Plane Jacobian conjecture for simple polynomials

by Nguyen Van Chau (Hanoi)

Abstract

A non-zero constant Jacobian polynomial map $F=(P, Q): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ has a polynomial inverse if the component P is a simple polynomial, i.e. its regular extension to a morphism $p: X \rightarrow \mathbb{P}^{1}$ in a compactification X of \mathbb{C}^{2} has the following property: the restriction of p to each irreducible component C of the compactification divisor $D=X-\mathbb{C}^{2}$ is of degree 0 or 1 .

1. Let $F=(P, Q): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be a polynomial map, $P, Q \in \mathbb{C}[x, y]$, and denote by $J F:=P_{x} Q_{y}-P_{y} Q_{x}$ the Jacobian of F. The mysterious Jacobian conjecture (JC) (see [4] and [2]), posed first by Ott-Heinrich Keller [7] in 1939 and still open, asserts that F has a polynomial inverse if the Jacobian $J F$ is a non-zero constant. In 1979 by an algebraic approach Razar [18] proved this conjecture for the simplest geometrical case when P is a rational polynomial, i.e. the generic fibre of P is a punctured sphere, and all fibres $P=c$, $c \in \mathbb{C}$, are irreducible. In an attempt to understand the geometrical nature of (JC), this case was also reproved by Heitmann [5] and Lê and Weber [11] using some other approaches. In fact, as observed by Neumann and Norbury in [13], every rational polynomial with all irreducible fibres is equivalent to a coordinate polynomial. Most recently, Lê in [8] and [9] presented the following observation, which was announced at the Hanoi conference, 2006, and the Kyoto conference, 2007.

Theorem 1 (Theorem 3.2 and Corollary 3.8 in [9]). A non-zero constant Jacobian polynomial map $F=(P, Q)$ has a polynomial inverse if P is a simple rational polynomial.

Here, following [12], a polynomial map $P: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is simple if, when P is extended to a morphism $p: X \rightarrow \mathbb{P}^{1}$ of a compactification X of \mathbb{C}^{2}, the restriction of p to each irreducible component ℓ of the compactification

[^0]divisor $D=X-\mathbb{C}^{2}$ is of degree either 0 or 1 . In fact, as in the proof of Theorem 1 presented in [9], if a component of a non-zero constant Jacobian map $F=(P, Q)$ is a simple rational polynomial, then this component determines a locally trivial fibration.

In this short paper we would like to present another explanation for Theorem 1 from the viewpoint of the geometry of the non-proper value set of the map F. In fact, we shall prove

Theorem 2. A non-zero constant Jacobian polynomial map $F=(P, Q)$ has a polynomial inverse if P is a simple polynomial.

The proof of this theorem will be carried out in the next sections.
2. Given a polynomial map $F=(P, Q)$ of \mathbb{C}^{2}. Following [6], the nonproper value set A_{F} of F is the set of all values $a \in \mathbb{C}^{2}$ such that there exists a sequence $b_{i} \in \mathbb{C}^{2}$ with $\left\|b_{i}\right\| \rightarrow \infty$ and $F\left(b_{i}\right) \rightarrow a$. This set A_{F} is either empty or an algebraic curve in \mathbb{C}^{2} for which every irreducible component is the image of a non-constant polynomial map from \mathbb{C} into \mathbb{C}^{2}. Our argument in the proof of Theorem 2 is based on the following facts, which were presented in [14] and can be deduced from [3] (see also [15] and [16] for other refined versions).

Theorem 3. Suppose $F=(P, Q)$ is a polynomial map with non-zero constant Jacobian. If $A_{F} \neq \emptyset$, then every irreducible component of A_{F} can be parameterized by polynomial maps $\xi \mapsto(\varphi(\xi), \psi(\xi))$ with

$$
\operatorname{deg} \varphi / \operatorname{deg} \psi=\operatorname{deg} P / \operatorname{deg} Q
$$

This theorem together with the Abhyankar-Moh theorem [1] on embedding line into plane allows us to obtain:

TheOrem 4. A polynomial map F of \mathbb{C}^{2} must have singularities if its non-proper value set A_{F} has an irreducible component isomorphic to the line.

A simple proof of Theorem 4 recently presented in [16] gives a description of the singularities in terms of Newton-Puiseux data in this situation.
3. To use Theorem 4 in the situation of simple polynomials, we first need to describe the non-proper value curve A_{F} in terms of the regular extension of F in a compatification $X \supset \mathbb{C}^{2}$. Any polynomial $F=(P, Q)$ can be extended to a rational map $F: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ and we can resolve the points of indeterminacy by blowing ups to get a regular map $f=(p, q): X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ that coincides with $F=(P, Q)$ on $\mathbb{C}^{2} \subset X$. We call the exceptional curve $D=X-\mathbb{C}^{2}$ the divisor at infinity. The divisor D is a connected algebraic curve, every irreducible component of which is isomorphic to \mathbb{P}^{1}, and the
dual graph of D is a tree. Recall that a dual graph of the divisor D is a graph in which each vertex corresponds to an irreducible component of D and each edge joining two vertices ℓ and ℓ^{\prime} corresponds to an intersection point of ℓ and ℓ^{\prime}. An irreducible component ℓ of D is a horizontal component of $P(Q)$ if the restriction of p (resp. q) to ℓ is not a constant mapping. An irreducible component ℓ of D is a dicritical component of F if the restriction of f to ℓ is not a constant mapping. A dicritical component of F must be a horizontal component of P or Q. Although the compactification defined above is not unique, the horizontal components of P and Q as well as the dicritical components of F are essentially independent of the choice of the compactification X of \mathbb{C}^{2}, up to birational maps between the compactifications.

Set $D_{\infty}:=f^{-1}\left(\left(\{\infty\} \times \mathbb{P}^{1}\right) \cup\left(\mathbb{P}^{1} \times\{\infty\}\right)\right)$. The following description of the dual graph of the divisor D is well-known (see, for example, [19], [17] and [10]).

Proposition 1.

(i) The dual graph of the divisor D is a tree.
(ii) The dual graph of the curve D_{∞} is a tree.
(iii) The dual graph of each connected component of the closure of $D-D_{\infty}$ is a linear path of the form

$$
\odot-\circ-\circ-\cdots-\circ-\circ
$$

in which the beginning vertex \odot is a dicritical component of F and the next possible vertices \circ are those components such that the restrictions of f are finite constant mappings.

The following provides a description of the non-proper value set A_{F} of F in terms of regular extension of F in a compatification X of \mathbb{C}^{2}.

Proposition 2. (i) We have

$$
A_{F}=\bigcup_{\text {dicritical components } \ell \text { of } F} f(\ell) \cap \mathbb{C}^{2}
$$

(ii) Let ℓ be a dicritical component of F. Then ℓ and the curve D_{∞} have a unique common point. Let $\ell^{*}:=\ell-D_{\infty}$. Then the curve ℓ^{*} is isomorphic to \mathbb{C} and

$$
f\left(\ell^{*}\right)=f(\ell) \cap \mathbb{C}^{2}
$$

(iii) We have

$$
A_{F}=\bigcup_{\text {dicritical components } \ell \text { of } F} f\left(\ell^{*}\right)
$$

Proof. (i) Note that the closure of \mathbb{C}^{2} in the compactification X coincides with X. If $\ell \subset D$ is a dicritical component of F and $b \in \ell$ such that $f(b) \in \mathbb{C}^{2}$,
we can take a sequence $b_{i} \in \mathbb{C}^{2}$ tending to b. Then the sequence $F\left(b_{i}\right)=f\left(b_{i}\right)$ will tend to $f(b)$. Hence, by definition $f(b) \in A_{F}$. So, we get $f(\ell) \cap \mathbb{C}^{2} \subset A_{F}$. Conversely, if $a \in A_{F}$ and $a=\lim _{i \rightarrow \infty} F\left(b_{i}\right)$ for a sequence $b_{i} \in \mathbb{C}^{2}$, then in view of Proposition 1(iii) we can assume that b_{i} tends to a point b lying in an irreducible component L of a connected component C of the closure of $D-D_{\infty}$. Let ℓ be the unique dicritical component in C. If $\ell \equiv L$, we have $a \in f(\ell)$. Otherwise, the restrictions of f to L as well as to other irreducible components of C differing from ℓ are constant mappings with value a. Then, by the structure of the curve C (Proposition 1(iii)), we can take another sequence $b_{i}^{\prime} \in \mathbb{C}^{2}$ tending to a point $b^{\prime} \in \ell$ such that $f\left(b^{\prime}\right)=a$. Thus, the value a always belongs to the image $f(\ell)$ for a dicritical component ℓ of F.
(ii) Let ℓ be a dicritical component of F. By Proposition 1 the dual graphs of the divisors D and D_{∞} are trees and the component ℓ is the beginning vertex of the dual graph of a connected component of the closure of $D-D_{\infty}$. This ensures that ℓ intersects D_{∞} in a unique point, the curve $\ell^{*}:=\ell-D_{\infty}$ is isomorphic to \mathbb{C} and $f\left(\ell^{*}\right)=f(\ell) \cap \mathbb{C}^{2}$.
(iii) Results from (i) and (ii).
4. Now, we consider the situation when the restriction of p to a dicritical component ℓ of F is of degree 1 .

Lemma 1. Let ℓ be a dicritical component of F. If the restriction of p to ℓ is of degree 1 , then the image $f\left(\ell^{*}\right)$ is isomorphic to the line \mathbb{C}.

Proof. Suppose ℓ is a dicritical component of F and the degree of the restriction $p_{\mid \ell}$ equals 1 . Then $p_{\mid \ell}: \ell \rightarrow \mathbb{P}^{1}$ is injective, and hence bijective, since ℓ is isomorphic to \mathbb{P}^{1}. This ensures that the curve $f\left(\ell^{*}\right)$ intersects each line $\left\{(u, v) \in \mathbb{C}^{2}: u=c\right\}, c \in \mathbb{C}$, in a unique point. Then the polynomial $H(u, v)$ defining the curve $f\left(\ell^{*}\right) \subset \mathbb{C}^{2}$ can be chosen of the form $v+h(u)$, $h \in \mathbb{C}[u]$. So, the automorphism $A(u, v):=(u, v-h(u))$ maps isomorphically the curve $f\left(\ell^{*}\right)$ onto the line $v=0$.

Proof of Theorem 2. Suppose $F=(P, Q)$ with $J F \equiv c \neq 0$ and P is a simple polynomial. Note that each dicritical component of F must be a horizontal component of P or Q. Since $J F \equiv c \neq 0$ and P is simple, in view of Theorem 4 and Lemma 1, a horizontal component of P cannot be a dicritical component of F. So, if ℓ is a dicritical component of F, then ℓ must be a horizontal component of Q and the restriction $p_{\mid \ell}$ maps ℓ to a finite constant. Thus, for such ℓ the image $f\left(\ell^{*}\right)$ is a line $u=$ const. This is impossible again by Theorem 4 as $J F \equiv c \neq 0$. Hence, F has no dicritical component. Thus, $A_{F}=\emptyset$ by Proposition 2 and F is a proper map by the definition of A_{F}. Therefore, by simple connectedness of \mathbb{C}^{2}, the locally diffeomorphic map F must be bijective. Thus, F is an automorphism of \mathbb{C}^{2}.

Acknowledgments. The author wishes to thank Prof. Lê Dũng Tráng for his help and useful discussions on the Jacobian problem.

References

[1] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166.
[2] H. Bass, E. Connell and D. Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287-330.
[3] E. B. Bartolo, Ph. Cassou-Noguès and H. Maugendre, Quotients jacobiens d'applications polynomiales, Ann. Inst. Fourier (Grenoble) 53 (2003), 399-428.
[4] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math. 190, Birkhäuser, Basel, 2000.
[5] R. Heitmann, On the Jacobian conjecture, J. Pure Appl. Algebra 64 (1990), 36-72; Corrigendum, ibid. 90 (1993), 199-200.
[6] Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259-266.
[7] O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.
[8] Lê Dũng Tráng, The Jacobian conjecture for rational polynomials, Acta Math. Vietnam. 32 (2007), 295-301.
[9] -, Simple rational polynomials and the Jacobian conjecture, to appear.
[10] Lê Dũng Tráng and C. Weber, A geometrical approach to the Jacobian conjecture, Kodai Math. J. 17 (1994), 374-381.
[11] —, 一, Polynômes à fibres rationnelles et conjecture jacobienne à 2 variables, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 581-584.
[12] W. Neumann and P. Norbury, Rational polynomials of simple type, Pacific J. Math. 204 (2002), 177-207.
[13] —, 一, Nontrivial rational polynomials in two variables have reducible fibres, Bull. Austral. Math. Soc. 58 (1998), 501-503.
[14] Nguyen Van Chau, Non-zero constant Jacobian polynomial maps of \mathbb{C}^{2}, Ann. Polon. Math. 71 (1999), 287-310.
[15] -, Note on the Jacobian condition and the non-proper value set, ibid. 84 (2004), 203-210.
[16] -, A note on singularity and non-proper value set of polynomial maps of \mathbb{C}^{2}, Acta Math. Vietnam. 32 (2007), 287-294.
[17] S. Yu. Orevkov, On three-sheeted polynomial mappings of \mathbb{C}^{2}, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 2131-2140 (in Russian).
[18] M. Razar, Polynomial maps with constant Jacobian, Israel J. Math. 32 (1979), 97-106.
[19] A. Vitushkin, Some examples relating to the problem of transformations of \mathbb{C}^{n}, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 269-279 (in Russian).

Institute of Mathematics
18 Hoang Quoc Viet, 10307 Hanoi, Vietnam
E-mail: nvchau@math.ac.vn

[^0]: 2000 Mathematics Subject Classification: Primary 14R15.
 Key words and phrases: Jacobian conjecture, non-proper value set, rational polynomial, simple polynomial.

 Supported in part by the National Basic Program on Natural Science, Vietnam, and ICTP, Trieste, Italy.

