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Plane Jacobian conjecture for simple polynomials

by NGUYEN VAN CHAU (Hanoi)

Abstract. A non-zero constant Jacobian polynomial map F' = (P, Q) : C> — C? has
a polynomial inverse if the component P is a simple polynomial, i.e. its regular extension
to a morphism p : X — P! in a compactification X of C? has the following property: the
restriction of p to each irreducible component C of the compactification divisor D = X —C?
is of degree 0 or 1.

1. Let F = (P,Q) : C?> — C? be a polynomial map, P,Q € Clx,y], and
denote by JF' := P,Q, — PyQ, the Jacobian of F'. The mysterious Jacobian
conjecture (JC) (see [4] and [2]), posed first by Ott-Heinrich Keller [7] in 1939
and still open, asserts that F' has a polynomial inverse if the Jacobian JF is
a non-zero constant. In 1979 by an algebraic approach Razar [18] proved this
conjecture for the simplest geometrical case when P is a rational polynomial,
i.e. the generic fibre of P is a punctured sphere, and all fibres P = ¢,
c € C, are irreducible. In an attempt to understand the geometrical nature
of (JC), this case was also reproved by Heitmann [5] and Lé and Weber [11]
using some other approaches. In fact, as observed by Neumann and Norbury
in [13], every rational polynomial with all irreducible fibres is equivalent
to a coordinate polynomial. Most recently, Lé in [8] and [9] presented the
following observation, which was announced at the Hanoi conference, 2006,
and the Kyoto conference, 2007.

THEOREM 1 (Theorem 3.2 and Corollary 3.8 in [9]). A non-zero constant
Jacobian polynomial map F = (P,Q) has a polynomial inverse if P is a
simple rational polynomial.

Here, following [12], a polynomial map P : C?> — C is simple if, when
P is extended to a morphism p : X — P! of a compactification X of C2,
the restriction of p to each irreducible component ¢ of the compactification
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divisor D = X — C? is of degree either 0 or 1. In fact, as in the proof of The-
orem 1 presented in [9], if a component of a non-zero constant Jacobian map
F = (P, Q) is a simple rational polynomial, then this component determines
a locally trivial fibration.

In this short paper we would like to present another explanation for
Theorem 1 from the viewpoint of the geometry of the non-proper value set
of the map F'. In fact, we shall prove

THEOREM 2. A non-zero constant Jacobian polynomial map F = (P, Q)
has a polynomial inverse if P is a simple polynomial.

The proof of this theorem will be carried out in the next sections.

2. Given a polynomial map F = (P, Q) of C?. Following [6], the non-
proper value set Ap of F is the set of all values a € C? such that there exists a
sequence b; € C? with ||b;|| — oo and F(b;) — a. This set A is either empty
or an algebraic curve in C? for which every irreducible component is the
image of a non-constant polynomial map from C into C2. Our argument in
the proof of Theorem 2 is based on the following facts, which were presented
in [14] and can be deduced from [3] (see also [15] and [16] for other refined
versions).

THEOREM 3. Suppose F' = (P, Q) is a polynomial map with non-zero
constant Jacobian. If Ap # 0, then every irreducible component of Ap can
be parameterized by polynomial maps & — (p(§),¥(£)) with

deg p/deg 1) = deg P/deg Q.

This theorem together with the Abhyankar—Moh theorem [1] on embed-
ding line into plane allows us to obtain:

THEOREM 4. A polynomial map F of C? must have singularities if its
non-proper value set Ap has an irreducible component isomorphic to the
line.

A simple proof of Theorem 4 recently presented in [16] gives a description
of the singularities in terms of Newton—Puiseux data in this situation.

3. To use Theorem 4 in the situation of simple polynomials, we first need
to describe the non-proper value curve Ag in terms of the regular extension
of F in a compatification X D C2. Any polynomial F' = (P, Q) can be ex-
tended to a rational map F : P? — P! x P! and we can resolve the points of
indeterminacy by blowing ups to get a regular map f = (p,q) : X — P! x P!
that coincides with F' = (P, Q) on C? C X. We call the exceptional curve
D = X — C? the divisor at infinity. The divisor D is a connected algebraic
curve, every irreducible component of which is isomorphic to P!, and the
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dual graph of D is a tree. Recall that a dual graph of the divisor D is a
graph in which each vertex corresponds to an irreducible component of D
and each edge joining two vertices £ and ¢’ corresponds to an intersection
point of £ and #'. An irreducible component £ of D is a horizontal component
of P (Q) if the restriction of p (resp. ¢) to £ is not a constant mapping. An
irreducible component £ of D is a dicritical component of F' if the restriction
of f to £ is not a constant mapping. A dicritical component of F' must be
a horizontal component of P or (). Although the compactification defined
above is not unique, the horizontal components of P and () as well as the
dicritical components of F' are essentially independent of the choice of the
compactification X of C2, up to birational maps between the compactifica-
tions.

Set Do := f~H(({oo} x PL) U (P! x {o0})). The following description of
the dual graph of the divisor D is well-known (see, for example, [19], [17]
and [10]).

PROPOSITION 1.

(i) The dual graph of the divisor D is a tree.

(ii) The dual graph of the curve Dy is a tree.

(iii) The dual graph of each connected component of the closure of
D — Dy is a linear path of the form

®®—o0o—0—--+—0—0

in which the beginning vertex ©® is a dicritical component of F and
the next possible vertices o are those components such that the re-
strictions of f are finite constant mappings.

The following provides a description of the non-proper value set Ag of
F in terms of regular extension of F' in a compatification X of C2.

PROPOSITION 2. (i) We have
Ap = U f(Oync?
dicritical components £ of F

(ii) Let £ be a dicritical component of F. Then ¢ and the curve Do
have a unique common point. Let £* := { — Dy,. Then the curve £*
is isomorphic to C and

1) = f N2,
(iii) We have
Ap = U F(0%).
dicritical components £ of F'

Proof. (i) Note that the closure of C? in the compactification X coincides
with X. If ¢ C D is a dicritical component of F' and b € £ such that f(b) € C?,
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we can take a sequence b; € C? tending to b. Then the sequence F(b;) = f(b;)
will tend to f(b). Hence, by definition f(b) € Ap. So, we get f(£)NC? C Ap.
Conversely, if a € Ar and a = lim; ., F/(b;) for a sequence b; € C2, then
in view of Proposition 1(iii) we can assume that b; tends to a point b lying
in an irreducible component L of a connected component C' of the closure
of D — Dg,. Let £ be the unique dicritical component in C. If ¢/ = L, we
have a € f(¢). Otherwise, the restrictions of f to L as well as to other
irreducible components of C' differing from ¢ are constant mappings with
value a. Then, by the structure of the curve C' (Proposition 1(iii)), we can
take another sequence b; € C? tending to a point b’ € £ such that f(b') = a.
Thus, the value a always belongs to the image f(¢) for a dicritical component
{of F.

(ii) Let ¢ be a dicritical component of F. By Proposition 1 the dual
graphs of the divisors D and D, are trees and the component ¢ is the
beginning vertex of the dual graph of a connected component of the closure
of D — D4,. This ensures that ¢ intersects D, in a unique point, the curve
0* := ¢ — Dy, is isomorphic to C and f(£*) = f(¢) N C2.

(iii) Results from (i) and (ii). m

4. Now, we consider the situation when the restriction of p to a dicritical
component ¢ of F' is of degree 1.

LEMMA 1. Let £ be a dicritical component of F'. If the restriction of p
to 0 is of degree 1, then the image f(£*) is isomorphic to the line C.

Proof. Suppose ¢ is a dicritical component of F' and the degree of the
restriction pj, equals 1. Then p, : £ — P! is injective, and hence bijective,
since £ is isomorphic to P1. This ensures that the curve f(¢£*) intersects each
line {(u,v) € C?> : u = ¢}, ¢ € C, in a unique point. Then the polynomial
H(u,v) defining the curve f(¢*) C C? can be chosen of the form v + h(u),
h € Clu]. So, the automorphism A(u,v) := (u,v—h(u)) maps isomorphically
the curve f(£*) onto the line v =0. =

Proof of Theorem 2. Suppose F = (P,Q) with JF = ¢ # 0 and P is
a simple polynomial. Note that each dicritical component of F' must be a
horizontal component of P or Q). Since JF = ¢ # 0 and P is simple, in
view of Theorem 4 and Lemma 1, a horizontal component of P cannot be
a dicritical component of F. So, if £ is a dicritical component of F', then ¢
must be a horizontal component of ) and the restriction p, maps £ to a
finite constant. Thus, for such ¢ the image f(¢*) is a line u = const. This is
impossible again by Theorem 4 as JF = ¢ # 0. Hence, F' has no dicritical
component. Thus, Ar = () by Proposition 2 and F is a proper map by
the definition of Ap. Therefore, by simple connectedness of C?, the locally
diffeomorphic map F must be bijective. Thus, F is an automorphism of C2.
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