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Plane Jacobian conjecture for simple polynomials

by Nguyen Van Chau (Hanoi)

Abstract. A non-zero constant Jacobian polynomial map F = (P, Q) : C2 → C2 has
a polynomial inverse if the component P is a simple polynomial, i.e. its regular extension
to a morphism p : X → P1 in a compactification X of C2 has the following property: the
restriction of p to each irreducible component C of the compactification divisor D = X−C2

is of degree 0 or 1.

1. Let F = (P,Q) : C2 → C2 be a polynomial map, P,Q ∈ C[x, y], and
denote by JF := PxQy−PyQx the Jacobian of F . The mysterious Jacobian
conjecture (JC) (see [4] and [2]), posed first by Ott-Heinrich Keller [7] in 1939
and still open, asserts that F has a polynomial inverse if the Jacobian JF is
a non-zero constant. In 1979 by an algebraic approach Razar [18] proved this
conjecture for the simplest geometrical case when P is a rational polynomial,
i.e. the generic fibre of P is a punctured sphere, and all fibres P = c,
c ∈ C, are irreducible. In an attempt to understand the geometrical nature
of (JC), this case was also reproved by Heitmann [5] and Lê and Weber [11]
using some other approaches. In fact, as observed by Neumann and Norbury
in [13], every rational polynomial with all irreducible fibres is equivalent
to a coordinate polynomial. Most recently, Lê in [8] and [9] presented the
following observation, which was announced at the Hanoi conference, 2006,
and the Kyoto conference, 2007.

Theorem 1 (Theorem 3.2 and Corollary 3.8 in [9]). A non-zero constant
Jacobian polynomial map F = (P,Q) has a polynomial inverse if P is a
simple rational polynomial.

Here, following [12], a polynomial map P : C2 → C is simple if, when
P is extended to a morphism p : X → P1 of a compactification X of C2,
the restriction of p to each irreducible component ` of the compactification
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divisor D = X−C2 is of degree either 0 or 1. In fact, as in the proof of The-
orem 1 presented in [9], if a component of a non-zero constant Jacobian map
F = (P,Q) is a simple rational polynomial, then this component determines
a locally trivial fibration.

In this short paper we would like to present another explanation for
Theorem 1 from the viewpoint of the geometry of the non-proper value set
of the map F . In fact, we shall prove

Theorem 2. A non-zero constant Jacobian polynomial map F = (P,Q)
has a polynomial inverse if P is a simple polynomial.

The proof of this theorem will be carried out in the next sections.

2. Given a polynomial map F = (P,Q) of C2. Following [6], the non-
proper value set AF of F is the set of all values a ∈ C2 such that there exists a
sequence bi ∈ C2 with ‖bi‖ → ∞ and F (bi)→ a. This set AF is either empty
or an algebraic curve in C2 for which every irreducible component is the
image of a non-constant polynomial map from C into C2. Our argument in
the proof of Theorem 2 is based on the following facts, which were presented
in [14] and can be deduced from [3] (see also [15] and [16] for other refined
versions).

Theorem 3. Suppose F = (P,Q) is a polynomial map with non-zero
constant Jacobian. If AF 6= ∅, then every irreducible component of AF can
be parameterized by polynomial maps ξ 7→ (ϕ(ξ), ψ(ξ)) with

degϕ/degψ = degP/degQ.

This theorem together with the Abhyankar–Moh theorem [1] on embed-
ding line into plane allows us to obtain:

Theorem 4. A polynomial map F of C2 must have singularities if its
non-proper value set AF has an irreducible component isomorphic to the
line.

A simple proof of Theorem 4 recently presented in [16] gives a description
of the singularities in terms of Newton–Puiseux data in this situation.

3. To use Theorem 4 in the situation of simple polynomials, we first need
to describe the non-proper value curve AF in terms of the regular extension
of F in a compatification X ⊃ C2. Any polynomial F = (P,Q) can be ex-
tended to a rational map F : P2 → P1×P1 and we can resolve the points of
indeterminacy by blowing ups to get a regular map f = (p, q) : X → P1×P1

that coincides with F = (P,Q) on C2 ⊂ X. We call the exceptional curve
D = X − C2 the divisor at infinity . The divisor D is a connected algebraic
curve, every irreducible component of which is isomorphic to P1, and the
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dual graph of D is a tree. Recall that a dual graph of the divisor D is a
graph in which each vertex corresponds to an irreducible component of D
and each edge joining two vertices ` and `′ corresponds to an intersection
point of ` and `′. An irreducible component ` of D is a horizontal component
of P (Q) if the restriction of p (resp. q) to ` is not a constant mapping. An
irreducible component ` of D is a dicritical component of F if the restriction
of f to ` is not a constant mapping. A dicritical component of F must be
a horizontal component of P or Q. Although the compactification defined
above is not unique, the horizontal components of P and Q as well as the
dicritical components of F are essentially independent of the choice of the
compactification X of C2, up to birational maps between the compactifica-
tions.

Set D∞ := f−1(({∞} × P1) ∪ (P1 × {∞})). The following description of
the dual graph of the divisor D is well-known (see, for example, [19], [17]
and [10]).

Proposition 1.

(i) The dual graph of the divisor D is a tree.
(ii) The dual graph of the curve D∞ is a tree.

(iii) The dual graph of each connected component of the closure of
D −D∞ is a linear path of the form

�− ◦ − ◦ − · · · − ◦ − ◦
in which the beginning vertex � is a dicritical component of F and
the next possible vertices ◦ are those components such that the re-
strictions of f are finite constant mappings.

The following provides a description of the non-proper value set AF of
F in terms of regular extension of F in a compatification X of C2.

Proposition 2. (i) We have

AF =
⋃

dicritical components ` of F

f(`) ∩ C2.

(ii) Let ` be a dicritical component of F . Then ` and the curve D∞
have a unique common point. Let `∗ := `−D∞. Then the curve `∗

is isomorphic to C and

f(`∗) = f(`) ∩ C2.

(iii) We have
AF =

⋃
dicritical components ` of F

f(`∗).

Proof. (i) Note that the closure of C2 in the compactification X coincides
withX. If ` ⊂ D is a dicritical component of F and b ∈ ` such that f(b) ∈ C2,
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we can take a sequence bi ∈ C2 tending to b. Then the sequence F (bi) = f(bi)
will tend to f(b). Hence, by definition f(b) ∈ AF . So, we get f(`)∩C2 ⊂ AF .
Conversely, if a ∈ AF and a = limi→∞ F (bi) for a sequence bi ∈ C2, then
in view of Proposition 1(iii) we can assume that bi tends to a point b lying
in an irreducible component L of a connected component C of the closure
of D − D∞. Let ` be the unique dicritical component in C. If ` ≡ L, we
have a ∈ f(`). Otherwise, the restrictions of f to L as well as to other
irreducible components of C differing from ` are constant mappings with
value a. Then, by the structure of the curve C (Proposition 1(iii)), we can
take another sequence b′i ∈ C2 tending to a point b′ ∈ ` such that f(b′) = a.
Thus, the value a always belongs to the image f(`) for a dicritical component
` of F .

(ii) Let ` be a dicritical component of F . By Proposition 1 the dual
graphs of the divisors D and D∞ are trees and the component ` is the
beginning vertex of the dual graph of a connected component of the closure
of D −D∞. This ensures that ` intersects D∞ in a unique point, the curve
`∗ := `−D∞ is isomorphic to C and f(`∗) = f(`) ∩ C2.

(iii) Results from (i) and (ii).

4. Now, we consider the situation when the restriction of p to a dicritical
component ` of F is of degree 1.

Lemma 1. Let ` be a dicritical component of F . If the restriction of p
to ` is of degree 1, then the image f(`∗) is isomorphic to the line C.

Proof. Suppose ` is a dicritical component of F and the degree of the
restriction p|` equals 1. Then p|` : ` → P1 is injective, and hence bijective,
since ` is isomorphic to P1. This ensures that the curve f(`∗) intersects each
line {(u, v) ∈ C2 : u = c}, c ∈ C, in a unique point. Then the polynomial
H(u, v) defining the curve f(`∗) ⊂ C2 can be chosen of the form v + h(u),
h ∈ C[u]. So, the automorphism A(u, v) := (u, v−h(u)) maps isomorphically
the curve f(`∗) onto the line v = 0.

Proof of Theorem 2. Suppose F = (P,Q) with JF ≡ c 6= 0 and P is
a simple polynomial. Note that each dicritical component of F must be a
horizontal component of P or Q. Since JF ≡ c 6= 0 and P is simple, in
view of Theorem 4 and Lemma 1, a horizontal component of P cannot be
a dicritical component of F . So, if ` is a dicritical component of F , then `
must be a horizontal component of Q and the restriction p|` maps ` to a
finite constant. Thus, for such ` the image f(`∗) is a line u = const. This is
impossible again by Theorem 4 as JF ≡ c 6= 0. Hence, F has no dicritical
component. Thus, AF = ∅ by Proposition 2 and F is a proper map by
the definition of AF . Therefore, by simple connectedness of C2, the locally
diffeomorphic map F must be bijective. Thus, F is an automorphism of C2.
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