM} be the category of all fibred manifolds and their fibred maps. In [9], R. Palais and C. Terng showed that any natural bundle in the sense of A. Nijenhuis [8] (bundle functor) $F : \mathcal{M}f_m \to \mathcal{FM}$ has finite order $\operatorname{ord}(F) \leq 2^f + 1$, where $f = \dim(F_0\mathbb{R}^m)$. (We remark that a bundle functor $F : \mathcal{M}f_m \to \mathcal{FM}$ is of order r if for any $\mathcal{M}f_m$ -maps $\varphi, \psi : M \to N$ and any $x \in M$, from $j_x^r \varphi = j_x^r \psi$ it follows that $F\varphi = F\psi$ on the fiber of FMover x.) In [1], D. Epstein and W. Thurston showed that $\operatorname{ord}(F) \leq 2f + 1$. In [11], A. Zajtz presented the best inequality

$$\operatorname{ord}(F) \le \max\left(\frac{f}{m-1}, \frac{f}{m} + 1\right)$$

if m > 1. In [2], I. Kolář, P. Michor and J. Slovák extended the result from [11] to bundle functors $F : \mathcal{FM}_{m,n} \to \mathcal{FM}$, where $\mathcal{FM}_{m,n}$ is the category of fibred manifolds with *m*-dimensional bases and *n*-dimensional fibers and their fibred embeddings, and obtained the estimate $\operatorname{ord}(F) \leq 2f + 1$ for all m, n, and

$$\operatorname{ord}(F) \le \max\left(\frac{f}{m-1}, \frac{f}{m} + 1, \frac{f}{n-1}, \frac{f}{n} + 1\right)$$

if m > 1 and n > 1, where $f = \dim(F_{(0,0)}(\mathbb{R}^m \times \mathbb{R}^n))$ (the definition of the order of bundle functors on $\mathcal{FM}_{m,n}$ is a direct generalization of the one for bundle functors on $\mathcal{M}f_m$). From [2] it follows that every product preserving bundle functor $F : \mathcal{M}f \to \mathcal{FM}$, where $\mathcal{M}f$ is the category of all

[69]

²⁰⁰⁰ Mathematics Subject Classification: 58A05, 58A20, 58A32.

Key words and phrases: foliated manifold, bundle functor, order of bundle functor.

manifolds and all maps, is of finite order $\operatorname{ord}(F) = \operatorname{ord}(F|\mathcal{M}f_1)$. In [6], the second author presented an example of a vector bundle functor $\mathcal{M}f \to \mathcal{VB}$ of strictly infinite order.

EXAMPLE 1 ([6]). We recall that $T^{(r)}M = (J^r(M,\mathbb{R})_0)^*$ denotes the rth order vector tangent bundle of a manifold M. Let $d_r = \dim(T_0^{(r)}\mathbb{R}^r)$. We set $GM = \bigoplus_{k=1}^{\infty} \bigwedge^{d_k} T^{(k)}M$. Then GM is a finite-dimensional vector bundle for every manifold M because for $k > \dim(M)$ the vector bundle $\bigwedge^{d_k} T^{(k)}M$ is the zero-bundle. Hence the direct sum in the definition of GM is in fact a finite sum. For a mapping $f: M \to N$ the induced mapping $Gf: GM \to GN$ is defined in the natural way from $T^{(k)}f: T^{(k)}M \to T^{(k)}N$. The vector bundle functor G is of strictly infinite order because its restriction to the category $\mathcal{M}f_k$ is of order at least k.

In [7], the second author proved that every bundle functor $F : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ has locally finite order in the following sense.

PROPOSITION 1 ([7]). Let $F : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ be a bundle functor. Let $r_m := \operatorname{ord}(F|\mathcal{M}f_m)$. For all maps $f_1, f_2 : M \to N$ and $x \in M$, from $j_x^{r_{\dim(M)+1}}f_1 = j_x^{r_{\dim(M)+1}}f_2$ it follows that $Ff_1 = Ff_2$ on the fiber over x.

In [2], the above result is extended to bundle functors $F : \mathcal{FM}_m \to \mathcal{FM}$, where \mathcal{FM}_m is the category of fibred manifolds with *m*-dimensional bases and their fibred maps covering embeddings. Namely, the following proposition is proved.

PROPOSITION 2 ([2]). Let $F : \mathcal{FM}_m \to \mathcal{FM}$ be a bundle functor. Let $r_n = \operatorname{ord}(F|\mathcal{FM}_{m,n})$. For all \mathcal{FM}_m -maps $f_1, f_2 : Y \to Z$ and $x \in Y$, from $j_x^{r_{\dim(Y)-m+1}}f_1 = j_x^{r_{\dim(Y)-m+1}}f_2$ it follows that $Ff_1 = Ff_2$ on the fiber over x.

From [4] it follows that any product preserving bundle functor F: $\mathcal{FM} \to \mathcal{FM}$ has finite order $\operatorname{ord}(F) = \operatorname{ord}(F|\mathcal{FM}_{1,1})$. In [3], a fiberproduct preserving bundle functor $F : \mathcal{FM} \to \mathcal{FM}$ of strictly infinite order is given. From [3] it follows that any fiber-product preserving bundle functor $F : \mathcal{FM} \to \mathcal{FM}$ is of locally finite order in the following sense: for all \mathcal{FM} -maps $f_1, f_2 : Y \to Z$ and $x \in Y$ with $Y \in \mathcal{FM}_{m,n}$, from $j_x^{r_m} f_1 =$ $j_x^{r_m} f_2$ it follows that $Ff_1 = Ff_2$ over x, where $r_m = \max(\operatorname{ord}(F|\mathcal{FM}_{m,0}),$ $\operatorname{ord}(F|\mathcal{FM}_{m,1}))$. So, we have the following natural question.

QUESTION 1. Is any bundle functor $F : \mathcal{FM} \to \mathcal{FM}$ of locally finite order?

In this paper we give an affirmative answer to the above question. Since the category \mathcal{FM} has the same skeleton as the category \mathcal{Fol} of all foliated manifolds without singularities and all leaf respecting maps, it is sufficient to study the order of bundle functors on \mathcal{Fol} . We recall (see [2]) that a bundle functor on $\mathcal{F}ol$ is a covariant functor $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ satisfying:

- (i) (Base preservation) $B_{\mathcal{F}\mathcal{M}} \circ F = B_{\mathcal{F}ol}$, where $B_{\mathcal{F}\mathcal{M}} : \mathcal{F}\mathcal{M} \to \mathcal{M}f$ is the base functor and $B_{\mathcal{F}ol} : \mathcal{F}ol \to \mathcal{M}f$ is the functor $(M, \mathcal{F}) \to M$. Hence the induced projections form a natural transformation $\pi : F \to B_{\mathcal{F}ol}$.
- (ii) (Localization) For every inclusion $i_{(U,\mathcal{F}|U)} : (U,\mathcal{F}|U) \to (M,\mathcal{F})$ of an open subset, $F(U,\mathcal{F}|U)$ is the restriction $\pi^{-1}(U)$ of $\pi : F(M,\mathcal{F})$ $\to M$ over U and $Fi_{(U,\mathcal{F}|U)}$ is the inclusion $\pi^{-1}(U) \to F(M,\mathcal{F})$.
- (iii) (*Regularity*) F transforms smoothly parametrized families of $\mathcal{F}ol-$ maps into smoothly parametrized families of fibred maps.

EXAMPLE 2. A well-known example of a bundle functor $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ is the normal bundle functor $N : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ transforming any foliated manifold (M, \mathcal{F}) into its normal bundle $N(M, \mathcal{F}) = TM/T\mathcal{F}$ and any $\mathcal{F}ol$ map $f : (M, \mathcal{F}) \to (M_1, \mathcal{F}_1)$ into the quotient map $Nf = [Tf] : N(M, \mathcal{F}) \to$ $N(M_1, \mathcal{F}_1)$. This bundle functor N is product preserving. Another product preserving bundle functor $\mathcal{F}ol \to \mathcal{F}\mathcal{M}$ can be found in [10]. (In [5], the second author described all product preserving bundle functors $F : \mathcal{F}ol \to$ $\mathcal{F}\mathcal{M}$ in terms of Weil algebra homomorphisms $\mu : A \to B$.)

EXAMPLE 3. Let $F = T \otimes V : F\mathcal{M} \to \mathcal{VB}$ be the vector bundle functor sending any fibred manifold $p : Y \to M$ into the tensor product $FY = TM \otimes_Y VY$ of the tangent bundle TM with the vertical bundle $VY \to Y$ of $Y \to M$, and any \mathcal{FM} -map $f : Y \to Y_1$ covering $\underline{f} : M \to M_1$ into $Ff = T\underline{f} \otimes Vf : FY \to FY_1$. This bundle functor F is fibre product preserving but is not product preserving. Using the standard "gluing" argument one can uniquely extend F to $\tilde{F} : \mathcal{Fol} \to \mathcal{FM}$. In this way we obtain a vector bundle functor which is not product preserving. (In [3], I. Kolář and the second author described all fibre product preserving vector bundle functors $F : \mathcal{FM} \to \mathcal{VB}$. The functors are of the form $F = G \otimes V : \mathcal{FM} \to \mathcal{VB}$ ($FY = GM \otimes_Y VY, Ff = G\underline{f} \otimes Vf$) for some vector bundle functor G : $\mathcal{M}f \to \mathcal{VB}$. Taking G of strictly infinite order (see Example 1), we produce $F : \mathcal{FM} \to \mathcal{FM}$ of strictly infinite order. Then using the standard "gluing" argument we produce $\tilde{F} : \mathcal{Fol} \to \mathcal{FM}$ of strictly infinite order.)

EXAMPLE 4. Let S be a manifold. We have a trivial bundle functor $F = \mathrm{id}_{\mathcal{F}ol} \times \mathrm{id}_S : \mathcal{F}ol \to \mathcal{FM}, F(M, \mathcal{F}) = M \times S, Ff = f \times \mathrm{id}_S$. This F is not a product preserving bundle functor if S is not one point. If S is not a vector bundle, then F is not a vector bundle functor.

We recall that a bundle functor $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ is of *locally finite* order if for any m, n there exists a finite number $r_{m,n}$ such that for any foliated (m+n)-dimensional manifold M with n-dimensional foliation \mathcal{F} and any $\mathcal{F}ol$ -maps $f, g: (M, \mathcal{F}) \to (N, \mathcal{F}_1)$ (into an arbitrary foliated manifold (N, \mathcal{F}_1)) and any $x \in M$, from $j_x^{r_{m,n}}f = j_x^{r_{m,n}}g$ it follows that Ff = Fg on the fiber of $F(M, \mathcal{F})$ over x.

The purpose of the present note is to prove the following theorem which gives an affirmative answer to Question 1.

THEOREM 1. Any bundle functor $F : \mathcal{F}ol \to \mathcal{F}\mathcal{M}$ has locally finite order in the following sense: Let m, n be positive integers, (M, \mathcal{F}) be an (m + n)dimensional foliated manifold M with n-dimensional foliation \mathcal{F} , and $x \in$ M be a point. Then for all $\mathcal{F}ol$ -maps $f_1, f_2 : (M, \mathcal{F}) \to (M_1, \mathcal{F}_1)$, from $j_x^{r(m,n)}f_1 = j_x^{r(m,n)}f_2$ it follows that $Ff_1 = Ff_2$ on the fibre over x, where $r(m,n) = \max(\operatorname{ord}(F|\mathcal{F}\mathcal{M}_{m+1,n}), \operatorname{ord}(F|\mathcal{F}\mathcal{M}_{m,n+1})).$

Proof. Let $f_1, f_2 : (M, \mathcal{F}) \to (M_1, \mathcal{F}_1)$ be $\mathcal{F}ol$ -maps such that $j_x^{r(m,n)} f_1 = j_x^{r(m,n)} f_2$ for some $x \in M$. We show that $Ff_1 = Ff_2$ over x.

(I) First we assume that $p \ge m$ and $q \ge n$. Because of the regularity of F we can assume that $d_x f_1$ is of rank m + n. Then by the rank theorem we can assume $(M, \mathcal{F}) = (\mathbb{R}^m \times \mathbb{R}^n, \{\{a\} \times \mathbb{R}^n\}_{a \in \mathbb{R}^m}), x = (0, 0), (M_1, \mathcal{F}_1) = (\mathbb{R}^p \times \mathbb{R}^q, \{\{c\} \times \mathbb{R}^q\}_{c \in \mathbb{R}^p}), f_1(0, 0) = f_2(0, 0) = (0, 0)$ and

$$f_1(x,y) = ((x,0), (y,0))$$

for any $(x, y) \in \mathbb{R}^m \times \mathbb{R}^n$. Let $f_i(x, y) = (\varphi_i(x), \psi_i(x, y))$ for any $(x, y) \in \mathbb{R}^m \times \mathbb{R}^n$, i = 1, 2. Define $\mathcal{F}ol$ -maps $\Phi_i : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^m \times \mathbb{R}^q$ by

 $\Phi_i(x,y) = (x,\psi_i(x,y)), \quad (x,y) \in \mathbb{R}^m \times \mathbb{R}^n,$

and $\Psi_i : \mathbb{R}^m \times \mathbb{R}^q \to \mathbb{R}^p \times \mathbb{R}^q$,

$$\Psi_i(x,z) = (\varphi_i(x),z), \quad (x,z) \in \mathbb{R}^m \times \mathbb{R}^q.$$

Then $f_i = \Psi_i \circ \Phi_i$, i = 1, 2.

Define a bundle functor $G: \mathcal{FM}_m \to \mathcal{FM}$ by $G = F|\mathcal{FM}_m$. Of course, the Φ_i are \mathcal{FM}_m -maps and $j_{(0,0)}^{r(m,n)}\Phi_1 = j_{(0,0)}^{r(m,n)}\Phi_2$. Then by Proposition 2 we have $G\Phi_1 = G\Phi_2$ over $(0,0) \in \mathbb{R}^m \times \mathbb{R}^n$. So $F\Phi_1 = F\Phi_2$ on the fibre $F_{(0,0)}$ of $F(\mathbb{R}^m \times \mathbb{R}^n, \{\{a\} \times \mathbb{R}^n\}_{a \in \mathbb{R}^m})$ over $(0,0) \in \mathbb{R}^m \times \mathbb{R}^n$.

Hence it remains to show that $F\Psi_1 = F\Psi_2$ on $F\Phi_1(F_{(0,0)})$.

We define $\mathcal{F}ol$ -maps $\widetilde{\Psi}_i := \varphi_i \times \operatorname{id}_{\mathbb{R}^n} : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^p \times \mathbb{R}^n$ and $I_s : \mathbb{R}^s \times \mathbb{R}^n \to \mathbb{R}^s \times \mathbb{R}^q$, $I_s(w, y) = (w, (y, 0))$. Then $\Psi_i \circ I_m = I_p \circ \widetilde{\Psi}_i$ and $I_m = \Phi_1$. Clearly, FI_s is an embedding because I_s is (see [2]). Then it suffices to show that $F\widetilde{\Psi}_1 = F\widetilde{\Psi}_2$ over $(0, 0) \in \mathbb{R}^m \times \mathbb{R}^n$.

Define a bundle functor $H : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ by $HM = F(M \times \mathbb{R}^n, \{\{a\} \times \mathbb{R}^n\}_{a \in M}), H\varphi = F(\varphi \times \operatorname{id}_{\mathbb{R}^n}).$ Clearly, $j_0^{r(m,n)}\varphi_1 = j_0^{r(m,n)}\varphi_2.$ Then by Proposition 1, $H\varphi_1 = H\varphi_2$ over $0 \in \mathbb{R}^m$. Therefore $F\widetilde{\Psi}_1 = F\widetilde{\Psi}_2$ over $(0,0) \in \mathbb{R}^m \times \mathbb{R}^n$, as well, which implies $Ff_1 = Ff_2$ over $x \in M$ under the assumption $p \geq m$ and $q \geq n$. (II) Now let p and q be arbitrary. We may assume $(M, \mathcal{F}) = (\mathbb{R}^m \times \mathbb{R}^n, \{\{a\} \times \mathbb{R}^n\}_{a \in \mathbb{R}^m}), x = (0, 0), (M_1, \mathcal{F}_1) = (\mathbb{R}^p \times \mathbb{R}^q, \{\{c\} \times \mathbb{R}^q\}_{c \in \mathbb{R}^p}), f_1(0, 0) = f_2(0, 0) = (0, 0).$ Let $\tilde{p} \ge \max(m, p)$ and $\tilde{q} \ge \max(n, q)$. Let $J : \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^{\tilde{p}} \times \mathbb{R}^{\tilde{q}}$ be the $\mathcal{F}ol$ -embedding given by J(u, w) = ((u, 0), (w, 0)). Then $j_{(0,0)}^{r(m,n)}(J \circ f_1) = j_{(0,0)}^{r(m,n)}(J \circ f_2)$. Hence, by (I) for $J \circ f_i$ instead of f_i and (\tilde{p}, \tilde{q}) instead of (p, q), we have $F(J \circ f_1) = F(J \circ f_2)$ over $(0, 0) \in \mathbb{R}^m \times \mathbb{R}^n$. But FJ is an embedding because J is. Then $Ff_1 = Ff_2$ over x as well.

From Theorem 1 we immediately obtain the following corollary.

COROLLARY 1. Any bundle functor $F : \mathcal{FM} \to \mathcal{FM}$ has locally finite order in the following sense: Let m, n be positive integers. Let $Y \to M$ be an $\mathcal{FM}_{m,n}$ -object and $x \in Y$ be a point. Then for all \mathcal{FM} -morphisms $f_1, f_2 : Y \to Y_1$, from $j_x^{r(m,n)} f_1 = j_x^{r(m,n)} f_2$ it follows that $Ff_1 = Ff_2$ over x, where r(m, n) is defined as in Theorem 1.

EXAMPLE 5. Let $G: \mathcal{M}f \to \mathcal{VB}$ be the vector bundle functor of strictly infinite order as in Example 1. We define a bundle functor $F = G: \mathcal{F}ol \to \mathcal{VB}, F(M, \mathcal{F}) = GM, Ff = Gf$. This bundle functor is of strictly infinite order. It is of locally finite order, but in this case we cannot replace r(m, n)in Theorem 1 by an r(m) depending only on m (in contrast to Example 3).

References

- D. B. A. Epstein and W. P. Thurston, *Transformation groups and natural bundles*, Proc. London Math. Soc. 38 (1979), 219–236.
- [2] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
- [3] I. Kolář and W. M. Mikulski, Fiber product preserving bundle functors on all morphisms of fibered manifolds, Arch. Math. (Brno) 42 (2006), 285–293.
- [4] W. M. Mikulski, Product preserving bundle functors on fibered manifolds, ibid. 32 (1996), 307–316.
- [5] —, Product preserving bundles on foliated manifolds, Ann. Polon. Math. 84 (2004), 67–74.
- [6] —, There exists a prolongation functor of infinite order, Časopis Pěst. Mat. 114 (1989), 57–59.
- [7] —, Natural transformations of Weil functors into bundle functors, Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990), 177–191.
- [8] A. Nijenhuis, Natural bundles and their general properties, in: Differential Geometry (in Honor of K. Yano), Kinokuniya, Tokyo, 1972, 317–334.
- [9] R. S. Palais and C. L. Terng, Natural bundles have finite order, Topology 16 (1977), 271–277.
- R. A. Wolak, On transverse structures of foliations, Rend. Circ. Mat. Palermo (2) Suppl. 9 (1985), 227–243.

[11] A. Zajtz, The sharp upper bound on the order of natural bundles of given dimensions, Bull. Soc. Math. Belg. Sér. B 39 (1987), 347–357.

Institute of Mathematics	Institute of Mathematics
Maria Curie-Skłodowska University	Jagiellonian University
Pl. M. Curie-Skłodowskiej 1	Reymonta 4
20-031 Lublin, Poland	30-059 Kraków, Poland
E-mail: kurek@hektor.umcs.lublin.pl	E-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received 22.6.2007 and in final form 3.10.2007 (1793)

74