Corrections to "Existence and stability of solutions for semilinear Dirichlet problems"

(Ann. Polon. Math. 88 (2006), 127-139)
by Marek Galewski (Łódź)

Pages 128,137 and 138: replace $(0, T)$ and $[0, T]$ by $(0, \pi)$ and $[0, \pi]$ respectively.

Page 128 , line 14 from above: replace $\sqrt{\frac{12}{\pi}}$ by $\frac{\sqrt{12}}{\pi}$, and d by d_{k}.
Page 128, line 11 from below: replace $\left\|\frac{d^{3}}{d t^{3}} x\right\|_{L^{2}}^{2}$ by $\left\|\frac{d^{3}}{d t^{3}} x\right\|_{L^{2}}$.
Page 130, line 16 from below: replace $k=1,2, \ldots$ by $k=0,1,2, \ldots$
Page 130, line 14 from below: replace $S(L)$ by $D(L)$.
Page 130, line 10 from below: replace $D(S)$ by $D(L)$.
Page 135, line 11 from below: replace $D(S)$ by Y.
Page 136, line 8 from above: replace $\bar{x}+t x$ by $\bar{x}+t x \in B$.
Page 136, lines 11-12 from above: delete $[-1,1] \in$.
Page 137, line 6 from above: replace $\left\|\frac{d^{3}}{d t^{3}} x\right\|_{L^{2}}^{2}$ by $\left\|\frac{d^{3}}{d t^{3}} x\right\|_{L^{2}}$.
Page 137, line 14 from above: replace

$$
\underset{t \in[0, T]}{\operatorname{ess} \sup }\left|\nabla F_{k}(t, d)\right| \int_{0}^{\pi}\left|\frac{d^{3}}{d t^{3}} x\right|^{2} d t
$$

by

$$
\sqrt{\pi} \underset{t \in[0, \pi]}{\operatorname{ess} \sup }\left|\nabla F_{k}\left(t, \pm d_{k}\right)\right| \sqrt{\int_{0}^{\pi}\left|\frac{d^{3}}{d t^{3}} x\right|^{2} d t}
$$

Page 137 , lines 16,18 from above: replace $\left\|\frac{d^{3}}{d t^{3}} x\right\|_{L^{2}}^{2}$ by $\left\|\frac{d^{3}}{d t^{3}} x\right\|_{L^{2}}$, and d by d_{k}.

Page 138 , line 14 from above: replace $\sqrt{\frac{12}{\pi}}$ by $\frac{\sqrt{12}}{\pi}$.
Faculty of Mathematics and Computer Science
University of Łódź
Banacha 22
90-238 Łódź, Poland
E-mail: galewski@math.uni.lodz.pl

Received 16.11.2007
and in final form 13.2.2008

