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Coefficient inequalities for concave and

meromorphically starlike univalent functions

by B. Bhowmik and S. Ponnusamy (Chennai)

Abstract. Let D denote the open unit disk and f : D → C be meromorphic and
univalent in D with a simple pole at p ∈ (0, 1) and satisfying the standard normalization
f(0) = f ′(0) − 1 = 0. Also, assume that f has the expansion

f(z) =

∞
∑

n=−1

an(z − p)n

, |z − p| < 1 − p,

and maps D onto a domain whose complement with respect to C is a convex set (starlike
set with respect to a point w0 ∈ C, w0 6= 0 resp.). We call such functions concave (mero-
morphically starlike resp.) univalent functions and denote this class by Co(p) (Σs(p, w0)
resp.). We prove some coefficient estimates for functions in these classes; the sharpness of
these estimates is also established.

1. Introduction. One of the most interesting questions in the theory
of univalent functions is to find the region of variability of the nth Taylor
(Laurent resp.) coefficient for functions f that are analytic (meromorphic
resp.) and univalent in the unit disk D = {z : |z| < 1}. The leading example
is the Bieberbach conjecture settled by de Branges in 1985 for the class S
of normalized analytic univalent functions f in D although corresponding
results for important subclasses of S are relatively easy and were settled
positively much earlier.

In this paper, we consider the family Co(p) of functions f : D → C that
satisfy the following conditions:

(i) f is meromorphic in D and has a simple pole at the point p ∈ (0, 1)
with the standard normalization f(0) = f ′(0) − 1 = 0.

(ii) f maps D conformally onto a set whose complement with respect to
C is convex.
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Each f ∈ Co(p) has the power series expansion of the form

(1.1) f(z) = z +
∞

∑

n=2

An(f)zn, |z| < p.

For our investigation, we consider the Laurent expansion of f ∈ Co(p) about
the pole z = p:

(1.2) f(z) =

∞
∑

n=−1

an(z − p)n, z ∈ ∆p,

where ∆p = {z ∈ C : |z− p| < 1− p}. Motivated by the works of Pfaltzgraff
and Pinchuk [8], Miller [7], and Livingston [6], the class Co(p) has been
investigated recently in [4, 1, 2, 3, 10]. A necessary and sufficient condition
for a function f to be in Co(p) ([6]) is that Reφ(z, f) > 0 for all z ∈ D,
where

φ(z, f) = −(1 + p2) + 2pz − (z − p)(1 − pz)f ′′(z)

f ′(z)
, z ∈ D.

Livingston [6] determined some estimates of the real part of An(f) for
n = 2, 3 when f ∈ Co(p) has the expansion (1.1). In the same article he
conjectured an estimate for the real part of the general coefficient An(f)
(n ≥ 2) for f ∈ Co(p). After a long gap of ten years, positive developments
have occurred in this line of work. For example, the recent work of Avkhadiev
and Wirths [4] settles the conjecture of Avkhadiev, Pommerenke and Wirths
[1] which, in particular, provides a proof of the Livingston conjecture. For
ease of reference, we now recall it here.

Theorem A ([4]). Let n ≥ 2 and p ∈ (0, 1). For each f ∈ Co(p) with

the expansion (1.1) the inequality

(1.3)

∣

∣

∣

∣

An(f) − 1 − p2n+2

pn−1(1 − p4)

∣

∣

∣

∣

≤ p2(1 − p2n−2)

pn−1(1 − p4)

is valid. Equality is attained in (1.3) if and only if f is one of the functions

fθ, θ ∈ [0, 2π), where

(1.4) fθ(z) =
z − p

1+p2 (1 + eiθ)z2

(1 − z/p)(1 − zp)
.

For each complex number in the disk described in (1.3) there exists a function

f ∈ Co(p) such that this number occurs as the nth Taylor coefficient of f.

Interestingly, Wirths [10] established the following representation for-
mula for functions in Co(p).

Theorem B ([10]). For each f ∈ Co(p), there exists a function ω holo-

morphic in D such that ω(D) ⊂ D and
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(1.5) f(z) =
z − p

1+p2 (1 + ω(z))z2

(1 − z/p)(1 − zp)
, z ∈ D.

The above representation formula has been used by the authors in [5]
to obtain some other kind of coefficient estimates for functions in the class
Co(p) with the Laurent expansion of the form (1.2).

In the present article, we first obtain certain coefficient estimates for
functions in Co(p) with the same expansion of the form (1.2). Next we dis-
cuss a related class of meromorphically starlike functions, namely, the class
Σs(p, w0), and obtain a simple and easily applicable representation formula
for this class. Using this formula, we also obtain some sharp coefficient esti-
mates for functions in this class. As a consequence, we rectify a mistake in
[6, Theorem 9].

Now, we state our first result.

Theorem 1.1. Let p ∈ (0, (
√

5 − 1)/2] and f ∈ Co(p) have the expan-

sion (1.2). Then

(1.6)

∣

∣

∣

∣

p− (1 − p2)
a0

a−1

∣

∣

∣

∣

≤ p

|a−1|
, i.e.

∣

∣

∣

∣

a−1 −
1 − p2

p
a0

∣

∣

∣

∣

≤ 1.

The inequality is sharp.

Remark. In [10] Wirths has obtained the region of variability for a−1(f),
namely, the inequality

∣

∣

∣

∣

a−1 +
p2

1 − p4

∣

∣

∣

∣

≤ p4

1 − p4
for 0 < p < 1.

In [5], the domain of variability of a0(f) is determined by the inequality
∣

∣

∣

∣

(1 − p2)a0

p
+

1 − p2 + p4

1 − p4

∣

∣

∣

∣

≤ p2(2 − p2)

1 − p4
for p ∈ (0,

√
3 − 1].

Equality in each of the above two inequalities is attained if and only if f is
one of the functions given in (1.4).

The next result presents sharp coefficient estimates for all n ≥ 3 if f ∈
Co(p) has the expansion (1.2).

Theorem 1.2. If f ∈ Co(p) with p ∈ (0, 1) and has the expansion (1.2),
then for n ≥ 3 we have

(1.7)

∣

∣

∣

∣

an−2 −
(1 − p2)an−1

p

∣

∣

∣

∣

≤ p

(1 − p4)(1 − p)n−1

[

1 −
(

1 − p4

p4

)2 ∣

∣

∣

∣

a−1 +
p2

1 − p4

∣

∣

∣

∣

2]

.

Equality holds for the functions fθ (0 ≤ θ ≤ 2π) of the form (1.4).
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2. Proofs of Theorems 1.1 and 1.2

(2.1) Proof of Theorem 1.1. Let f ∈ Co(p). Then, by Theorem B, there
exists a function ω holomorphic in D with ω(D) ⊂ D satisfying the repre-
sentation formula (1.5).

Now, let f ∈ Co(p) have the Laurent expansion (1.2) and let ω have the
Taylor expansion

(2.2) ω(z) =
∞

∑

n=0

cn(z − p)n, z ∈ ∆p.

Using these two expansions, the series formulation of (1.5) takes the form

(2.3) (z − p)

(

(z − p) − 1 − p2

p

) ∞
∑

n=−1

an(z − p)n

= p+ (z − p) − p

1 + p2

(

1 +
∞

∑

n=0

cn(z − p)n
)

((z − p)2 + 2p(z − p) + p2).

Comparing the coefficients of z − p on both sides of (2.3), we see that

(2.4) a−1 −
1 − p2

p
a0 =

1 − p2

1 + p2
− p2

1 + p2
(2c0 + pc1).

Using the classical Schwarz–Pick lemma, it follows that

|ω′(p)| ≤ 1 − |ω(p)|2
1 − p2

, i.e. |c1| ≤
1 − |c0|2
1 − p2

.

In view of this observation, we have the estimate

|2c0 + pc1| ≤
p(1 − |c0|2) + 2(1 − p2)|c0|

1 − p2
.

For convenience, we set x = |c0| and consider

Rp(x) = p(1 − x2) + 2(1 − p2)x.

We see that Rp(x) attains a local maximum at xm = (1 − p2)/p. Since
xm ≥ 1 for p ∈ (0, (

√
5 − 1)/2], we see that

|Rp(x)| ≤ Rp(1) = 2(1 − p2), x ∈ [0, 1], p ∈ (0, (
√

5 − 1)/2],

and therefore, we have the estimate |2c0 + pc1| ≤ 2 for p in that interval.
Now using this we get from (2.4) the estimate (1.6). It is a simple exercise
to see that equality is attained in (1.6) for the function

f(z) =
−zp

(z − p)(1 − zp)
.
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(2.5) Proof of Theorem 1.2. Let f ∈ Co(p) with the expansion (1.2). Next,
following the notation of the proof of Theorem 1.1, we compare the coeffi-
cients of (z − p)n (n ≥ 3) on both sides of the equation (2.3). This gives

an−2 −
1 − p2

p
an−1 = − p

1 + p2
(cn−2 + 2pcn−1 + p2cn) (n ≥ 3).

Now, for a unimodular bounded analytic function ω in the unit disk D having
the expansion (2.2) in ∆p, we recall the following result due to Ruscheweyh
[9, Theorem 2]:

(1 − p)n(1 + p)|cn| ≤ 1 − |c0|2 (n ≥ 1)

where equality holds for ω(z) = eiθ, θ ∈ [0, 2π). Using this, we easily obtain
∣

∣

∣

∣

an−2 −
(1 − p2)an−1

p

∣

∣

∣

∣

≤ p(1 − |c0|2)
(1 + p2)(1 + p)(1 − p)n

(n ≥ 3).

Consequently, (1.7) follows since

c0 =
1 − p4

p4
a−1 +

1

p2
,

by comparing the constant terms on both sides of (2.3). Now, equality holds
of (1.7) for the functions fθ, θ ∈ [0, 2π), of (1.4), since both sides of the
inequality are zero.

3. Meromorphically starlike functions. Let Σs(p, w0) denote the
class of meromorphic and univalent functions f in D (with the standard
normalization f(0) = f ′(0) − 1 = 0) having a simple pole at p ∈ (0, 1)
with the expansion (1.2) such that f is starlike with respect to a fixed
w0 ∈ C, w0 6= 0 (i.e. C \ f(D) is a starlike set with respect to w0). A well-
known fact [6] is that f ∈ Σs(p, w0) if and only if Reψ(z, f) > 0 for all
z ∈ D, where

(3.1) ψ(z, f) =
−(z − p)(1 − pz)f ′(z)

f(z) − w0
, z ∈ D.

We now prove a useful representation formula for functions in the class
Σs(p, w0).

Theorem 3.1. For 0 < p < 1, let f ∈ Σs(p, w0). Then there exists a

function ω holomorphic in D such that ω(D) ⊂ D,

ω(0) = −1

2

(

1

w0
+ p+

1

p

)

and

(3.2) f(z) = w0 +
pw0(1 + zω(z))2

(z − p)(1 − zp)
, z ∈ D.
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Proof. The proof is a direct consequence of [12, Corollary 2] where the
notation σ∗(p, w0) is used in place of Σs(p, w0). By that corollary, if f ∈
Σs(p, w0), then

∣

∣

∣

∣

{

f(z) − w0

pw0
(z − p)(1 − pz)

}1/2

− 1

∣

∣

∣

∣

≤ |z|, z ∈ D.

Now writing

ω(z) =
1

z

{

f(z) − w0

pw0
(z − p)(1 − pz)

}1/2

− 1

z

and simplifying the above expression for f we get the desired representa-
tion formula for functions in the class Σs(p, w0). Here we note that ω is
holomorphic in D and |ω(z)| ≤ 1. Also since f ′(0) = 1 we get ω(0) =
−1

2(1/w0 + p+ 1/p).

As a consequence of Theorem 3.1, we have the following result which has
been proved in [11] by using a different method.

Corollary 3.1. For 0 < p < 1, let f ∈ Σs(p, w0). Then

(3.3)

∣

∣

∣

∣

w0 +
p(1 + p2)

(1 − p2)2

∣

∣

∣

∣

≤ 2p2

(1 − p2)2
.

In particular ,
p

(1 + p)2
≤ |w0| ≤

p

(1 − p)2
.

Proof. As |ω(0)| ≤ 1 and ω(0) = −1
2(1/w0 + p+ 1/p), it follows that

∣

∣

∣

∣

1

w0
+

1 + p2

p

∣

∣

∣

∣

≤ 2,

which is easily seen to be equivalent to the inequality (3.3). The other in-
equality is a simple consequence of (3.3).

Theorem 3.2. Let f ∈ Σs(p, w0) have the Laurent expansion (1.2).
Then

(i)

∣

∣

∣

∣

a−1 −
pw0

1 − p2

∣

∣

∣

∣

≤ p|w0|
1 − p2

|p/w0 + p2 + 1| + 2p2

2 + |p/w0 + p2 + 1|

( |p/w0 + p2 + 1| + 2p2

2 + |p/w0 + p2 + 1| + 2

)

for p ∈ (0, 1),

(ii)

∣

∣

∣

∣

a0 −
1 − p2 + p4

(1 − p2)2
w0

∣

∣

∣

∣

≤ p(2 + 2p− p3)

(1 − p2)2
|w0|, p ∈ (0, (

√
5 − 1)/2].

Both inequalities are sharp for

f(z) =
−zp

(z − p)(1 − pz)
= w0 +

pw0

(z − p)(1 − pz)
(1 − z)2 ∈ Σs(p, w0)

where w0 = −p/(1 + p)2.
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Proof. Consider the Taylor expansion for ω:

ω(z) =
∞
∑

n=0

cn(z − p)n, z ∈ ∆p.

Now substituting (1.2) and (2.2) in the representation formula (3.2) we get
the following series formulation of (3.2) valid in ∆p:

(3.4)

∞
∑

n=−1

an(z − p)n − w0

=
pw0

1 − p2

∑

n≥0

(

p

1 − p2

)n

(z − p)n−1

×
[

1 + {(z − p)2 + p2 + 2p(z − p)}
∑

n≥0

( n
∑

k=0

ckcn−k

)

(z − p)n

+ {2p+ 2(z − p)}
∑

n≥0

cn(z − p)n

]

.

In deriving the above expression, we make use of the relations

(z − p)(1 − pz) = (1 − p2)(z − p)

(

1 − p

1 − p2
(z − p)

)

,

(1 + zω(z))2 = 1 + 2(z − p+ p)w(z)

+ ((z − p)2 + 2p(z − p) + p2)w(z)w(z).

Now, we proceed to prove (i). Comparing the coefficients of 1/(z− p) on
both sides of (3.4) we get

a−1 =
pw0

1 − p2
[1 + p2c20 + 2pc0].

The Schwarz–Pick lemma applied to ω shows that

|c0| = |ω(p)| ≤ |ω(0)| + p

1 + p|ω(0)| ,

where

|ω(0)| =
1

2

∣

∣

∣

∣

1

w0
+ p+

1

p

∣

∣

∣

∣

.

Using this, we get the desired estimate for a−1. It is also easy to check that
(i) is sharp for the function given in the statement.

(ii) Comparing the constant terms on both sides of (3.4) we get

a0 − w0 =
p2w0

(1 − p2)2
(1 + p2c20 + 2pc0) +

2pw0

1 − p2
(p2c0c1 + p2c20 + pc1 + c0),
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or equivalently,

a0−
1 − p2 + p4

(1 − p2)2
w0 =

p2w0

(1 − p2)2
(p2c20+2pc0)+

2pw0

1 − p2
(p2c0c1+p

2c20+pc1+c0).

Now, we recall the estimates from the Schwarz–Pick lemma:

|c0| ≤ 1, |c1| ≤
1 − |c0|2
1 − p2

.

For convenience, we use the notation x = |c0|. Using the above estimates, it
is easy to see that the last equality implies that

∣

∣

∣

∣

a0 −
1 − p2 + p4

(1 − p2)2
w0

∣

∣

∣

∣

≤ p|w0|
(1 − p2)2

(2p+ 2x+ 2p2x− 2p2x3 − p3x2).

Next, we introduce

Qp(x) = 2p+ 2x+ 2p2x− 2p2x3 − p3x2, 0 ≤ x ≤ 1.

Then Qp attains a local maximum at

xm = (−p2 +
√

p4 + 12(1 + p2) )/(6p).

Since xm ≥ 1 for p ∈ (0, (
√

5 − 1)/2], we have

max{Qp(x) : x ∈ [0, 1]} = Qp(1) = 2 + 2p− p3.

This proves inequality (ii), and the sharpness can easily be verified for the
function given in the statement.

Remark. It is a simple exercise to see that

(3.5)
|p/w0 + p2 + 1| + 2p2

2 + |p/w0 + p2 + 1| ≤ p

is equivalent to

1

2

∣

∣

∣

∣

p

w0
+ p2 + 1

∣

∣

∣

∣

≤ p, i.e. |ω(0)| ≤ 1.

Thus, (3.5) holds. If we use the inequality (3.5) then inequality (i) of Theo-
rem 3.2 turns out to be

∣

∣

∣

∣

a−1 −
pw0

1 − p2

∣

∣

∣

∣

≤ p2

1 − p2
(p+ 2)|w0|, p ∈ (0, 1).

Applying the triangle inequality and inequality (ii) of Theorem 3.2 we get

(3.6) |a−1| ≤
p(1 + p)

1 − p
|w0|, p ∈ (0, 1),

and

|a0| ≤
1

(1 − p)2
|w0|, p ∈ (0, (

√
5 − 1)/2],

respectively. Both the above estimates are sharp for the function stated in
Theorem 3.2.
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The estimate (3.6) shows that there was a minor error in one of the
results of Livingston, namely Theorem 9 in [6]. Indeed, a counterexample is
given by the function

g(z) =
−zp

(z − p)(1 − pz)
∈ Σs

(

p,
−p

1 + p2

)

.

Here we note that

a−1(g) =
−p2

1 − p2

does not belong to the disk stated in Theorem 9 of [6]. Moreover, the error
actually occurred in [6, p. 290] where the inequality in the 6th line needs to
be reversed, since ξ − p ≤ 0. We can now formulate a corrected version of
[6, Theorem 9] for future use.

Theorem 3.3. If f ∈ Σs(p, w0) and has the Laurent expansion (1.2),
then

|a−1| ≥
p(1 − p)

1 + p
|w0|.

The inequality is sharp for the function

g(z) =
−zp

(z − p)(1 − pz)
= w0 +

pw0

(z − p)(1 − pz)
(1 − z)2 ∈ Σs(p, w0)

where w0 = −p/(1 − p)2.

Here we also note that

Re

(

(z − p)(1 − zp)g′(z)

f(z) + p
(1−p)2

)

= −(1 − p)2Re

(

1 + z

1 − z

)

< 0

for all z ∈ D and g satisfies the normalization condition g(0) = 0 = g′(0)−1
whenever w0 = −p/(1 − p)2.

Remark. In view of the last theorem, the corollary that follows from
Theorem 9 in [6] is also not true since it uses the incorrect estimate for
|a−1|.
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