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A finite difference method for quasi-linear
and nonlinear differential functional parabolic
equations with Dirichlet’s condition

by LuciaN SApA (Krakow)

Abstract. We deal with a finite difference method for a wide class of nonlinear, in
particular strongly nonlinear or quasi-linear, second-order partial differential functional
equations of parabolic type with Dirichlet’s condition. The functional dependence is of the
Volterra type and the right-hand sides of the equations satisfy nonlinear estimates of the
generalized Perron type with respect to the functional variable. Under the assumptions
adopted, quasi-linear equations are a special case of nonlinear equations. Quasi-linear equa-
tions are also treated separately. It is proved that our numerical methods are consistent,
convergent and stable. Error estimates are given. The proofs are based on the comparison
technique. Examples of physical applications and numerical experiments are presented.

1. Introduction. Let D, := /0t and D; := 0/0x;, D;; := 82/8xj8:ci
for i,57 = 1,...,n, where t € R, x = (z1,...,2,) € R" Put D, =
(D1,...,D,) and Df) = [Dij]?jzl. Let functions f : A — R and ¢ :
EyU0yE — R be given (the relevant sets are defined in Section 2.1). Consider
a nonlinear second-order partial differential functional equation of parabolic
type of the form

(1.1) Dou(t,x) = f(t,z,u, Dyu(t,z), DPu(t, z))
with the initial condition and the boundary condition of the Dirichlet type
(1.2) u(t,x) = p(t,z) on EyUE.

The aim of this paper is to give a finite difference method for finding an
approximate solution of problem (1.1), (1.2). The equation may be nonlin-
ear with respect to second derivatives. Such an equation is called strongly
nonlinear. The functional dependence is of the Volterra type (e.g., delays or
Volterra type integrals).
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Partial differential equations of parabolic type give mathematical models
of nonstationary processes of heat exchange or mass transport. Some com-
plicated kinds of these phenomena involve equations with a functional term.
Differential difference equations (e.g., with time or spatial delays) describe
fast heat changes in nuclear reactors, while differential integral equations
are used for integral heat sources in an anisotropic medium. Both can be
connected with our equation.

In this paper, we construct an explicit finite difference functional scheme.
It is proved that, under suitable assumptions on the reaction function f
and steps of a mesh, the method is consistent, convergent and stable. An
error estimate of the approximate solution is given. The proof is based on
the comparison technique with the use of a difference functional inequality
proved by Z. Kamont [10] (see also [8]). These results in particular cover a
quasi-linear differential functional equation of the form

(1.3) Dyu(t,z) = Z a;j(t, z,u)Diju(t, ) + F(t, z,u, Dyu(t, x)),
ij=1

where a;; : A S Rand F: AP - R, 4,5 =1,...,n, are given functions
(see Section 2.1). But for such an equation it is assumed that all of the
coefficients a;; are of the same sign. To omit this condition, another scheme
is also studied. These results can be extended to weakly coupled systems. At
the end of the paper, we present numerical examples.

It follows from the convergence of the numerical methods that the dif-
ferential functional problems considered have at most one classical solution.
Theorems on the existence and uniqueness of such solutions for some special
parabolic differential functional equations can be found in [3], [4], [7], [26]
and the references therein.

Similar general strongly nonlinear parabolic difference functional numer-
ical problems have been studied by Z. Kamont, H. Leszczyriski, M. Malec,
Cz. Maczka, W. Voigt and M. Rosati [8], [10], [13], [14], [15] and others. In
those papers, the Lipschitz or Perron conditions are assumed. In our paper,
we generalize the Perron estimate, multiplying a function ¢ by some non-
decreasing function p (see assumption (Fy) in Section 3). This considerably
extends the class of problems which are solvable with the method described.
Under the assumptions adopted, our nonlinear equation includes as special
cases the quasi-linear equation (1.3) and a strongly nonlinear equation with
a quasi-linear term. Neither of these cases appears in the cited papers. This
result is new, even for equations without a functional term (cf. [11]-[17]).
Moreover, unlike some cited papers, we do not assume differentiability of f
with respect to the variables p and ¢ (see Section 3).
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The results concerning numerical methods, differential functional and
difference functional inequalities or the uniqueness theory, appearing in the
papers of P. Besala and G. Paszek [1], [2], Z. Kamont and H. Leszczynski [§],
[10], C. V. Pao [18]-]20], R. Redheffer and W. Walter [21], J. Szarski [22]-[24]
and numerous others, do not apply to nonlinear equations and quasi-linear
equations with general functional dependence as in our paper.

A finite difference method for quasi-linear parabolic differential functional
equations (with functional dependence of the Hale type) with Dirichlet’s
condition has been considered by R. Ciarski [6]. In our paper, in contrast to
[6], we do not assume differentiability of F' with respect to the variable p (see
Section 6.2). The functional term may be approximated by step functions
or spline polynomials, while in [6] by spline polynomials only. Numerical
approximation for such quasi-linear equations with Neumann’s condition is
treated in [5].

2. Notation and definitions

2.1. Sets and function spaces. Let T > 0, § = (01,...,0,), 70 > 0,
T =(T1,...,Tn), where §; > 0, 7; > 0 for i = 1,...,n, be given real numbers.
Define

E:=[0,T] x (=6,6) Cc R*™,
(2.1) Ey:=[-70,0] X [-6 — 7,0 + 7] C R'T™,
OE :=1[0,T] x ([-6 — 7,6 + 7]\ (=6,6)) c RI*".
Let, moreover,
(2.2) Q:=EUEUE, 2 :={(t,x)eR:t<t}.

A mapping u : 2 — R of class C"? will be called regular on 2. We briefly
write u € CL2(02,R).
The set

(2.3) B(2,R) :=={z: 2 — R | sup{|z(t,x)| : (t,z) € 2} < o0,
Fke NI, ..., 2 3V, ....a® aeRPD, .. b pe R
2; = 20 ([P, 0D + a) x [pD, 5@ + b)),
Q=UF 2, 2nQ;=0fori#j, zlo, € C(2%R), i,j=1,...,k}

is the set of Lebesque-measurable functions, bounded and piecewise continu-
ous on §2. For a fixed t € [0, 77,

(2.4) I1211(2) = sup{|=(%,2)| : (£,2) € 2}
is a seminorm in the space B(f2,R), where z € B(£2,R).
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Let M, «, denote the class of all n x n real matrices. Define
A:=FE x B(£2,R) x R" x My, xp,
Ay = FE x B*(2,R) x R*"™ x M?

nxn’
AP .= Ex B(2,R) xR", A .= F x B%(2,R) x R™,
AY = E x B(,R).

The mazimum norms in R™ and M, , are denoted by || - ||, and the
maximum norm in C'(§2, R) by ||-||. Similarly, ||-|| stands for the supremum
norm in B({£2,R).

2.2. Discretization, difference, step and interpolation operators. We use
vectorial inequalities to mean that the same inequalities hold between the
corresponding components. We write z oy = (z1y1,...,Znyn) for z =
(1,-..,2n),y = (Yy1,---,Yyn) € R™ Define a mesh on the set 2 in the
following way. Let (hg,h') = h, h' = (h1,...,hy), stand for steps of the
mesh. Denote by H the set of all h such that there exist Ny € Z and
N = (Ny,...,N,) € N" with the properties: Nohg = 79, Noh' = § + 7.
Obviously, H # () and there are Ky € N and K = (Ky,...,K,) € Z" such
that Kohg < T < (Ko + 1)ho, Koh' < § < (K +1)oh'. For h € H

(2.5)

and (u,m) € Z'*", m = (my,...,my), we define nodal points (£, z(™),
z(m) = (ajgml), . ,CL’ngn)) in the following way:

tW = ph, 2™ :=moh.
For h € H, we put
(2.6) R = {(tW 2™ : (u,m) € 21,
Next, we define the discrete sets
Ey:=ENR"™,

(2.7) Eop = EoN R, By == 0ENR;™,
2y, := Ey UEy UdgEy, =2 N R}ILJrn.

Let, moreover,

(2.8) B = {(tW,2™) € By : 0 < p < Ko — 1},

(2.9) =W . 0<u< Ko}, ILM:={W.0<pu<Ky—1}

For a mesh function a : £, D A, — R and a point (£, 2(™) € A,
we put aW™ = a(t(”), ac(m)). We denote the space of all such functions by
F(Ap,R) and call it the space of mesh functions. In F(Ap,R), we introduce
the mazimum norm
(2.10) lalla, = mas{|a®m)]| : (109, 207) € 4,},
where a € F(Ap, R).
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For a fixed p € {0,1,..., Ko},
(2.11) lalln(p) == max{|a®™| : P 20} € Q)
is a seminorm in the space F'(£2,,R), where a € F({2,,R).

For a function a : I, D A, — Ry, we put a® = a(tW), t) € A,
where Ry := [0, 4+00).

Write

I'={(,j) 1 <i,j <n,i#j}
and suppose that Iy, I C " are such that I UI'_ =T, I'y N IT_ =0 (in
particular, it may happen that I'y = () or I'_ = ()). We assume that (i,j) €
I'y when (j,i) € I'y, and (4, j) € I when (j,7) € ['_. Let a € F({2,,R) and
(W), 2(m)) € BfF. Set
5;’_0/(/%777‘) = h_l [a(“7m+ei) _ a(uvm)L
1

6;a(#7m) = h_l [a(l’ﬂm) — a(lu'vm_ei):l
where ¢; = (0,...,0,1,0,...,0) with 1 in the ith entry, i = 1,...,n. We
apply the difference quotients g, = (d1,...,d,),6) = [6i]7 ;=1 given by

(2.12)

)

Soalm) i L [qrim) _ q(um)y,
0
iam) = % [0 a4 5 q ()] fori=1,...,n,
(2.13) Siatm™ = 515 ™) fori=1,...,n,
5ialm) — % (6767 alim) 4 676 ] for (i, ) € T,
5ija(“’m) = % [5i+5ja(“’m) + 5;5]761(“””)] for (i,7) € I'y.

We use these operators to approximate derivatives in equations (1.1) and
(1‘31))'eﬁne the step operator Sy, : F(£2,,R) — B(£2,R) by the formula
(2.14) Spla](t,z) :== Z X (1,m) (t,z)a™™  for (t,z) € £,
() 2(m)) ey,
where a € F({2,,R) and
X(pm) (8 ) == {é ior (t2) € T
or (t,x) € 2\ J(um)
Jumy = A{(t,x) € 2 t) <t < D) ) < g < gDy
where m+1= (m; +1,...,my, + 1) (cf. [13]).
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Finally, define the interpolation operator Ty, : F(2,,R) — C(£2,R) in the
following way. Put

Sy ={s=(s1,...,8n) 18 €{0,1} for 1 <i <mn}.

Let a € F(£2,,R) and (t,z) € £2. There exists (£, 2(™)) € (2, such that
(t(”+1),x(m+1)) € 2, and tW) < ¢ < D 20m) < g < 2(m+D) Write

(2.15)  Th[a](t, z)

t_t,U') mts ( ) s $—x(m) 1-s
Sy g

seSt

t — ¢t Lomasy [T — ™\ z— pm\ 13
e () ()

0 S€S+

x — MmN\ L xz—x M)\ si

() = ()

— pm\ 15 n x( mi)\ 1—s;
e (a

We adopt the convention that 0° = 1 (cf. [9]).
We apply the operators S, and T}, to approximate the functional term
in equations (1.1) and (1.3).

where

3. Differential functional problem. We need the following assump-
tions on the functions f, ¢ and regularity of a solution u of (1.1), (1.2).
ASSUMPTION F[f, u]

(F1) The function f is continuous on A.
(F2) There exist functions @ = (v, ..., an), B = [Bi;]}';=1 with a;, By :
Ay — R such that for any (t,z,z,p,q), (t,z,2,D,q) € 4,

(31) f(t7x527p7Q)_f(taﬁvzvﬁvq)
:Z ai(P)(pi =) + Y Bis(P)(ai; — @),
j ij=1
where P = (t,z,2,2,0,D,q,q) € A;.
(F3) The matrix [ is symmetric and

Bij(P) >0 for (i,7) € I'y,
Bij(P) <0 for (i,j) € I,

at each P € A;.
(Fy) There are functions o : [0,7] x Ry — Ry, o : Ry — Ry such that:
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(1) o is continuous and nondecreasing with respect to both vari-
ables; moreover, o(t,0) =0 for ¢t € [0,T];

(2) o is nondecreasing;

(3) for each ¢ > 0 and e,e9 > 0, the maximum solution of the
Cauchy problem

(3.2) W(t) =co(t,w(t)) +e,  w(0)=-ep,

is defined on [0,7 and the function w(t) = 0 for ¢ € [0,7]
is the maximum solution of problem (3.2) for each ¢ > 0 and
e, g9 = 0;
(4) the generalized Perron type estimate
(3.3) [f(t,z,2,p,0) = f(t.2,Z,p,0)| < elllall)o(t, Iz —ZII(£))
holds on A.

(F5) The function u € C%2(£2,R) is a regular solution of (1.1), (1.2).

REMARK 3.1. Assumptions (1) and (4) in (Fy) imply that the functional
f is of the Volterra type. That is, if t € [0,7] and 2,Z € B(2,R), 2(t,z) =
Z(t,z) for (t,x) € £, then f(t,x,2,p,q) = f(t,z,%,p,q) for x € (=4,0),
peR™ qge R,

REMARK 3.2. If the reaction function f is differentiable, then «, 3 in
assumption (Fy) involve derivatives of f.

4. Finite difference functional scheme. We define a finite difference
functional scheme which will be applied to approximate a solution of the
differential functional problem (1.1), (1.2). The functional term will be ap-
proximated by the step operator Sj. In Section 6.3, we show that it can be
replaced by the interpolation operator T,.

DEFINITION 4.1. The finite difference functional scheme for the differ-
ential functional problem (1.1), (1.2) is the system of algebraic equations

60a(1u'7m) — f(t(:u')7 x(m)7 Sh [aL 50/(“’7”)7 5(2)a(“7m))’
{ altm) = (p%u,m) on Eyp UdyEp,
where pp, € F(Epp UdoEpR,R) is a given function and a € F(§2;,R).

(4.1)

We shall use the following assumptions on the steps h of the mesh (2.

ASSUMPTION S1h|
(S1) The steps h = (ho,h') € H are such that

n

(4.2) 1—2hg ) % Bi(P)+ho > %h] |8i;(P)| > 0,

=1 (i.)el



120 L. Sapa

h;
(4.3) — lai(P)| + Bu(P Z Iﬂw
J#i
7=1

at each P € Ay, i=1,...,n (see Assumption F[f, ul).
(S2) There is ¢y > 0 such that hihj_l <c¢fori,j=1,...,n

REMARK 4.1. If Assumption F[f,u] holds and there is a step h € H
satisfying Assumption S[h], then there exists a sequence of steps h € H
which satisfy Assumption S[h] and h — 0.

5. Stability of difference functional equations. We now present a
theorem due to Z. Kamont [10] (see also [8]). It will be applied in the proofs
of convergence of the difference methods in Section 6.

Suppose that an operator Fj : E,‘f x F({2,,R) — R is given. For
W, 2 a) € EF x F(2,R), we write Fjla]#™ = F,(tW, 2™ q).
Given ¢y, € F(Ey U0y Ep, R), we consider the difference functional equation

with the initial-boundary condition
(5.2) altm) — gpgf’m) on Egj UOyE},.

If Fj, satisfies the Volterra condition (see Remark 3.1), then there exists
exactly one solution v € F(§2;,R) of (5.1), (5.2). Note that the Volterra
condition states that the value of F}, at (t®), 2™ ) depends on (¢t (™))
and the restriction of the function a to the set {2 5 only.

Let Y, C F(24,R) be a fixed subset. Suppose that a function w € Y}, a
function v : I}/ T — R, and o € R, satisfy the conditions

(5.3) jaliem) By [a)om) < 5®) on B,
(54) \a(“’m) — Soh,u,m)’ < (7)) on EO.h U 60Eh.

The function w satisfying the above relations is considered an approzimate
solution of (5.1), (5.2).

The theorem below gives an estimate of the difference between the exact
and approximate solutions of (5.1), (5.2).

THEOREM 5.1. Suppose that

(1) Fj is of the Volterra type, h € H,
(2) op : I,':' x Ry — Ry is nondecreasing with respect to the second
variable and

(5.5) | Fula] ™ — Fypfa@) ™| < on(t%, |a - alln(n)

for (tW, 2™ € Bf a € F(2,,R), @ € Yy,
(3) v e F(£2,,R) is the solution of problem (5.1), (5.2),
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4) w €Yy and there are v : I — Ry, ag € Ry such that (5.3) and
BRI + +

(5.4) hold,
(5) B : I — Ry is nondecreasing and satisfies the recurrent inequality
(56) /B(M—i_l) > O—h(t(u)a/@(u)) =+ V(M)v n= 07 s 7K0 - 17
and BO) > q.
Then
(5.7) lw = vlla(u) < 8%, p=0,..., K.

REMARK 5.1. Let the assumptions of Theorem 5.1 be satisfied with
Uh(tay) = (1 + LhO)y7 (tay) € I;_ X R+7

where L > 0 and there is ¥ € Ry such that v*) < ho¥y, p=0,..., Ky — 1.
Then

(i) if L > 0, then

~(1+Lhy)* -1
o0 = vla) < (1 + Dhopag + 5 L2

~ LT)—-1
< exp (LT)ag +75 %

for u=20,...,Ko;
(ii) if L =0, then
|w—=vl[a(p) < a0+ phoy < ag+ 17
for u=0,..., Kp.

Assumption (2) in Theorem 5.1 states that Fj, with o}, defined above satisfies
the Lipschitz condition with respect to the functional variable with Lipschitz
constant 1 4 Lhg. This remark is important in applications.

6. Theoretical study of the scheme

6.1. Convergence of the difference method. We now turn to the main
problem of this paper, convergence of the difference method (4.1).

Let U € F(§2,,R) be the restriction of a regular solution u € C12(2,R)
of (1.1), (1.2) to the mesh {2, and let v € F(£2;,R) be the solution of the
finite difference functional scheme (4.1).

DEFINITION 6.1. The difference method (4.1) is uniformly convergent if
}Lli% HTHQh =0,
where 1 := U — v € F({2,,R) is the error of the method.

THEOREM 6.1. Let Assumptions F[f,u] and S[h] hold and suppose that
there is a function ag : H — Ry such that
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(6.1) ](p(“’m) — (Pgu,m)’ < ag(h) on EypUovE) and hr% ap(h) = 0.

Then there 1s an o : H — Ry such that
(6.2) Irlln(p) < a(h) for 0<u<Ky and }llir% a(h) = 0.

Proof. We apply Theorem 5.1. Consider the operator Fj, : E}J{ X F(2,,R)
— R defined by
(6.3) Fyla]®m) = ) 4 po £(6W), 20 Sy la], s | 52 g (),
Then v satisfies (5.1), (5.2) and there is a function v : H — R4 such that

juttm) _ B )™ < hogy(h)  on Ef
and limy,_,0y(h) = 0. Let a constant d > 0 be such that
(6.4) |Diju(t,z)| <d for (t,x) e $2,i,5=1,...,n
(see (F5)). We denote by Y}, the class of all functions a € F(£2,,R) with the
property:
6™ < 3d for (W, 2(™)) e Ef ij=1,....n

Obviously, U € Y},. Suppose that a € F(£2,,R), @€Y}, and (), (™) ¢ E;[
We prove that

(6.5) | Fyla) ™ = Fy[a@) ™| < Jla=alln (1) +hoo(3d)o (14, ||a=al|n(1))-
It follows from Assumption F[f,u] that
(6.6) | Fula]¥™ — Fyla)®™)] < hoo((|6®at ™ |[)o (¢, ||Sk[a — @l (¢*)))
+ (a - 5)(”’m)+hozai(P) i )(um +ho Z /8’Lj CL - a)(ﬂ m)
=1 ij=1

where P = (t(“), x(m)) Sylal, Shla], 8a] (u,m)’ d[a) (u,m)’ 52) [a] (um)j 52 [a](ﬂ:m))
€ Aq. Write

S(O)(P)zl—Qhozﬁﬁn’(P)+ho Z m|5¢j(P)|7
i=1 v

(3,5)el’
() ho
S+ (P) 2]7, (P) h2 /67'7' hoz h h |/61] )|
J#
j=1
sOPy =10 p) e ) ey g
- 2h, h2 h; h !
J#z
where i = 1,...,n. After grouping the expressions in (6.6) appropriately, in

view of assumption (Fy), the definitions of the difference operators and the
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relation
(6.7) 1Shla —a][| (")) = [la = @l|n(u) for p=0, ..., Ko,
we get
(6.8) | Fy[a] ™ — Fy[a]*m)]
< hoo(3d)o (1%, |la — a|(n)) + |5 (P)(a - a)*)|

+\i55f’><P><a—a (e ]ZS“ (a — @)Bm—e)
=1

Fhe Y S BuPla— @) 4 o - gy
(17])61—11»

- ho Z 2h h ﬂz;( )H(CL — a)(“’m+ei_8j)| + |(CL _ a)(ll«,m—er‘rej)u.
(i,)el-

Note that assumptions (F3) and (S7) imply
sOPy >0, sPpy>0, SYP)>0 fori=1,....n

and

sOP)+3 sV P+ 3 sV (p)
=1 i1
1 1
+ ho Z mﬁij(P) — hg Z mﬁij(P) =1

(igers (ijyer- "
The above relations and (6.8) give (6.5).
Denote by 0 : I, — R, the solution of the initial difference problem

(6.9) {"(“H)=n(“)+hoe(3d)0(t(“), W) +hoy(h), p=0,...,Ko—1,

7 = ag(h).
It follows from Theorem 5.1 that
(6.10) U = vlln(p) < 0™, p=0,..., K.
Consider the Cauchy problem
(6.11) (1) = o(3d)o(t,w(t)) + (k) w(0) = ao(h),

and its maximum solution w(-,h) : [0,7] — Ry (see assumption (Fy)). It
easily follows that

(6.12) nW < w(tW h) <w(T,h) for p=0,..., Ko

and limy,_,ow(, h) = 0 uniformly on [0,T]. Put a(h) := w(T, k). The proof
is complete. m
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6.2. Quast-linear equation. We are interested in the numerical approxi-
mation of a classical solution of problem (1.3), (1.2).

We need the following assumptions on the functions F', ¢, a;; and regu-
larity of a solution u of (1.3), (1.2), as well as on the steps h of the mesh (2.

ASSUMPTION QF[F, A, u]

(QFy) F and a;j, i,j = 1,...,n, are continuous on A" and A4, respec-
tively.
(QF) There exists a function o = (as, . .., ay,) with a; : AT — R such

that for any (t,z,z2,p), (t,z,2,p) € AF,
(6.13) F(t,z,z,p) — F(t,z, z,D) Za, i —Di),

where P = (t,,z,2,p,p) € AL'.
(QF3) A= la;l};—; is symmetric.
(QFy) There is a function o : [0,7] x Ry — R4 such that:

(1) o is continuous and nondecreasing with respect to both vari-
ables; moreover, o(t,0) = 0 for t € [0,T7;
(2) for each ¢ > 1 and €,¢9 > 0, the maximum solution of the
Cauchy problem
(6.14) W'(t) = co(t,w(t)) +e, w(0)=ep,

is defined on [0,7] and the function w(t) = 0 for t € [0,T] is
the maximum solution of (6.14) for each ¢ > 1 and €,&9 = 0;
(3) the Perron type estimates

(6.15) F(t,2,2,p) — F(t,,2,0)] < o(t, 12 — 2](1))
(6.16) aig(t, 2, 2) — as(t,2,2)| < o(t, |12 — 31| (1),
where i,j =1,...,n, hold on AF and A4, respectively.
(QF5) u € CY2(2,R) is a regular solution of (1.3), (1.2).
ASSUMPTION QS]h]
(QS1) The steps h = (hg, k') € H are such that

n

1
(6.17) 1— QhOZ o ii(t 2, 2) + ho Z o h lai;(t, x, 2)| >0,
=1 (J)EF
hi
(6.18) — 5 loi(P)| + ai(t, v, 2) — hz |aij(t,z,2)] >0
]7’51
J

for all (t,z,z) € A4 and P A i=1,...,n
(QS2) There is ¢p > 0 such that hihj_1 <cfori,j=1,...,n
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REMARK 6.1. Assumptions (1) and (3) in (QF4) imply that the func-
tional F' and coefficients a;; are of the Volterra type. Moreover, if F' is dif-
ferentiable, then « in assumption (QF3) involves derivatives of F'.

We now put

n

(6.19) ftw,2,p,q) =Y aij(t, =, 2)qi; + F(t,z, 2,p)
ij=1

for (t,z,2,p,q) € A, and consider the difference method (4.1) with this f for
(1.3), (1.2). If we apply Theorem 6.1, then we need Assumptions QF[F, A, u],
QS[h] and the following assumption on the matrix A: for each (i,7) € I,
the function

aij(t,z,z) == signa;;(t,z,z) for (t,z,2) € AL
is constant (see (F3)). It is easily seen that o(y) := n?y + 1 for y € Ry
satisfies (F}y).

We prove that the condition of the coefficients a;; being of the same
sign in A4 can be omitted if we modify the difference operator §(2). More
precisely, we consider problem (1.3), (1.2) with d, 0, d;;, i = 1,...,n, given
in Section 2, and we define d;;, (i,5) € I', by

(6.20) 51-]-@(“’7")
o %[5,?(5;@(“’7”) + (5;5]*@(“””)] if aij(t(“),x(m), Shlal) <0,
C| sl Faltm) 676 alk ] f ag (1, 0™, Syla)) > 0

- )

~—

where a € F(2,,R), (t,20™) € El. Observe that the finite difference
functional scheme (4.1) with f given by (6.19) and 6;; by (6.20) depends
on the sign of a;; at ("), (™), Sy,[a]) and this sign does not have to be the
same in A4,

THEOREM 6.2. Let Assumptions QF[F, A,u] and QS[h] hold and sup-
pose that there is a function ag : H — Ry such that

(6.21) W™ — W™ < ag(h)  on EgpUd0E, and lim ag(h) = 0.
Then there is an o : H — R such that
(6.22) I7lln(p) < a(h) for0<u<Ky and }Lir% a(h) = 0.

Proof. The proof of this theorem is similar to that of Theorem 6.1. We
apply Theorem 5.1. Consider the operator Fj, : E;f x F(£2,,R) — R defined
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by
(6.23)  Fyla]™™ := o™ 4 py Zn: ai; (t#, 2™ S, [a])d; 0™
ij=1

+ hoF(t(“), 2™ g, [a], 5a(“’m)).

Then v satisfies (5.1), (5.2) and there is a function v : H — Ry such that
Ukt — B [U]#™] < hoy(h) o Ejf
and limp_,0y(h) = 0. Let a constant d > 0 be such that
(6.24) |Djju(t,z)] <d for (t,x) € 2,i,5=1,...,n
(see (QF5)). We denote by Y}, the class of all functions a € F(§2;,R) with
the property
|6ija(“’m)| <3d for (t(“),x(m)) € E;, ,j=1,....,n

Obviously, U € Yj. Suppose that a € F(£2,,R), @ € Y}, and (t\), z(™) ¢
E,j We prove that
(6.25)  |Fy[a]¥™) — Fy[a] )]

< fla = alln(u) + ho(1 + 3n*d)o (t"), |la — @lln(n))-
It follows from Assumption QF[F, A, u] that
(6.26) | Fy[a] "™ — Fy[a] ™)

< oL+ Y 16| |o (1, ISl — a] | (0))
ij=1
+‘( ) +h02az Si(a—a) "™ +ho Y ai(Q)di(a — a) ™|,
7]:1
where P = (t(u)7x(m)75h[a]7Sh[a]a6[a](u,m)56[5](u7’m)) 7 Q = (t(M
2™ Sy [a]) € A4, Write

SO@=1-203 zau@ +ho Y - le(@

i=1 ('J)GF
i ho h
‘ J#l
i h ho
S(_)(P) = —2—}2 a;(P) + 2 aii(Q) — ho Z I h |aij (Q

J?él
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where : = 1,...,n. Let
Fi’””) ={(i,j) € I ayy(Q) >0}, W™ .=\ pm)
Assumption (QFy) and (6.26) lead to the estimate
(6.27)  |Fp[a) ™™ — Fy[a)m™)|
< ho(1+3n*d)o(t™), |a —alln(p)) + SO (P)(a — @)™

+ ‘Z S.(i)(P)( u,m-&-el ’Z S(l )(M,m—m‘)
=1

1 — m-+e;+e; — m—e;—e;
the 30 g ai(@e —@H )] + (o —a) el
(i,j)eFfr“’M 11%g

1 - m-Te;—€j - m—e;T€j
—hy Y g (@l - @) (@ - @)t
(gyertm =

Assumption (QS1) and (6.27) imply (6.25).

An analysis similar to that in the proof of Theorem 6.1 shows that asser-
tion (6.22) is satisfied with a(h) := w(T, h), where w(-,h) : [0,T] — Ry is
the maximum solution of the Cauchy problem (6.11) with o(y) := n?y + 1,
y € R;. This concludes the proof. »

REMARK 6.2. Suppose that the assumptions of Theorems 6.1 or 6.2 are
satisfied and, moreover, there is a constant ¢ > 0 such that

2 m =
(6.28) 0@ m)| <z on Ef

for all solutions w € F({2;,,R) of the disturbed finite difference functional
schemes of (4.1). It follows from an analysis of the proofs of these theorems
that the difference methods presented are stable.

REMARK 6.3. It is easy to see that all the results of the paper can be
extended to weakly coupled differential functional systems. One part of each
system can be strongly nonlinear and the other quasi-linear. This is a new
result even in the case of systems without functional terms.

REMARK 6.4. If we assume that
o(t,y) ==Ly, (t,y)€[0,T] xRy,

then the comparison difference problem can be solved and the errors of the
difference methods can be estimated; see Remark 5.1.

6.3. Approzimation by the interpolation operator. Lemma 6.1 below
shows that the step operator Sp in the finite difference functional scheme
(4.1) can be replaced by the interpolation operator T}, and all of the above
proofs remain in force (see (6.7), (6.29)). The errors of the methods with T},
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are smaller than with S, if the appropriate regularity of a classical solution
u of the differential functional problems (1.1), (1.2) or (1.3), (1.2) is assumed
(see Remark 6.5 and Example 2). But the computation time is longer.

LEMMA 6.1. If a € F(£2,,R), then
(6.29) ITlall|(¢%) = lalln(p) ~ for p=0,..., Ko.

Proof. 1t is easy to prove by induction on n that

_ (m) S o (m) 1—s
(6.30) > (%) (1 — %) 1 for 2™ < g < gD,

seS,
By (6.30), we get (6.29). m
LEMMA 6.2. Suppose that u € C1(£2,R) and denote by U € F (24, R)
the restriction of u to the set 2y, i.e., UM := u(xM). Let

€= max {[|Dyullg, || Diulle}-

Then
(6.31) [SulU] —ulle < Cllbllz,  IThlU] — ulle < C[|h]|5,
where ||h||x == ho+h1+ -+ hy.

Proof. This lemma can be proved with the use of the mean value theorem
and the method applied in the proof of Theorem 5.27 in [9]. »

Let Dy := 0?/0t?, Dy = 0?/0z;0t for i = 1,...,n, where t € R,
r=(x1,...,2,) € R™.

LEMMA 6.3. Suppose that u € C?(£2,R) and denote by U € F ({2, R)
the restriction of u to the set §2,. Let

C = max {[|Duulle, |Drulle, [Dijule}

s Ty

Then
(6.32) |75 [U] = ulle < C|Al[%.
Proof. This is a consequence of Theorem 5.27 in [9]. =

REMARK 6.5. Suppose that Assumptions F[f,u], S[h] or Assumptions
QF[F, A, u], QS[h] are satisfied. It follows from (2.13), (6.20), Lemmas 6.2,
6.3, the mean value theorem and the Taylor formula that if v € C?3(£2,R),
then r = O(||h]|) for S, and Tj,. But if u € C?*(§2,R), then r = O(ho+||h'||?)
for Ty, and r = O(||h||) for S},

7. Numerical results. To illustrate the class of problems which can be
treated with our methods, we consider a strongly nonlinear differential equa-
tion with a quasi-linear term, two quasi-linear differential integral equations
with deviated variables and a system of differential integral equations with
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deviated variables. One equation in the system is strongly nonlinear and the
other is quasi-linear. Dirichlet’s problems below cannot be solved with the
numerical methods known to date.
Put n = 2. Let E = [0,1] x (=1,1)%, Ey = {0} x [-1,1]> and §oF =
[07 1] X ([_17 1]2 \ (_17 1)2)
EXAMPLE 1. Consider the strongly nonlinear differential equation
(7.1)  Dyul(t,z,y) = arctan[Dyju(t, z,y) + Disu(t, z,y) + Dagu(t, z,y)]
+[1 + cosu(t, z,y)|[Di1u(t, z,y) + Diou(t, z,y)
+ D22u(t7 z, y)] + g(t7 xz, y)
for (t,x,y) € E, with the initial-boundary condition
(7.2) u(t,x,y) =sintcos(x +y) for (t,x,y) € Eg UL,

where ¢(t,x,y) = arctan[3sintcos(z + y)] + (3sint + cost)cos(z + y) +
3sint cos(z + y) cos[sint cos(z + y)].

Observe that the right-hand side of (7.1) has a strongly nonlinear term
and a quasi-linear term. The function u(t, z,y) = sint cos(z+y) is an analytic
solution of (7.1), (7.2). Put hg = 1075, hy = hy = 2-1072. Let €max, Emean
be the largest and mean values, respectively, of the errors |r| at time ).

Table 1. Errors of the difference method with S,

o)

Emax Emean

0.1 330-107% 1.62-10°°
0.2 9.68-107% 4.49-107°
0.3 1.67-107° 7.62-107°
0.4 240-1075 1.08-107°
0.5 3.13-107° 1.40-107°
06 388-107° 1.72.-107°
0.7 4.63-107° 2.04-107°
0.8 540-107°5 2.36-107°
09 6.16-107° 2.68-107°
1.0 6.91-107° 2.99-107°

ExAMPLE 2. Counsider the quasi-linear differential integral equation with
deviated variables

zy
(7.3)  Dwu(t,x,y) = [2 + cos( S S u(t, &, ¢)d¢ d&)] [D1u(t, z,y)
Casy
+ Diou(t, z,y) + Dagu(t,z,y)] + |Diu(t, z,y)]
+u(0.5¢,0,0) + g(t, x,y)
for (t,z,y) € E, with the initial-boundary condition
(7.4) u(t,x,y) =sintcos(x +y) for (t,x,y) € Eg UL,
where g(t,z,y) = (9sint + cost) cos(x + y) — sin(0.5t) — sin t|sin(z + y)|.



130

L. Sapa

The function u(t,z,y) = sintcos(z + y) is an analytic solution of (7.3),
(7.4). Put hg = 1075, hy = ho = 2-1072. Let €max, Emean be the largest and
mean values, respectively, of the errors |r| at time £,

Table 2. Errors of the difference method with S},

(1) Emax Emean

0.1 3.86-107° 9.79.107°
0.2 348-107% 9.62-107°
0.3 1221072 365-107*
04 294-107% 923.107%
05 5.73-107% 1.85-107%
06 9.74-107% 323.10°°
0.7 150-1072 5.07-1073
0.8 216-1072 7.37-107°
09 292-1072 1.00-1072
1.0 3.75-1072 1.30-1072

Table 3. Errors of the difference method with T},

t(ﬂ) Emax €mean

0.1 3.24-107° 875-107°
02 292-107* 842-107°
0.3 1.03-107% 3.19-107%
0.4 247-107% 8.05-107*
0.5 4.79-1073% 1.61-1073
06 812-107% 281-107%
0.7 125-1072 4.40-107°
0.8 1.78-1072 6.37-1073
09 240-1072 867-1073
1.0 3.07-1072 1.12-1072

ExaMPLE 3. Consider the quasi-linear differential integral equation with

deviated variables

(7.5)

for (t,x,y) € E, with the initial-boundary condition

(7.6)

u(t,x,y) = sint cos(z + y)

for (t,z,y) € Eg UOE,

where g(t,z,y) = (3sint + cost) cos(x + y) — sin(0.5t) — sint [sin(z + y)|.

The function u(t,z,y) = sintcos(z + y) is an analytic solution of (7.5),
(7.6). Put hg = 1075, hy = hg = 2-1072. Let €max, Emean be the largest and
mean values, respectively, of the errors |r| at time (),
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Table 4. Errors of the difference method with T},

+()

5max Emean

0.1 215-107°% 4.33-107°
02 221-107* 4.78-107°
0.3 819-107* 1.94-107%
04 200-107% 5.16-107*
0.5 3.90-107% 1.07-1073
06 6.58-107% 1.91-1073
0.7 998-1072 3.06-1073
0.8 1.40-1072 4.49.107°
09 1.85-1072 6.18-1073
1.0 2.32-1072 8.05-1073

Put n = 1. Let E = [0,1] x (-1,1), Ey = {0} x [-1,1] and OF =
[07 1] X ([_17 1] \ (_17 1))
ExAMPLE 4. Consider the system of differential integral equations with

deviated variables
t

Dyu(t,z) = arctan[Dyju(t, x)]+ S v(r,z)dr + g1(t, ),
0
Dyo(t,z) = [1 + cos(u(0.5¢, )| D11v(t, ) + u(t, z) + ga(t, )
for (t,2) € E, with the initial-boundary condition
(7.8)  w(t,x) =sintcosz, wv(t,z)=sintsinx for (¢,z) € EyUE,

(7.7)

where g¢1(t,z) = arctan(sintcosz) + cost (cosx + sinz) — sinz, go(t,z) =
cos(sin(0.5t) cos z) sint sin x + sinx (sint + cost) — sint cos x.

The pair of functions u(t,z) = sintcosz, v(t,z) = sintsinz is an ana-
lytic solution of (7.7), (7.8). Put hg = 107°, hy = hg = 2- 1072, Let &},
g2 .. be the largest and €. .. . €2 mean values, respectively, of the errors

r1], |r2| at time t(*). The error 7 is connected with u, and r with .

Table 5. Errors of the difference method with Sj,

(r) 1 1 2 2
t €max €mean €max €mean

0.1 1.85-1077 1.34-1007 1.26-1077 7.83-1078
0.2 6.95-1077 4.86-10"7 3.47-1077 2.07-1077
0.3 1.44-107% 991-1077 6.02-1077 3.43-1077
04 236-107% 1.60-107° 8.80-107" 4.82-1077
0.5 3.38-107% 227-107¢® 1.17-107% 6.24-1077
06 4.46-107% 299.107¢ 1.48-107% 7.67-1077
0.7 558-107% 3.72-107¢ 1.80-107% 9.11-1077
0.8 6.71-107% 4.46-107% 2.11-107% 1.05-107°
09 7.83-107% 520-107¢® 243.107% 1.19-107¢
1.0 894-107% 592.107% 2.74-107% 1.33.107C
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The results shown in the tables are consistent with our mathematical

analysis. The tables of errors are typical of difference methods. The compu-
tation was performed on a PC computer.
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