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Positive periodic solutions of
functional differential equations with infinite delay

by CHANGXIU SONG (Guangzhou)

Abstract. The author applies a generalized Leggett—Williams fixed point theorem
to the study of the nonlinear functional differential equation

z'(t) = —a(t, z(t))z(t) + f(t, z).

Sufficient conditions are established for the existence of multiple positive periodic solu-
tions.

1. Introduction. In this paper, we are concerned with the functional
differential equation

(1.1) o' (t) = —a(t,z(t))z(t) + f(t,z4),
where

e a € C(RxR,R) with a(t + w,z) = a(t, x);
oVt € R, &y = x4(0) = z(t +6), —o0o < 0 < 0; we assume z; € C,
where C' = C((—00,0],R) is a Banach space with the norm ||¢||c =

maXge (—o0,0] [(0);
o fc C(R X C’Jr R) with f(t +w,¢) = f(t,9), ¢ € CT, where CT =

{peC: (9)20,96( 00, 0]}
o w>0.

We make the following assumptions:

(Hy) there exist w-periodic functions aj,as € C(R,R) satisfying
w
a(t) <a(t,z) <ag(t), {a(t)dt>0;
0
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(H2) f(t,¢) maps bounded sets into bounded sets and is a nonnegative
continuous function defined on R x C*.

Our purpose is to prove that (1.1) has multiple positive periodic solu-
tions by using a generalized Leggett—Williams fixed point theorem. For the
biological senses of (1.1), we refer to [2, 3, 6].

From (1.1) we obtain
¢

(1.2) [=(t)exp(Jalr,2(r)) dT)}' = exp (§ alr, 2(7)) dr ) £(t, 21).
0 0

After integration from ¢ to t + w, we obtain

t+w

(1.3) w(t)= | G(t,5)f(s,2)ds,
where t

o) — exp(§; a(r, (7)) dr)
(14) Glt,s) = exp(gg a(t,z(r))dr) — 1
Let ) .

M, = oggggw exp Q ay(7) d’T), My = ogilglggw exp Q as(T) d’T),
ki = exp(s ay(7) dT), ko = exp(S ax(7) dT), 0= %;
0 0

we know that 0 < § < 1. Furthermore, we have from (H;) and (1.4)

M, 9
< < .
k2_1_G(t,s)_k1_1

Now, let X be the set of all real w-periodic continuous functions, endowed
with the usual linear structure as well as the norm ||z[| = sup,c( . [z(t)[. It
is a Banach space with a cone

t
P= {:L’ € X :x(t) > 6z, =(t) exp (S a1 (7) dT) is nondecreasing on [O,w]}.
0

Furthermore, for all z € X, we have
|zl = ||z¢||lc  for each t € [0, w],

and for all z € P, we deduce that z(t) exp(Sg az(7) dr) is nondecreasing on
[0, w].
Define T': P — X as
t+w
(1.5) Ta(t) = | G(t,5)f(s,2s)ds.
t
Similar to the proofs of Lemmas 2.2 and 2.4 in [4], one can easily show
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LEMMA 1.1. T : P — P is well defined and completely continuous.

One can easily see that x is a positive solution of (1.1) if and only if x is
a fixed point of T on P.

For convenience, we present a generalized Leggett—Williams fixed point
theorem due to Avery and Henderson [1]. Let

P(d,e) ={z € P:i(x) < e},
OP(d,e) ={z € P:d(x)=e},

P(d,e) ={z € P:d(x) <e}.
LEMMA 1.2. Let X be a real Banach space, P a cone of X, v and «
two monnegative increasing continuous function on P, and 6 a nonnegative

continuous function on P with 6(0) = 0 such that there are positive numbers
c and M satisfying

V(@) <0(z) <alx), |z <My(x) forz e P(y,c).

Moreover, assume that T : P(vy,c) — P is completely continuous and there
are positive numbers 0 < a < b < ¢ such that

O(A\z) < X0(z) for all X € [0,1] and = € OP(0,b),
and

(i) v(Tx) > ¢ for x € OP(v,c);
(ii) 8(Tx) < b for x € OP(0,b);
(i) a(Tz) > a and P(a,a) # 0 for z € OP(«, a).

Then T has at least two fized points x1,x9 € P(y,c) satisfying

a<a(xy), 6(x1)<b b<l(z2), ~(z)<ec
The following lemma is similar to Lemma 1.2.
LEMMA 1.3. The conclusion of Lemma 1.2 still holds if we replace
(i)—(iii) there by

(i) v(Tx) < ¢ for x € OP(v,c);
(ii) O(Tx) > b for x € OP(0,b);
(i) a(Tz) < a and P(a,a) # 0 for x € OP(a,a).
LEMMA 1.4 ([5]). Let P be a cone of a real Banach space X, 2 a bounded

open subset of X, and 0 € §2. Moreover, assume that T : PN {2 — P is
completely continuous and satisfies

Tx = Ax for somex € PNON2 = A<1.

Then
(T, PN, P)=1.
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REMARK 1.1. We know that 2 = P(a,a) in Lemma 1.3 is a bounded
open subset of X, and by (iii) of Lemma 1.3, we have

Tx <z forallze PNoR =0P(x,a).

From Lemma 1.3, Lemma 1.4 and Remark 1.1, we have the following
result.

LEMMA 1.5. Let the conditions of Lemma 1.3 hold. Furthermore, as-

sume 0 € P(a,a). Then T has at least three fized points x1,x2,x3 € P(v,c)
satisfying

alry) <a, a<a(re), wlxe)<b, b<w(rs), ~(z3)<c
2. Main results. Fix 0 <7 <[ < w and define nonnegative, increasing,
continuous functions -y, 8, and « on P by

~v(x) = min eloa1(7) de(t) = :E(n)esg a1() dr.

n<t<l
_ Xt ai(t)dr _ S0 a1(r)dr
0(x) Jnax e z(t) = z(n)e ,
_ . St az(7)dr _ Sl az(7)dr
a(x) min e 0 x(t) = x(l)e' .
We have
v(x) =0(x) < a(x), x€P,
and
(1.6) v(z) = z(n)elo @M > S drg iz for each x € P,

(1.7) a(z) = ac(l)esf) az(r)dr > eoa2(r) ar§||z|  for each x € P.
Then

1 1
(1.8) || < e Sommdr 5 v(z) = e loar(n)dr 5 O(x) for each x € P,
(1.9) x| < e~ loaa(r)dr % a(z) for each z € P,

O(Az) = N0(z) forall A €]0,1] and = € P.

For the notational convenience, we set

_ iul(w — 7]) {0 ai(r)dr _ Mow {0 ai(r)dr
g1 = kQ—l e’ ) Ql_kl—leo )
_ lml(w — l) sl az(T)dr _ Maw Sl az(T)dr
02 = Ty — 1 e ) QQ—kl_leo .

THEOREM 2.1. Suppose that there are positive numbers a < b < ¢ such

that 5
0<a<ﬂb<gic.
01 01
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Assume f(t, o) satisfies the following conditions:
¥

(A) f(tv ) > C/Ul fOT (tv 30) € [U,w] X Ky,
(B) f(t,p) <b/o1 for (t,p) € [0,w] x Ko,
(C) f(t, ) > a/oz for (t,p) € [l,w] x K3,

where
Ki={peCT: e BnY < gflc < (¢/5)e” B,
Ky ={peC": 0< oo < (b/o)e By,
K3 ={peCF: ac b2 < gllc < (a/d)e owmary,
Then (1.1) has at least two positive periodic solutions x1 and x2 satisfying
a<a(z), O(x)<b b<l(z), lx)<ec

Proof. By Lemma 1.1, T': P(vy,c¢) — P and T is completely continuous.
Now, we show that (i)—(iii) of Lemma 1.2 are satisfied.

First, we verify that © € OP(v,c) implies v(T'z) > c¢. Since v(x) =
z(n)edo a1 (Mdr — ¢ one gets

2(t)elo DI > ¢ for t € [n,w].
From (1.8), we have

ce S0 MdT < gl < e—Sgal(T)dTg for t € [n,w].

Then we get
nt+w
Y(Tx) = (Tz)(n)eb 19 = o @ [ Gy, 5) f(s, 24) ds
n

> elgar(n)dr G(n,s)f(s,zs)ds

M
! ids:c.

n
> §¢ar(r)dr
€ k‘2—10’1

St & I —¢&

Secondly, we prove that x € 9P(6,b) implies 6(Tx) < b. Since 6(z) = b
implies z(n)elo 91(Md7 — p_we have

0< ac(t)egg a(mdr < fort e[0,7).

From (1.8), we have

b
0 < ||lzelle < 5 e~ Vadr fort c0,w] ort € [n,n+ wl.
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Then .
n+w
0(Tz) = (Ta)(n)els 10T = o { Gy, 5)f (s, 25) ds
n
n+w
<eamar | 2o b 0,
- , ki —10

Finally, we show that
P(a,a) #0, «(Txz)>a forall z € OP(a,a).

The nonemptiness is obvious. On the other hand, a(x) = x(l)e% ax(r)dr — ¢

implies a < ac(t)egé @2(7)d7 for ¢ € [I,w]. Recalling (1.9), we know
ae~Yoox(r)dr <Nzel|le < e~ fo “Q(T)dT% for t € [l,w].

Thus

> eloaz(r) dr S G(l,s)f(s,xs)ds
l
l M a
> (w — Deloaz(T)dr - =
(w—1)e T —1 0 a
Thus by Lemma 1.2, T has at least two different fixed points z; and xo,
which are positive periodic solutions of (1.1). The proof is complete.

Similarly, by Lemma 1.5, we have the following result.

THEOREM 2.2. Suppose that there are positive numbers 0 < a < b < ¢
such that

0<a<db<oidc/or.

Assume f(t, o) satisfies the following conditions:
(A) f(t,p) <c/or for (t,¢) € [0,w] x K7,
(BY) f(t, ) >b/or for (t, ) € [n,w] x K3,
(C') f(t,p) < ajoz for (t,¢) € [0,w] x K3,

where

Kl ={peCt:0<lglc < (c/d)e lomdry,
Ky ={peCt:be NI < g)c < (b/g)e B dry,
Ky={peC":0<|plc < (a/g)e”lo=@dry,

Then (1.1) has at least three positive solutions x1, xo and x3 satisfying

a<a(r)), O(x1)<b b<O(x), ~(x2) <c.
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The proof is omitted since it is similar to that of Theorem 2.1.

Now, we give theorems which may be considered as corollaries of Theo-
rems 2.1 and 2.2.

Choose €1, €2, €3 such that

l
610‘26_50 az () dr > 1, 520’16_%7 ar(7) dr > 1,

<oy ) uiin
THEOREM 2.3. Let the following conditions be satisfied:
t t
(D) lim min 1t ¢) 1;  lim  min AGLD) 2
lpllc—oteltw] [lellc lpllc—oo temawl llelle

(E) there exists a p1 > 0 such that for each ¢ with 0 < |[¢llc <
(pl/é)e_ §0a1(r) dT?
f(t,p) <pi/o1 forallt e [0,w].
Then (1.1) has at least two positive periodic solutions.

Proof. First, choose b = p1; one gets

fltp) <2 = Y ferte 0,0], 0 < |lollc < b - farmyar
o1 01 o

Secondly, since
t
lellc—oteltew] [lellc
there is Ry > 0 sufficiently small such that
ft@) >ellelle fortel,w], 0<pllo < Ri.

Without loss of generality, suppose

Ry < 92 be‘xé az(r)dr
010

Choose a > 0 so that a < (5R16§6 az(1)dr For
ae—Soaz(r)dr <lelle < o~ Soaz(r)dr %’
we have ||¢|lc < Ry and a < (02/01)b. Thus
f(t9) > ellelle = erae™ o209 > a/g

for ¢ € [1,w],ae™ 50204 < gl < e~ loar(D)dr

SRS

Thirdly, since
[t )
lellic—oo telnw] [l¢llc
there is Ro > 0 sufficiently large such that

f(t,0) > eallpllc fort e [n,w], [[ollc > Ra.

)
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Without loss of generality, suppose Ry > (b/5)e‘§g a1(T)d7  Choose ¢ >
Rgexg ar(r)dT Then

F(t,0) > eallglle = ezce W > /gy
c
5
We now get 0 < a < 02b/01 < 020c¢/p1, and then the conditions in Theorem

2.1 are all satisfied. By Theorem 2.1, (1.1) has at least two positive periodic
solutions. The proof is complete.

for ¢ € [n,w], ce” B DI < Jlpfje < el

THEOREM 2.4. Let the following conditions be satisfied:
t
(F) lim AGTD
lellc—ote0wl [lello
(G) there exists a pa > 0 such that for each ¢ with pge_sg ar(r)dr <
lelle < (p2/d)eloa(dr,

f(tv QD) > p2/01 fOT’ allt € [777@]-
Then (1.1) has at least three positive periodic solutions.

€3

The following corollaries are obvious.

COROLLARY 2.1. Let the following conditions be satisfied:

(D') lim min /(¢ ¢) =o0; lim min 1t 9) =
lelc—otelte] llello lellc—oo telne] [lplle

(E) there exists a pr > 0 such that for each ¢ with 0 < [l¢|c <
(p1/8)e™ o,

f(t,o) <pi/or forallt e [0,w)].

Then (1.1) has at least two positive periodic solutions.

9

COROLLARY 2.2. Let the following conditions be satisfied:

(F)’ flte)

im =
lelle—0telow] |lellc

?

(G) there exists a pa > 0 such that for each ¢ with p26—88 ar(r)dr <
n
lelle < (pa/8)eSoar(mdr,

f(t, o) >p2for  forallt e n,w].

Then (1.1) has at least three positive periodic solutions.
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