
ANNALES
POLONICI MATHEMATICI

93.3 (2008)

Continuous linear functionals on the space
of Borel vector measures

by Pola Siwek (Katowice)

Abstract. We study properties of the spaceM of Borel vector measures on a compact
metric space X, taking values in a Banach space E. The space M is equipped with the
Fortet–Mourier norm ‖ · ‖F and the semivariation norm ‖ · ‖(X). The integral introduced
by K. Baron and A. Lasota plays the most important role in the paper. Investigating its
properties one can prove that in most cases the space (M, ‖ · ‖F )∗ is contained in but not
equal to the space (M, ‖·‖(X))∗. We obtain a representation of the continuous functionals
onM in some particular cases.

Introduction. This research was inspired by the paper of K. Baron
and A. Lasota [1] in which they studied, among other things, properties of
continuous (with respect to the Fortet–Mourier norm) linear functionals on
the spaceM of vector measures defined on the Borel subsets of a compact
metric space X and having values in a real Banach space E. They proved
that such a functional ϕ is represented by an integral,

(0.1) ϕ(µ) =
�

X

ψ(x, µ(dx)),

for some function ψ : X×E → R satisfying certain conditions (see Section 1
for precise definitions), but they did not know whether the converse was true.

We solve this problem under the assumption that E is finite-dimensional.
In that case the functional given by (0.1) is continuous with respect to the
Fortet–Mourier norm and we obtain another representation of the elements
of the space (M, ‖ · ‖F )∗. We also prove that in general every functional
given by (0.1) is continuous with respect to the semivariation norm ‖ · ‖(X)
and we answer in the negative the natural question whether every functional
ϕ ∈ (M, ‖ · ‖(X))∗ has the form (0.1).

The paper is organised as follows. In Section 1 we introduce the termi-
nology and preliminary results used throughout the paper. In Section 2 we
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prove the continuity with respect to the semivariation norm of functionals ϕ
given by (0.1). The third section contains a proof of the fact that when X is
infinite, then there exists a functional ϕ ∈ (M, ‖ · ‖(X))∗ which cannot be
represented by this formula. The last section solves affirmatively the problem
of Baron and Lasota in the case where E is finite-dimensional.

Earlier R. D. Mauldin obtained integral representations for the dual of the
space of vector measures taking values in a Banach space with the Radon–
Nikodym property, equipped with the total variation norm. The integral
considered by Mauldin is based on Riemann-type sums and the set of parti-
tions is directed by refinement. For more information see [6] and [7].

1. Basic definitions and facts. Throughout this paper (E, ‖ · ‖) will
be a nontrivial real Banach space and (X, %) will be a nonempty compact
metric space.

Let B(X) denote the family of Borel subsets of X and letM denote the
linear space of all σ-additive vector measures µ : B(X) → E. By C(X) we
denote the space of all continuous functions f : X → R with the supremum
norm ‖f‖∞. Define

Lip1(X) = {f : X → R | |f(x)− f(z)| ≤ %(x, z) for all x, z ∈ X} ⊆ C(X).

InM we introduce the Fortet–Mourier norm by

‖µ‖F = sup
{∥∥∥ �

X

f dµ
∥∥∥ : f ∈ Lip1(X), ‖f‖∞ ≤ 1

}
.

In the case E = R it follows easily from [4; Proposition 11.3.2] that the above
formula defines a norm on M. In the general case the proof can be found
in [1; p. 219]. The integral appearing here is the Bartle–Dunford–Schwartz
integral [3; Definition 1.1.12]; see also [5; IV.10].

The semivariation of µ ∈M is defined by

‖µ‖(B) = sup{|λµ|(B) : λ ∈ E∗} for B ∈ B(X),

where |λµ| is the total variation of the real-valued measure λµ. Note that

‖µ‖F ≤ ‖µ‖(X) ≤ |µ|(X) for all µ ∈M,

where |µ| denotes the variation of µ (see [3; Definition 1.1.4]). The first in-
equality follows from the definition of the Bartle–Dunford–Schwartz integral
given in [3].

Let us define the notion of integral appearing in (0.1).

Definition 1.1. We say that a function ψ : X → E∗ is integrable with
respect to µ ∈ M if there exists a real number c satisfying the following
condition (C):
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(C) For every ε > 0 there exists δ > 0 such that∣∣∣ m∑
i=1

ψ(xi)(µ(Bi))− c
∣∣∣ < ε

for every finite partition B1, . . . , Bm of X into nonempty Borel sets
of diameter less than δ and for all x1 ∈ B1, . . . , xm ∈ Bm, m ∈ N.

If ψ : X → E∗ is integrable with respect to µ ∈M, then the integral

(1.1)
�

X

ψ(x, µ(dx))

is defined as the (only) real number c satisfying (C).

The following conditions (A′) and (A) guarantee (see Lemma 1.1 below)
the integrability of a function ψ : X → E∗ with respect to any µ ∈M.

(A′) For every ε > 0 there exists δ > 0 such that for any m ∈ N and for
all x1, . . . , xm, z1, . . . , zm ∈ X, a1, . . . , am ∈ E, if

%(xi, zi) ≤ δ for every i ∈ {1, . . . ,m},

then∣∣∣ m∑
i=1

(ψ(xi)ai−ψ(zi)ai)
∣∣∣≤ε sup

{∥∥∥ m∑
i=1

εiai

∥∥∥ : |ε1|≤1, . . . , |εm|≤1
}
.

(A) There exists a real constant L ≥ 0 such that∣∣∣ m∑
i=1

(ψ(xi)ai − ψ(zi)ai)
∣∣∣ ≤ L%(x, z)‖a‖

for all x1, . . . , xm, z1, . . . , zm ∈ X, a1, . . . , am ∈ E and m ∈ N, where

‖a‖ := sup
{∥∥∥ m∑

i=1

εiai

∥∥∥ : |ε1| ≤ 1, . . . , |εm| ≤ 1
}
,

%(x, z) := max{%(xi, zi) : i ∈ {1, . . . ,m}}.

Obviously, condition (A) implies (A′). Moreover, every ψ : X → E∗ sat-
isfying (A′) is uniformly continuous, hence bounded.

Let K > 0. We will consider the set

MK := {µ ∈M : ‖µ‖(X) ≤ K}.

Lemma 1.1. Let ψ : X → E∗ be a function satisfying (A′). Then ψ
is integrable with respect to every µ ∈ M. Moreover , given K > 0 and
ε > 0, there is δ > 0 such that for each partition B1, . . . , Bm of X into
nonempty Borel sets of diameter less than δ and for each choice of points
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x1 ∈ B1, . . . , xm ∈ Bm we have∣∣∣ m∑
i=1

ψ(xi)µ(Bi)−
�

X

ψ(x, µ(dx))
∣∣∣ ≤ ε

for all µ ∈MK .

Proof. For any n ∈ N let Bn
1 , . . . , B

n
mn
∈ B(X) be a finite partition of

X into nonempty sets of diameter less than 1/n and let xn1 ∈ Bn
1 , . . . , x

n
mn

∈ Bn
mn

. We will show that the sequence of real-valued functions

(1.2) µ 7→
mn∑
i=1

ψ(xni )µ(Bn
i )

defined on MK satisfies the uniform Cauchy condition and converges uni-
formly to the function

µ 7→
�

X

ψ(x, µ(dx)).

Fix ε > 0 and using (A′) choose δ > 0 suitable for ε/2K. For fixed
natural numbers p, q ≥ 1/δ put

Bi,j = Bp
i ∩B

q
j for i ∈ {1, . . . ,mp}, j ∈ {1, . . . ,mq},

Σ = {(i, j) ∈ {1, . . . ,mp} × {1, . . . ,mq} : Bi,j 6= ∅}

and pick xi,j ∈ Bi,j for any (i, j) ∈ Σ. Let µ ∈MK . Then, applying the fact
that (see [3; Proposition 1.1.11(a)])

sup
{∥∥∥ mp∑

i=1

mq∑
j=1

εi,jµ(Bi,j)
∥∥∥ : |ε1,1| ≤ 1, . . . , |εmp,mq | ≤ 1

}
≤ ‖µ‖(X),

the additivity of ψ(x) for all x ∈ X and the choice of δ, we obtain∣∣∣ mp∑
i=1

ψ(xpi )µ(Bp
i )−

mq∑
j=1

ψ(xqj)µ(Bq
j )
∣∣∣

≤
∣∣∣ ∑

(i,j)∈Σ

ψ(xpi )µ(Bi,j)−
∑

(i,j)∈Σ

ψ(xi,j)µ(Bi,j)
∣∣∣

+
∣∣∣ ∑

(i,j)∈Σ

ψ(xqj)µ(Bi,j)−
∑

(i,j)∈Σ

ψ(xi,j)µ(Bi,j)
∣∣∣

≤ 2 · ε

2K
‖µ‖(X) ≤ ε.

Now, let I : MK → R denote the uniform limit of the sequence (1.2).
Fix ε > 0. Apply (A′) to choose δ > 0 suitable for ε/4K and take a natural
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number n ≥ 1/δ such that∣∣∣ mn∑
j=1

ψ(xnj )µ(Bn
j )− I(µ)

∣∣∣ ≤ ε/2 for all µ ∈MK .

Let µ ∈ MK . Fix a partition B1, . . . , Bm of X into nonempty Borel sets of
diameter less than δ and pick x1 ∈ B1, . . . , xm ∈ Bm. Setting

Bi,j = Bi ∩Bn
j for i ∈ {1, . . . ,m}, j ∈ {1, . . . ,mn},

Σ = {(i, j) ∈ {1, . . . ,m} × {1, . . . ,mn} : Bi,j 6= ∅},
choosing any xi,j ∈ Bi,j for every (i, j) ∈ Σ and arguing as above we obtain∣∣∣ m∑

i=1

ψ(xi)µ(Bi)− I(µ)
∣∣∣

≤
∣∣∣ m∑
i=1

ψ(xi)µ(Bi)−
mn∑
j=1

ψ(xnj )µ(Bn
j )
∣∣∣+ ε/2

≤
∣∣∣ ∑

(i,j)∈Σ

ψ(xi)µ(Bi,j)−
∑

(i,j)∈Σ

ψ(xi,j)µ(Bi,j)
∣∣∣

+
∣∣∣ ∑

(i,j)∈Σ

ψ(xnj )µ(Bi,j)−
∑

(i,j)∈Σ

ψ(xi,j)µ(Bi,j)
∣∣∣+ ε

2

≤ 2 · ε

4K
‖µ‖(X) +

ε

2
≤ ε.

We have shown that for all µ ∈ MK the real number I(µ) satisfies (C)
and so ψ is integrable with respect to µ, with integral I(µ). Since

M =
⋃
K>0

MK ,

this completes the proof of the lemma.

Comments. As observed by the referee, in the case of a countably ad-
ditive vector measure having finite variation one can compare the integral
(1.1) with the Bartle bilinear ∗-integral [2] considered with respect to the
natural bilinear mapping

(1.3) (λ, a) 7→ λa, (λ, a) ∈ E∗ × E.
Fix µ ∈M with |µ|(X) <∞. Clearly, the semivariation of µ in the sense

of [2] with respect to the mapping (1.3) is finite (see [2; pp. 338–339]). We
will show that if a function ψ : X → E∗ satisfies (A′), then it is µ-integrable
in the sense of Bartle [2; Definition 1] and the Bartle ∗-integral of ψ with
respect to µ is just the integral (1.1) defined in Definition 1.1.

Indeed, for every n ∈ N let Bn
1 , . . . , B

n
mn
∈ B(X) be a finite partition

of X into nonempty sets of diameter less than 1/n and pick xn1 ∈ Bn
1 , . . . ,



204 P. Siwek

xnmn
∈ Bn

mn
. Then, by the uniform continuity of ψ and the finiteness of the

variation of µ, the sequence( mn∑
i=1

ψ(xni ) · 1Bn
i

)
n∈N

of µ-simple functions satisfies all the requirements of [2; Definition 1] and by
[2; Theorem 1] the function ψ is µ-integrable in the sense of Bartle and its
Bartle ∗-integral is exactly the limit

lim
n→∞

mn∑
i=1

ψ(xni )µ(Bn
i ).

But in the proof of Lemma 1.1 we showed that the above limit equals the
integral (1.1).

We will now state the aforementioned result of Baron and Lasota, viz.
[1; Theorem 2.1] and [1; Corollary 2.1]. Define

δx(B) = 1B(x) for x ∈ X and B ∈ B(X).
Clearly aδx ∈M for any a ∈ E.

Theorem 1.1 (Baron–Lasota). If ϕ is a continuous linear functional on
(M, ‖ · ‖F ), then the function ψ : X → E∗ defined by
(1.4) ψ(x)a = ϕ(aδx)
satisfies (A); moreover ,

(1.5) ϕ(µ) =
�

X

ψ(x, µ(dx)) for all µ ∈M.

The set
Mfin := {µ ∈M : |µ|(X) <∞}

is a linear subspace ofM.

Corollary 1.1 (Baron–Lasota). If ϕ is a continuous linear functional
on (Mfin, ‖ · ‖F ), then the function ψ : X → E∗ defined by (1.4) satisfies
(A); moreover ,

(1.6) ϕ(µ) =
�

X

ψ(x, µ(dx)) for all µ ∈Mfin.

2. Continuity with respect to the semivariation norm. Our main
result reads as follows.

Theorem 2.1. Let ψ : X → E∗ satisfy (A′). Then the functional ϕ :
M→ R defined by

(2.1) ϕ(µ) =
�

X

ψ(x, µ(dx))

is linear and continuous with respect to the semivariation norm ‖ · ‖(X).
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Proof. The linearity of ϕ is straightforward. It remains to verify the con-
tinuity of ϕ at zero.

Let (µn)n∈N be a sequence inM which converges to zero in the semivari-
ation norm. Evidently, there exists a positive number K such that

{µn : n ∈ N} ⊆ MK .

Fix ε > 0, choose δ > 0 as in Lemma 1.1, fix a partition B1, . . . , Bm of X
into nonempty Borel sets of diameter less than δ and select x1 ∈ B1, . . . ,
xm ∈ Bm. Then, by the boundedness of ψ (see remarks after Definition 1.2)
and [2; Proposition 1.1.11(b)], for any n ∈ N we have∣∣∣ �

X

ψ(x, µn(dx))
∣∣∣ ≤ ε+

m∑
i=1

|ψ(xi)µn(Bi)|

≤ ε+ sup
x∈X
‖ψ(x)‖E∗

m∑
i=1

‖µn(Bi)‖

≤ ε+m sup
x∈X
‖ψ(x)‖E∗‖µn‖(X),

and consequently

lim sup
n→∞

∣∣∣ �
X

ψ(x, µn(dx))
∣∣∣ ≤ ε.

As immediate consequences of Theorems 1.1 and 2.1 we have the following
corollaries.

Corollary 2.1. If ψ : X → E∗ satisfies (A′), then the linear functional
ϕ : Mfin → R defined by (2.1) is continuous with respect to the variation
norm | · |(X).

Corollary 2.2. The following inclusions hold :

(M, ‖ · ‖F )∗⊆ {ϕ :M→ R : ϕ is defined by (2.1) with
a ψ : X → E∗ satisfying (A′)}

⊆ (M, ‖ · ‖(X))∗

and

(Mfin, ‖ · ‖F )∗⊆ {ϕ :Mfin → R : ϕ is defined by (2.1) with
a ψ : X → E∗ satisfying (A′)}

⊆ (Mfin, ‖ · ‖(X))∗.

The question arises whether, in the above chains of inclusions, the second
inclusion can be replaced by an equality. In the next section we show that
the answer is negative in general.
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3. More about the structure of (M, ‖ · ‖(X))∗. The purpose of this
section is to prove the following theorem.

Theorem 3.1. If X is infinite, then there exists a ϕ ∈ (M, ‖ · ‖(X))∗

which does not admit a representation of the form (1.5) for any function
ψ : X → E∗ satisfying condition (A′).

Actually, one can obtain a stronger statement. For this we formally ex-
tend Definition 1.1 to cover functions ψ : X → RE .

Definition 3.1. We say that a function ψ : X → RE is integrable with
respect to µ ∈M if there exists a real number c satisfying (C).

If ψ : X → RE is integrable with respect to µ ∈ M, then the integral
(1.1) is defined as the (only) real number c satisfying (C).

We start with the following lemma.

Lemma 3.1. If ψ : X → RE is integrable with respect to every µ ∈ Mfin

in the sense of Definition 3.1 and

(3.1) ψ(x)(0) = 0 for all x ∈ X,
then for every a ∈ E the function ψ(·)(a) is continuous and

�

X

ψ(x, aδz(dx)) = ψ(z)(a) for all z ∈ X and a ∈ E.

Proof. To prove the first statement fix a ∈ E, x0 ∈ X, ε > 0 and,
applying condition (C) to the measure aδx0 , choose a δ > 0 suitable for ε/2.

Let z ∈ X be such that %(z, x0) < δ/2. Choosing a finite partition
B1, . . . , Bm ∈ B(X) of X into nonempty sets of diameter less than δ such
that {x0, z} ⊆ B1 and picking x2 ∈ B2, . . . , xm ∈ Bm, we have∣∣∣ψ(x0)(a)− ψ(z)(a)

∣∣∣
≤
∣∣∣ψ(x0)(aδx0(B1)) +

m∑
i=2

ψ(xi)(aδx0(Bi))−
�

X

ψ(x, aδx0(dx))
∣∣∣

+
∣∣∣ψ(z)(aδx0(B1)) +

m∑
i=2

ψ(xi)(aδx0(Bi))−
�

X

ψ(x, aδx0(dx))
∣∣∣ < ε.

The second statement follows easily from the continuity of ψ(·)(a) at z.

The stronger statement mentioned after Theorem 3.1 reads as follows.

Theorem 3.2. If X is infinite, then there exists a ϕ ∈ (Mfin, ‖ · ‖(X))∗

which does not admit a representation of the form (1.6) for any function
ψ : X → RE satisfying (3.1) and integrable with respect to every µ ∈ Mfin

in the sense of Definition 3.1.
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Proof. For any a ∈ E \ {0} we will find a ϕ ∈ (Mfin, ‖ · ‖(X))∗ such that
the function

(3.2) x 7→ ϕ(aδx), x ∈ X,
is discontinuous. This jointly with Lemma 3.1 will prove the theorem.

Let z ∈ X be an accumulation point of X and fix any a ∈ E \ {0}.
Obviously, the set

M =
{ m∑
i=1

aiδxi : a1, . . . , am ∈ E; x1, . . . , xm ∈ X \ {z}; m ∈ N
}

is a linear subspace ofMfin and for any a1, . . . , am ∈ E, x1, . . . , xm ∈ X \{z}
we have (according to [2; Proposition 1.1.11(b)])∥∥∥aδz − m∑

i=1

aiδxi

∥∥∥(X) ≥
∥∥∥(aδz − m∑

i=1

aiδxi

)
({z})

∥∥∥ = ‖a‖ > 0,

which shows that

inf{‖µ− aδz‖(X) : µ ∈M} > 0.

Consequently (see [5; Lemma II.3.12]), there exists a ϕ ∈ (Mfin, ‖ · ‖(X))∗

such that
ϕ|M = 0 and ϕ(aδz) = 1.

Clearly the function (3.2) is discontinuous at z.

Corollary 3.1. If X is infinite, then

(M, ‖ · ‖F )∗ ( (M, ‖ · ‖(X))∗,
(Mfin, ‖ · ‖F )∗ ( (Mfin, ‖ · ‖(X))∗.

We finish this section with the following remark showing that in the
statements of Theorems 3.1 and 3.2 the assumption onX cannot be dropped:

Remark 3.1. If a compact space X is made up of isolated points, then
it is finite:

X = {x1, . . . , xm}.
Furthermore, if E is finite-dimensional and the vectors e1, . . . , en form a basis
of E, then the vectors ekδxl

for k ∈ {1, . . . , n}, l ∈ {1, . . . ,m} form a basis
ofM. Hence all norms onM are equivalent.

4. The case of finite dimension. Now we present a solution of the
main problem under the assumption that E is finite-dimensional.

Theorem 4.1. Suppose E is finite-dimensional. If ψ : X → E∗ satisfies
(A), then the functional ϕ : M → R defined by (2.1) is continuous with
respect to the Fortet–Mourier norm.
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Proof. Let N := dimE. Find unit vectors e1, . . . , eN which form a basis
of E. Let π1, . . . , πN : E → R be the coordinate functionals, i.e.,

a =
N∑
k=1

πk(a)ek for all a ∈ E.

Let L be the constant given in condition (A). Setting
fk = ψ(·)(ek) for k ∈ {1, . . . , N},

we have

(4.1) ψ(x)(a) =
N∑
k=1

πk(a)fk(x) for all x ∈ X and a ∈ E.

Fix k ∈ {1, . . . , N}. Clearly, fk is Lipschitz with constant L. A simple
computation now shows that the E∗-valued mapping

x 7→ fk(x)πk, x ∈ X,
satisfies condition (A), and hence is integrable with respect to any µ ∈ M.
We will prove that the integral is πk(

	
X fk dµ). This jointly with (4.1) will

show that

(4.2)
�

X

ψ(x, µ(dx)) =
N∑
k=1

πk

( �

X

fk dµ
)
.

Let µ ∈M. Fix ε > 0 and choose a δ > 0 such that δL‖πk‖ ‖µ‖(X) < ε.
Let B1, . . . , Bm ∈ B(X) be a partition of X into nonempty sets of diameter
less than δ and fix x1 ∈ B1, . . . , xm ∈ Bm.

If z ∈ X =
⋃m
i=1Bi, then z ∈ Bi for exactly one i ∈ {1, . . . ,m}, whence∣∣∣ m∑
i=1

fk(xi)1Bi(z)− fk(z)
∣∣∣ ≤ L%(xi, z) < Lδ.

Consequently,∣∣∣ m∑
i=1

fk(xi)πk(µ(Bi))− πk
( �

X

fk dµ
)∣∣∣

=
∣∣∣πk( �

X

( m∑
i=1

fk(xi)1Bi

)
dµ
)
− πk

( �

X

fk dµ
)∣∣∣

≤ ‖πk‖ sup
{∣∣∣ m∑

i=1

fk(xi)1Bi(z)− fk(z)
∣∣∣ : z ∈ X}‖µ‖(X)

≤ ‖πk‖Lδ‖µ‖(X) < ε.

By (4.2) we can rewrite (2.1) as

ϕ(µ) =
N∑
k=1

πk

( �

X

fk dµ
)
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for all µ ∈M. Hence with
M := max{L, ‖f1‖∞, . . . , ‖fN‖∞}

we obtain

|ϕ(µ)| ≤
N∑
k=1

‖πk‖M‖µ‖F for all µ ∈M,

which shows that ϕ is continuous.
We finish with the following representation theorem, which is a conse-

quence of Theorem 1.1 and the proof of Theorem 4.1.
Theorem 4.2. If E is finite-dimensional with dimE = N , then for every

ϕ ∈ (M, ‖ · ‖F )∗ there exist functionals λ1, . . . , λN ∈ E∗ and Lipschitzian
functions f1, . . . , fN : X → R such that

ϕ(µ) =
N∑
k=1

λk

( �

X

fk dµ
)

for µ ∈M.

Conversely , every functional ϕ defined as above is continuous with respect to
the Fortet–Mourier norm.
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