Lifting adapted connections from foliated manifolds to higher order adapted frame bundles

by J. Kurek (Lublin) and W. M. Mikulski (Kraków)

Abstract

Let (M, \mathcal{F}) be a foliated manifold. We describe all natural operators \mathcal{A} lifting \mathcal{F}-adapted (i.e. projectable in adapted coordinates) classical linear connections ∇ on (M, \mathcal{F}) into classical linear connections $\mathcal{A}(\nabla)$ on the r th order adapted frame bundle $P^{r}(M, \mathcal{F})$.

Introduction. All manifolds and maps are assumed to be of class \mathcal{C}^{∞}.
A classical linear connection on a manifold N is a \mathbb{R}-bilinear map ∇ : $\mathcal{X}(N) \times \mathcal{X}(N) \rightarrow \mathcal{X}(N)$, where $\mathcal{X}(N)$ is the vector space of all vector fields on N, such that (1) $\nabla_{f X} Y=f \nabla_{X} Y$ and (2) $\nabla_{X} f Y=X f Y+f \nabla_{X} Y$ for any vector fields $X, Y \in \mathcal{X}(N)$ and all maps $f: N \rightarrow \mathbb{R}$. It is wellknown that classical linear connections ∇ on N are in canonical bijection with sections $\nabla: N \rightarrow Q N$ of the so-called connection bundle $Q(N)=$ $\left(\mathrm{id}_{T^{*} N} \otimes \pi_{1}\right)^{-1}\left(\mathrm{id}_{T N}\right) \subset T^{*} N \otimes J^{1} T N$ over N, where $\pi_{1}: J^{1} T N \rightarrow T N$ is the jet projection from the first jet prolongation $J^{1} T N$ of the tangent bundle $T N$. Every local diffeomorphism $f: N_{1} \rightarrow N_{2}$ induces canonically a fibred local diffeomorphism $Q f: Q\left(N_{1}\right) \rightarrow Q\left(N_{2}\right)$ covering f (the restriction of $\left.T^{*} f \otimes J^{1} T f\right)$.

Let $\mathcal{F} o l_{m, n}$ be the category of all $m+n$-dimensional foliated manifolds (M, \mathcal{F}) with n-dimensional foliations and their foliation respecting local diffeomorphisms. Given a $\mathcal{F} o l_{m, n}$-object (M, \mathcal{F}) we have the r th order adapted frame bundle

$$
P^{r}(M, \mathcal{F})=\left\{j_{0}^{r} \varphi \mid \varphi:\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right) \rightarrow(M, \mathcal{F}) \text { is a } \mathcal{F}_{o l} l_{m, n} \text {-map }\right\}
$$

over M of $(M \mathcal{F})$, where $\mathcal{F}^{m, n}=\left\{\{a\} \times \mathbb{R}^{n}\right\}_{a \in \mathbb{R}^{m}}$ is the standard n-dimensional foliation on \mathbb{R}^{m+n}. We see that $P^{r}(M, \mathcal{F})$ is a principal fibre bundle with the standard group $G_{m, n}^{r}=P^{r}\left(\mathbb{R}^{m, n}, \mathcal{F}^{m, n}\right)_{0}$ (with multiplication being composition of jets) acting on the right on $P^{r}(M, \mathcal{F})$ by the

[^0]composition of jets. Every $\mathcal{F}_{\text {ol }}^{m, n}$-map $\psi:\left(M_{1}, \mathcal{F}_{1}\right) \rightarrow\left(M_{2}, \mathcal{F}_{2}\right)$ induces a local fibred diffeomorphism (even a principal bundle local isomorphism) $P^{r} \psi: P^{r}\left(M_{1}, \mathcal{F}_{1}\right) \rightarrow P^{r}\left(M_{2}, \mathcal{F}_{2}\right)$ over ψ given by $P^{r} \psi\left(j_{0}^{r} \varphi\right)=j_{0}^{r}(\psi \circ \varphi)$, $j_{0}^{r} \varphi \in P^{r}\left(M_{1}, \mathcal{F}_{1}\right)$.

Let (M, \mathcal{F}) be a $\mathcal{F}_{\text {ol }}^{m, n}$-object. A vector field X on M is called an infinitesimal automorphism of (M, \mathcal{F}) if the flow $\{\operatorname{Expt} X\}$ of X is formed by (locally defined) $\mathcal{F}_{o l} l_{m, n}$-maps $(M, \mathcal{F}) \rightarrow(M, \mathcal{F})$. Equivalently, a vector field on M is an infinitesimal automorphism of (M, \mathcal{F}) iff $[X, Y]$ is tangent to \mathcal{F} for any vector field Y on M tangent to \mathcal{F}. We denote by $\mathcal{X}(M, \mathcal{F})$ the Lie algebra of all infinitesimal automorphisms of (M, \mathcal{F}).

A classical linear connection ∇ on M is called \mathcal{F}-adapted if $\nabla_{X} Y \in$ $\mathcal{X}(M, \mathcal{F})$ for any $X, Y \in \mathcal{X}(M, \mathcal{F})$ and $\nabla_{U} W$ is tangent to \mathcal{F} for any $U, W \in$ $\mathcal{X}(M, \mathcal{F})$ with U or W tangent to \mathcal{F}. (We observe in the proof of Lemma 1 that ∇ is \mathcal{F}-adapted iff it is projectable in adapted coordinates.)

In the present paper we study how an \mathcal{F}-adapted classical linear connection ∇ on a \mathcal{F} ol $l_{m, n}$-object (M, \mathcal{F}) can induce a classical linear connection $\mathcal{A}(\nabla)$ on the r th order adapted frame bundle $P^{r}(M, \mathcal{F})$. This problem is reflected in the concept of $\mathcal{F} o l_{m, n}$-natural operators $\mathcal{A}: Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow Q P^{r}$ in the sense of [1]. We recall that a $\mathcal{F}_{\text {ol }} l_{m, n}$-natural operator $\mathcal{A}: Q_{\mathcal{F} \text { ol } l_{m, n}} \rightsquigarrow Q P^{r}$ is a family of $\mathcal{F}_{o l} l_{m, n}$-invariant regular operators (functions)

$$
\mathcal{A}=\mathcal{A}_{(M, \mathcal{F})}: Q_{\mathcal{F} o l}(M, \mathcal{F}) \rightarrow Q\left(P^{r}(M, \mathcal{F})\right)
$$

for any $\mathcal{F}_{\text {ol }}^{m, n}$-object (M, \mathcal{F}), where $Q_{\mathcal{F} o l}(M, \mathcal{F})$ is the set of all \mathcal{F}-adapted classical linear connections on (M, \mathcal{F}) and $Q\left(P^{r}(M, \mathcal{F})\right)$ is the set of all classical linear connections on $P^{r}(M, \mathcal{F})$. The invariance means that if $\nabla_{1} \in$ $Q_{\mathcal{F} o l}\left(M_{1}, \mathcal{F}_{1}\right)$ and $\nabla_{2} \in Q_{\mathcal{F} o l}\left(M_{2}, \mathcal{F}_{2}\right)$ are φ-related for a $\mathcal{F}_{\text {ol }}^{m, n}$-map φ : $\left(M_{1}, \mathcal{F}_{1}\right) \rightarrow\left(M_{2}, \mathcal{F}_{2}\right)$, then $\mathcal{A}\left(\nabla_{1}\right)$ and $\mathcal{A}\left(\nabla_{2}\right)$ are $P^{r} \varphi$-related. The regularity means that \mathcal{A} transforms smoothly parametrized families of \mathcal{F}-adapted classical linear connections into smoothly parametrized families of classical linear connections.

In Section 1 we give an example $\mathcal{A}^{0}: Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow Q P^{r}$ of such a $\mathcal{F}_{\text {ol }}^{m, n^{-}}$, natural operator. Then we have

Theorem 1. Any $\mathcal{F}_{\text {ol }}^{m, n}$-natural operator $\mathcal{A}: Q_{\mathcal{F} l_{m, n}} \rightarrow Q P^{r}$ is of the form

$$
\mathcal{A}(\nabla)=\mathcal{A}^{0}(\nabla)+\mathcal{C}(\nabla)
$$

for some unique $\mathcal{F}_{\text {ol }}^{m, n}{ }_{m}$-natural operator $\mathcal{C}: Q_{\mathcal{F o l}_{m, n}} \rightarrow\left(T^{*} \otimes T^{*} \otimes T\right) P^{r}$ transforming \mathcal{F}-adapted classical linear connections ∇ on (M, \mathcal{F}) into tensor fields $\mathcal{C}(\nabla)$ of type $(1,2)$ on $P^{r}(M, \mathcal{F})$.

In Sections 2 and 4 we describe explicitly all $\mathcal{F}_{o l} l_{m, n}$-natural operators $\mathcal{C}: Q_{\mathcal{F}_{o l} l_{m, n}} \rightsquigarrow\left(T^{*} \otimes T^{*} \otimes T\right) P^{r}$. (The definition of these operators is a direct modification of the one for $\mathcal{F}_{\text {ol }}^{m, n}$-natural operators $Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow Q P^{r}$.)

In the case $n=0$ we observe that $\mathcal{F}_{o l} l_{m, 0}$ is (in an obvious way) equivalent to the category $\mathcal{M} f_{m}$ of m-dimensional manifolds and their local diffeomorphisms. Namely, we identify an m-manifold M (an $\mathcal{M} f_{m}$-object) with the foliated manifold $\left(M,\{\{a\}\}_{a \in M}\right)$ foliated by points (a $\mathcal{F}_{\text {ol }}^{m, 0}$-object). Clearly, the bundle $P^{r}\left(M,\{\{a\}\}_{a \in M}\right)$ is (again in an obvious way) equivalent to the r th order frame bundle $P^{r} M=\operatorname{inv} J_{0}^{r}\left(\mathbb{R}^{m}, M\right)$. Moreover, the
 actly the classical linear connections ∇ on M. Thus in the case $n=0$ the result of the present paper (almost) coincides with the result of the second author in [2]. In other words, the present paper is an (almost) extension of the result from [2] to foliated manifolds. We write "almost" because if ∇ is a classical linear connection on M then we have the complete lift ∇^{C} of ∇ to $P^{r}(M)$ (we note that $P^{r}(M)$ is an open subset in $T_{m}^{r} M=J_{0}^{r}\left(\mathbb{R}^{m}, M\right)$ and we have the restriction of the complete lift ∇^{C} of ∇ to the m^{r}-velocities bundle $T_{m}^{r} M$ of M in the sense of Morimoto [3]). In [2], we use ∇^{C} instead of $\mathcal{A}^{0}(\nabla)$.

Up till now, for $n \geq 1$ no connections $\mathcal{A}(\nabla)$ on $P^{r}(M, \mathcal{F})$ coming from an \mathcal{F}-adapted one ∇ on (M, \mathcal{F}) have been known. Thus the first main difficulty of the present paper is to construct a connection $\mathcal{A}^{0}(\nabla)$ on $P^{r}(M, \mathcal{F})$ from an \mathcal{F}-adapted classical linear connection ∇ on (M, \mathcal{F}). In the construction of $\mathcal{A}^{0}(\nabla)$ we will use Lemma 1 , which we will also apply many times in next sections.

In the last section we present an alternative version of the main result.

1. An example of a $\mathcal{F}_{\text {ol }}^{m, n}$ natural operator $\mathcal{A}^{0}: Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow Q P^{r}$. To present such an example we need the following lemma.

Lemma 1. Let ∇ be an \mathcal{F}-adapted classical linear connection on a $\mathcal{F}_{\text {ol }}^{m, n}$ object (M, \mathcal{F}). Let $p=j_{0}^{r} \varphi \in\left(P^{r}(M, \mathcal{F})\right)_{x}, x \in M$. There exists a unique (germ of) ∇-normal coordinate system $\psi^{\nabla, p}$ on M with centre x such that $\psi^{\nabla, p}:(M, \mathcal{F}) \rightarrow\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)$ is a locally defined $\mathcal{F}^{\prime} l_{m, n}$-map and we have $P^{1}\left(\psi^{\nabla, p}\right)\left(j_{0}^{1} \varphi\right)=j_{0}^{1}\left(\mathrm{id}_{\mathbb{R}^{m+n}}\right)$.

Proof. Clearly, for a vector field $X \in \mathcal{X}\left(\mathbb{R}^{m+n}\right)$ we have $X \in \mathcal{X}\left(\mathbb{R}^{m+n}\right.$, \mathcal{F}^{m+n}) iff the flow of X is formed by local fibred isomorphisms of the trivial bundle $q: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, or (equivalently) iff X is q-projectable (i.e. there exists a unique vector field \underline{X} on $\mathbb{R}^{m} q$-related to X). Then a classical linear connection ∇ on \mathbb{R}^{m+n} is $\mathcal{F}^{m, n}$-adapted iff $\nabla_{X} Y$ is q-projectable for any q-projectable vector fields X, Y on $\mathbb{R}^{m} \times \mathbb{R}^{n}$ and $\nabla_{U} W$ is vertical if U, V are q-projectable and U or W is vertical, or (equivalently) iff ∇ is q-projectable (i.e. there exists a unique classical linear connection $\underline{\nabla}$ on $\mathbb{R}^{m} q$-related to ∇).

We can assume that $(M, \mathcal{F})=\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right), x=0$ and $j_{0}^{1} \varphi=j_{0}^{1}\left(\mathrm{id}_{\mathbb{R}^{m+n}}\right)$. By the above considerations, the $\operatorname{exponent}^{\operatorname{Exp}_{\nabla, 0}}$ of ∇ at $0 \in \mathbb{R}^{m+n}$ is
q-related to $\operatorname{Exp}_{\nabla, 0}$ of $\underline{\nabla}$ at $0 \in \mathbb{R}^{m}$ (because ∇-geodesics project via q onto ∇-geodesics as $\bar{\nabla}$ and $\underline{\nabla}$ are q-related and q is a surjective submersion). Then $\psi^{\nabla, p}=\operatorname{Exp}_{\nabla, 0}^{-1}$ is a unique ∇-normal coordinate system on \mathbb{R}^{m+n} with centre 0 such that $P^{1}\left(\psi^{\nabla, p}\right)\left(j_{0}^{1}(\mathrm{id})\right)=j_{0}^{1}(\mathrm{id})$ and $\psi^{\nabla, p}:\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right) \rightarrow$ $\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)$ is a locally defined \mathcal{F} ol $l_{m, n}$-map.

We are in a position to present an example of a $\mathcal{F}_{\text {ol }}^{m, n}$-natural operator $\mathcal{A}^{0}: Q_{\mathcal{F} \text { ol } l_{m, n}} \rightsquigarrow Q P^{r}$. We fix an arbitrary classical linear connection λ^{0} on $P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)$ (a section of the connection bundle $Q\left(P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)$ $\left.\rightarrow P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)$.

Example 1. Let $\nabla \in Q(M, \mathcal{F})$ be an \mathcal{F}-adapted classical linear connection on a \mathcal{F} ol $l_{m, n}$-object (M, \mathcal{F}). We define a classical linear connection $\mathcal{A}^{0}(\nabla)$ on $P^{r}(M, \mathcal{F})$ (a section $\mathcal{A}^{0}(\nabla): P^{r}(M, \mathcal{F}) \rightarrow Q\left(P^{r}(M, \mathcal{F})\right)$) as follows. Let $p=j_{x}^{r} \varphi \in\left(P^{r}(M, \mathcal{F})\right)_{x}, x \in M$. Let $\psi^{\nabla, p}$ be the unique (germ of) ∇-normal coordinate system on M with centre x such that $\psi^{\nabla, p}:(M, \mathcal{F}) \rightarrow$ $\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)$ is a locally defined $\mathcal{F} o l_{m, n}$-map and $P^{1}\left(\psi^{\nabla, p}\right)\left(j_{0}^{1} \varphi\right)=j_{0}^{1}(\mathrm{id})$ (see Lemma 1). We define

$$
\mathcal{A}^{0}(\nabla)(p):=Q\left(P^{r}\left(\left(\psi^{\nabla, p}\right)^{-1}\right)\right)\left(\lambda^{0}\left(P^{r}\left(\psi^{\nabla, p}\right)(p)\right)\right) .
$$

This definition is correct because the germ of $\psi^{\nabla, p}$ at x is uniquely determined and we can apply the functor P^{r} to $\psi^{\nabla, p}$ because $\psi^{\nabla, p}$ is a $\mathcal{F} o l_{m, n}$-map. Therefore the family $\mathcal{A}^{0}: Q_{\mathcal{F} l_{m, n}} \rightsquigarrow Q P^{r}$ is a $\mathcal{F} o l_{m, n}$-natural operator.
2. The $\mathcal{F} o l_{m, n}$-natural operators $Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow T^{(0,0)} P^{r}$. Let

$$
\theta:=j_{0}^{1}\left(\mathrm{id}_{\mathbb{R}^{m+n}}\right) \in\left(P^{1}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)_{0}
$$

Let $\left(P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)_{\theta}=\left\{j_{0}^{r} \varphi \in\left(P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)_{0} \mid j_{0}^{1} \varphi=\theta\right\}$. Let S^{s} $(s \in \mathbb{N} \cup\{\infty\})$ be the vector space of all s-jets at $0 \in \mathbb{R}^{m+n}$ of $\mathcal{F}^{m, n}$-adapted classical linear connections ∇ on $\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)$ (or equivalently, of all s-jets at $0 \in \mathbb{R}^{m+n}$ of projectable classical linear connections on the trivial bundle $\mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$) given by the Christoffel symbols $\Gamma_{j k}^{i}: \mathbb{R}^{m+n} \rightarrow \mathbb{R}$ satisfying

$$
\sum_{j, k=1}^{m+n} \Gamma_{j k}^{i}(x) x^{j} x^{k}=0 \quad \text { for } i=1, \ldots, m+n
$$

Equivalently, S^{s} is the space of all s-jets at 0 of $\mathcal{F}^{m, n}$-adapted classical linear connections ∇ on $\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)$ such that the usual coordinate system x^{1}, \ldots, x^{m+n} on \mathbb{R}^{m+n} is a normal coordinate system for ∇ with centre 0. (The equivalence is almost clear if we remember the well-known differential equations for geodesics and apply the fact that ∇-geodesics passing through the centre of ∇-normal coordinates are straight lines in these coordinates.)

Let us consider a function $\mu: S^{\infty} \times\left(P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)_{\theta} \rightarrow \mathbb{R}$ satisfying the following local finite determination property:
$(*)$ For any $\varrho \in S^{\infty}$ and $\sigma \in\left(P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)_{\theta}$, we can find an open neighbourhood $V \subset\left(P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)_{\theta}$ of σ, an open neighbourhood $U \subset S^{\infty}$ of ϱ, a natural number s and a smooth map f : $\pi_{s}(U) \times V \rightarrow \mathbb{R}$ such that $\mu=f \circ\left(\pi_{s} \times \mathrm{id}_{V}\right)$ on $U \times V$, where $\pi_{s}: J^{\infty} \rightarrow J^{s}$ is the jet projection.
An example of a μ with property $(*)$ is the pull-back of a map $\widetilde{\mu}: S^{s} \times$ $\left(P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)_{\theta} \rightarrow \mathbb{R}$ for finite s with respect to the projection $\pi_{s} \times$ id : $S^{\infty} \times\left(P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)_{\theta} \rightarrow S^{s} \times\left(P^{r}\left(\mathbb{R}^{m, n}, \mathcal{F}^{m, n}\right)\right)_{\theta}$.

Example 2. Given an \mathcal{F}-adapted classical linear connection ∇ on a $\mathcal{F} o l_{m, n}$-object (M, \mathcal{F}), we define a smooth map $\mathcal{B}^{\langle\mu\rangle}(\nabla): P^{r}(M, \mathcal{F}) \rightarrow \mathbb{R}$ by

$$
\mathcal{B}^{\langle\mu\rangle}(\nabla)(p):=\mu\left(j_{0}^{\infty}\left(\psi_{*}^{\nabla, p} \nabla\right), P^{r}\left(\psi^{\nabla, p}\right)(p)\right)
$$

$p=j_{0}^{r} \varphi \in\left(P^{r}(M, \mathcal{F})\right)_{x}, x \in M$, where $\psi^{\nabla, p}:(M, \mathcal{F}) \rightarrow\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)$ is as in Lemma 1 for ∇ and p. The definition is correct because $\operatorname{germ}_{x}\left(\psi^{\nabla, p}\right)$ is uniquely determined. The correspondence $\mathcal{B}^{\langle\mu\rangle}: Q_{\mathcal{F}_{o l_{m, n}}} \rightsquigarrow T^{(0,0)} P^{r}$ is a $\mathcal{F}_{\text {ol }}^{m, n}$-natural operator transforming \mathcal{F}-adapted classical linear connections on $\mathcal{F}_{\text {ol }}^{m, n}$-objects (M, \mathcal{F}) into maps $\mathcal{B}^{\langle\mu\rangle}(\nabla): P^{r}(M, \mathcal{F}) \rightarrow \mathbb{R}$. (The definition of $\mathcal{F}_{O l} l_{m, n}$-natural operators $Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow T^{(0,0)} P^{r}$ is a direct modification of the one of $\mathcal{F}_{m, n}$-natural operators $Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow Q P^{r}$.)

Proposition 1. Any \mathcal{F} ol $l_{m, n}$-natural operator $\mathcal{B}: Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow T^{(0,0)} P^{r}$ is equal to $\mathcal{B}^{\langle\mu\rangle}$ for a unique map $\mu: S^{\infty} \times\left(P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)_{\theta} \rightarrow \mathbb{R}$ with the above-mentioned property.

Proof. Let \mathcal{B} be an operator in question. Define a map $\mu: S^{\infty} \times\left(P^{r}\left(\mathbb{R}^{m+m}\right.\right.$, $\left.\left.\mathcal{F}^{m, n}\right)\right)_{\theta} \rightarrow \mathbb{R}$ by

$$
\mu\left(j_{0}^{\infty}(\nabla), \sigma\right)=\mathcal{B}(\nabla)_{\sigma}
$$

Then by the non-linear Peetre theorem [1], μ has property ($*$). Clearly, $\mathcal{B}=$ $\mathcal{B}^{\langle\mu\rangle}$.
3. The parallelism on $P^{r}(M, \mathcal{F})$ from an \mathcal{F}-adapted classical linear connection ∇ on (M, \mathcal{F}). Let ∇ be an \mathcal{F}-adapted classical linear connection ∇ on (M, \mathcal{F}).

Example 3. For $i=1, \ldots, m+n$, we define a vector field $A^{i}(\nabla)$ on $P^{r}(M, \mathcal{F})$ as follows. Let $p=j_{0}^{r} \varphi \in\left(P^{r}(M, \mathcal{F})\right)_{x}, x \in M$. Let $\psi^{\nabla, p}$: $(M, \mathcal{F}) \rightarrow\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)$ be as in Lemma 1 for ∇ and p. We put

$$
A^{i}(\nabla)(p)=T P^{r}\left(\left(\psi^{\nabla, p}\right)^{-1}\right)\left(\mathcal{P}^{r}\left(\frac{\partial}{\partial x^{i}}\right)\left(P^{r}\left(\psi^{\nabla, p}\right)(p)\right)\right)
$$

where $\partial / \partial x^{i}$ are the canonical vector fields on \mathbb{R}^{m+n} (they are infinitesimal automorphisms of $\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)$) and where $\mathcal{P}^{r} X$ means the flow lifting of an infinitesimal automorphism $X \in \mathcal{X}\left(N, \mathcal{F}_{1}\right)$ to $P^{r}\left(N, \mathcal{F}_{1}\right)$. $\left(\mathcal{P}^{r} X\right.$ is given
by the flow $\left\{P^{r}(\operatorname{Expt} X)\right\}$, where $\{\operatorname{Expt} X\}$ is the flow of X. We can apply the functor P^{r} to Expt X because Expt X is a $\mathcal{F}_{o l} l_{m, n}$-map as X is an infinitesimal automorphism.) The correspondence $A^{i}: Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow T P^{r}$ is a $\mathcal{F}_{\text {ol }}^{m, n}$-natural operator (transforming \mathcal{F}-adapted classical linear connections on (M, \mathcal{F}) into vector fields on $\left.P^{r}(M, \mathcal{F})\right)$.

Example 4. Let $G_{m, n}^{r}=P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)_{0}$ be the Lie group as in the Introduction. Let $\left\{E_{\alpha}\right\}$ be a basis in the Lie algebra $\mathcal{L}\left(G_{m, n}^{r}\right)$. Let $\left(E_{\alpha}\right)^{*}$ be the fundamental vector field corresponding to E_{α} on the principal $G_{m, n^{-}}^{r}$ bundle $P^{r}(M, \mathcal{F})$. The correspondence $\left(E_{\alpha}\right)^{*}: Q_{\mathcal{F} l_{m, n}} \rightsquigarrow T P^{r}$ is a $\mathcal{F} o l_{m, n^{-}}$ natural operator (independent of ∇).

Proposition 2. Given an \mathcal{F}-adapted classical linear connection ∇ on (M, \mathcal{F}), the vector fields $A^{i}(\nabla)$ and $\left(E_{\alpha}\right)^{*}$ for $i=1, \ldots, m+n$ and $\alpha=$ $1, \ldots, \operatorname{dim}\left(G_{m, n}^{r}\right)$ form a basis over $\mathcal{C}^{\infty}\left(P^{r}(M, \mathcal{F})\right)$ of the module of all vector fields on $P^{r}(M, \mathcal{F})$.

Proof. This is a simple observation.
4. The $\mathcal{F}_{o l} l_{m, n}$-natural operators $Q_{\mathcal{F}_{\text {ol }}^{m, n}} \rightsquigarrow\left(T^{*} \otimes T^{*} \otimes T\right) P^{r}$. The space of all \mathcal{F} ol $l_{m, n}$-natural operators $Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow\left(T^{*} \otimes T^{*} \otimes T\right) P^{r}$ transforming \mathcal{F}-adapted classical linear connections on (M, \mathcal{F}) into tensor fields of type $(1,2)$ on $P^{r}(M, \mathcal{F})$ is (in an obvious way) a module over the algebra of all $\mathcal{F} o l_{m, n}$-natural operators $Q_{\mathcal{F o l}_{m, n}} \rightsquigarrow T^{(0,0)} P^{r}$ (classified in Section 2).

Proposition 3. The module of all $\mathcal{F}_{\text {ol }}^{m, n}$-natural operators $Q_{\mathcal{F} o l_{m, n}}$ $\rightsquigarrow\left(T^{*} \otimes T^{*} \otimes T\right) P^{r}$ is free and $\left(m+n+\operatorname{dim}\left(G_{m, n}^{r}\right)\right)^{3}$-dimensional. All (suitable) tensor products of $A^{i},\left(E_{\alpha}\right)^{*},\left(A^{i}\right)^{D}$ and $\left(\left(E_{\alpha}\right)^{*}\right)^{D}$ form a basis in this module, where given an \mathcal{F}-adapted classical linear connection ∇ on (M, \mathcal{F}), $\left(A^{i}(\nabla),\left(E_{\alpha}\right)^{*}\right)$ is a basis of vector fields on $P^{r}(M, \mathcal{F})$ as in Section 3 and $\left(A^{i}(\nabla)^{D},\left(\left(E_{\alpha}\right)^{*}\right)^{D}\right)$ is the dual basis of 1-forms on $P^{r}(M, \mathcal{F})$.

Proof. Let $\mathcal{C}: Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow\left(T^{*} \otimes T^{*} \otimes T\right) P^{r}$ be a $\mathcal{F}_{o l} l_{m, n}$-natural operator. For any \mathcal{F}-adapted classical linear connection ∇ on (M, \mathcal{F}) we can write

$$
\mathcal{C}(\nabla)=\sum_{k} \lambda_{k}(\nabla) F^{k}(\nabla)
$$

where $\left(F^{k}(\nabla)\right)$ is the obvious basis of $(1,2)$-tensor fields on $P^{r}(M, \mathcal{F})$ induced by the basis $\left(A^{i}(\nabla),\left(E_{\alpha}\right)^{*}\right)$, and the maps $\lambda_{k}(\nabla): P^{r}(M, \mathcal{F}) \rightarrow \mathbb{R}$ are uniquely determined. Because of the invariance of \mathcal{C} with respect to $\mathcal{F}^{\circ} l_{m, n}$-maps, $\lambda_{k}: Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow T^{(0,0)} P^{r}$ are $\mathcal{F}_{\text {ol }}^{m, n}$-natural operators.
5. Another version of the main theorem. We end this note by the following alternative description of all $\mathcal{F} o l_{m, n}$-natural operators \mathcal{A} : $Q_{\mathcal{F o l}_{m, n}} \rightsquigarrow Q P^{r}$.

We use the notation of Section 2. Let $\nu: S^{\infty} \times\left(P^{r}\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)_{\theta} \rightarrow$ $Q\left(P\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)\right)$ be a map such that a local finite determination property quite similar to $(*)$ for μ from Section 2 is satisfied. Additionally we assume that $\pi \circ \nu(\sigma, p)=p$ for any (σ, p), where π is the projection of the connection bundle.

Example 5. Let ∇ be an \mathcal{F}-adapted classical linear connection on a $\mathcal{F}_{\text {ol }}^{m, n}$-object (M, \mathcal{F}). We define a classical linear connection $\mathcal{A}^{\langle\nu\rangle}(\nabla)$ on $P^{r}(M, \mathcal{F})$ as follows. Let $p=j_{0}^{r} \varphi \in\left(P^{r}(M, \mathcal{F})\right)_{x}, x \in M$. Let $\psi^{\nabla, p}$: $(M, \mathcal{F}) \rightarrow\left(\mathbb{R}^{m+n}, \mathcal{F}^{m, n}\right)$ be as in Lemma 1 for ∇ and p. We put

$$
\mathcal{A}^{\langle\nu\rangle}(\nabla)(p)=Q\left(P^{r}\left(\left(\psi^{\nabla, p}\right)^{-1}\right)\right)\left(\nu\left(j_{0}^{\infty}\left(\psi_{*}^{\nabla, p} \nabla\right), P^{r}\left(\psi^{\nabla, p}\right)(p)\right)\right) .
$$

Clearly, $\mathcal{A}^{\langle\nu\rangle}: Q_{\mathcal{F} o l_{m, n}} \rightsquigarrow Q P^{r}$ is a $\mathcal{F}_{o l} l_{m, n}$-natural operator.
Theorem 2. Any \mathcal{F} ol $l_{m, n}$-natural operator $\mathcal{A}: Q_{\mathcal{F}_{\text {ol }}^{m, n}} \rightsquigarrow Q P^{r}$ is equal to $\mathcal{A}^{\langle\nu\rangle}$ for some ν as in Example 5.

Proof. The proof is quite similar to the one of Proposition 1.

References

[1] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
[2] W. M. Mikulski, Natural liftings of connections to the rth order frame bundle, Demonstratio Math. 40 (2007), 481-484.
[3] A. Morimoto, Liftings of some types of tensor fields and connections to tangent bundles of p^{r}-velocities, Nagoya Math. J. 40 (1970), 13-31.

Institute of Mathematics
Maria Curie-Skłodowska University
Pl. M. Curie-Skłodowskiej 1
20-031 Lublin, Poland
E-mail: kurek@hektor.umcs.lublin.pl

Institute of Mathematics
Jagiellonian University Reymonta 4
30-059 Kraków, Poland
E-mail: mikulski@im.uj.edu.pl

[^0]: 2000 Mathematics Subject Classification: Primary 58A20.
 Key words and phrases: foliated manifold, (\mathcal{F}-adapted) classical linear connection, higher order adapted frame bundle, natural operator.

