Plane Jacobian conjecture for simple polynomials

by NGUYEN VAN CHAU (Hanoi)

Abstract. A non-zero constant Jacobian polynomial map $F = (P, Q) : \mathbb{C}^2 \to \mathbb{C}^2$ has a polynomial inverse if the component P is a simple polynomial, i.e. its regular extension to a morphism $p : X \to \mathbb{P}^1$ in a compactification X of \mathbb{C}^2 has the following property: the restriction of p to each irreducible component C of the compactification divisor $D = X - \mathbb{C}^2$ is of degree 0 or 1.

1. Let $F = (P,Q) : \mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial map, $P, Q \in \mathbb{C}[x, y]$, and denote by $JF := P_x Q_y - P_y Q_x$ the Jacobian of F. The mysterious Jacobian conjecture (JC) (see [4] and [2]), posed first by Ott-Heinrich Keller [7] in 1939 and still open, asserts that F has a polynomial inverse if the Jacobian JF is a non-zero constant. In 1979 by an algebraic approach Razar [18] proved this conjecture for the simplest geometrical case when P is a rational polynomial, i.e. the generic fibre of P is a punctured sphere, and all fibres P = c, $c \in \mathbb{C}$, are irreducible. In an attempt to understand the geometrical nature of (JC), this case was also reproved by Heitmann [5] and Lê and Weber [11] using some other approaches. In fact, as observed by Neumann and Norbury in [13], every rational polynomial with all irreducible fibres is equivalent to a coordinate polynomial. Most recently, Lê in [8] and [9] presented the following observation, which was announced at the Hanoi conference, 2006, and the Kyoto conference, 2007.

THEOREM 1 (Theorem 3.2 and Corollary 3.8 in [9]). A non-zero constant Jacobian polynomial map F = (P,Q) has a polynomial inverse if P is a simple rational polynomial.

Here, following [12], a polynomial map $P : \mathbb{C}^2 \to \mathbb{C}$ is simple if, when P is extended to a morphism $p : X \to \mathbb{P}^1$ of a compactification X of \mathbb{C}^2 , the restriction of p to each irreducible component ℓ of the compactification

²⁰⁰⁰ Mathematics Subject Classification: Primary 14R15.

Key words and phrases: Jacobian conjecture, non-proper value set, rational polynomial, simple polynomial.

Supported in part by the National Basic Program on Natural Science, Vietnam, and ICTP, Trieste, Italy.

divisor $D = X - \mathbb{C}^2$ is of degree either 0 or 1. In fact, as in the proof of Theorem 1 presented in [9], if a component of a non-zero constant Jacobian map F = (P, Q) is a simple rational polynomial, then this component determines a locally trivial fibration.

In this short paper we would like to present another explanation for Theorem 1 from the viewpoint of the geometry of the non-proper value set of the map F. In fact, we shall prove

THEOREM 2. A non-zero constant Jacobian polynomial map F = (P, Q) has a polynomial inverse if P is a simple polynomial.

The proof of this theorem will be carried out in the next sections.

2. Given a polynomial map F = (P, Q) of \mathbb{C}^2 . Following [6], the nonproper value set A_F of F is the set of all values $a \in \mathbb{C}^2$ such that there exists a sequence $b_i \in \mathbb{C}^2$ with $||b_i|| \to \infty$ and $F(b_i) \to a$. This set A_F is either empty or an algebraic curve in \mathbb{C}^2 for which every irreducible component is the image of a non-constant polynomial map from \mathbb{C} into \mathbb{C}^2 . Our argument in the proof of Theorem 2 is based on the following facts, which were presented in [14] and can be deduced from [3] (see also [15] and [16] for other refined versions).

THEOREM 3. Suppose F = (P, Q) is a polynomial map with non-zero constant Jacobian. If $A_F \neq \emptyset$, then every irreducible component of A_F can be parameterized by polynomial maps $\xi \mapsto (\varphi(\xi), \psi(\xi))$ with

$$\deg \varphi / \deg \psi = \deg P / \deg Q.$$

This theorem together with the Abhyankar–Moh theorem [1] on embedding line into plane allows us to obtain:

THEOREM 4. A polynomial map F of \mathbb{C}^2 must have singularities if its non-proper value set A_F has an irreducible component isomorphic to the line.

A simple proof of Theorem 4 recently presented in [16] gives a description of the singularities in terms of Newton–Puiseux data in this situation.

3. To use Theorem 4 in the situation of simple polynomials, we first need to describe the non-proper value curve A_F in terms of the regular extension of F in a compatification $X \supset \mathbb{C}^2$. Any polynomial F = (P, Q) can be extended to a rational map $F : \mathbb{P}^2 \to \mathbb{P}^1 \times \mathbb{P}^1$ and we can resolve the points of indeterminacy by blowing ups to get a regular map $f = (p,q) : X \to \mathbb{P}^1 \times \mathbb{P}^1$ that coincides with F = (P,Q) on $\mathbb{C}^2 \subset X$. We call the exceptional curve $D = X - \mathbb{C}^2$ the divisor at infinity. The divisor D is a connected algebraic curve, every irreducible component of which is isomorphic to \mathbb{P}^1 , and the

dual graph of D is a tree. Recall that a dual graph of the divisor D is a graph in which each vertex corresponds to an irreducible component of D and each edge joining two vertices ℓ and ℓ' corresponds to an intersection point of ℓ and ℓ' . An irreducible component ℓ of D is a *horizontal* component of P(Q) if the restriction of p (resp. q) to ℓ is not a constant mapping. An irreducible component ℓ of D is a *dicritical* component of F if the restriction of f to ℓ is not a constant mapping. A dicritical component of F must be a horizontal component of P or Q. Although the compactification defined above is not unique, the horizontal components of P and Q as well as the dicritical components of F are essentially independent of the choice of the compactification X of \mathbb{C}^2 , up to birational maps between the compactifications.

Set $D_{\infty} := f^{-1}((\{\infty\} \times \mathbb{P}^1) \cup (\mathbb{P}^1 \times \{\infty\}))$. The following description of the dual graph of the divisor D is well-known (see, for example, [19], [17] and [10]).

PROPOSITION 1.

- (i) The dual graph of the divisor D is a tree.
- (ii) The dual graph of the curve D_{∞} is a tree.
- (iii) The dual graph of each connected component of the closure of $D D_{\infty}$ is a linear path of the form

 $\odot - \circ - \circ - \cdots - \circ - \circ$

in which the beginning vertex \odot is a distribution of F and the next possible vertices \circ are those components such that the restrictions of f are finite constant mappings.

The following provides a description of the non-proper value set A_F of F in terms of regular extension of F in a compatification X of \mathbb{C}^2 .

PROPOSITION 2. (i) We have

$$A_F = \bigcup_{\text{dicritical components } \ell \text{ of } F} f(\ell) \cap \mathbb{C}^2.$$

(ii) Let l be a discritical component of F. Then l and the surve D_∞ have a unique common point. Let l* := l − D_∞. Then the surve l* is isomorphic to C and

$$f(\ell^*) = f(\ell) \cap \mathbb{C}^2.$$

(iii) We have

$$A_F = \bigcup_{\text{dicritical components } \ell \text{ of } F} f(\ell^*).$$

Proof. (i) Note that the closure of \mathbb{C}^2 in the compactification X coincides with X. If $\ell \subset D$ is a distribution of F and $b \in \ell$ such that $f(b) \in \mathbb{C}^2$,

we can take a sequence $b_i \in \mathbb{C}^2$ tending to b. Then the sequence $F(b_i) = f(b_i)$ will tend to f(b). Hence, by definition $f(b) \in A_F$. So, we get $f(\ell) \cap \mathbb{C}^2 \subset A_F$. Conversely, if $a \in A_F$ and $a = \lim_{i\to\infty} F(b_i)$ for a sequence $b_i \in \mathbb{C}^2$, then in view of Proposition 1(iii) we can assume that b_i tends to a point b lying in an irreducible component L of a connected component C of the closure of $D - D_{\infty}$. Let ℓ be the unique distriction of f to L as well as to other irreducible components of C differing from ℓ are constant mappings with value a. Then, by the structure of the curve C (Proposition 1(iii)), we can take another sequence $b'_i \in \mathbb{C}^2$ tending to a point $b' \in \ell$ such that f(b') = a. Thus, the value a always belongs to the image $f(\ell)$ for a distriction component ℓ of F.

(ii) Let ℓ be a distribution component of F. By Proposition 1 the dual graphs of the divisors D and D_{∞} are trees and the component ℓ is the beginning vertex of the dual graph of a connected component of the closure of $D - D_{\infty}$. This ensures that ℓ intersects D_{∞} in a unique point, the curve $\ell^* := \ell - D_{\infty}$ is isomorphic to \mathbb{C} and $f(\ell^*) = f(\ell) \cap \mathbb{C}^2$.

(iii) Results from (i) and (ii). \blacksquare

4. Now, we consider the situation when the restriction of p to a distribution of p to a distribution of p is of degree 1.

LEMMA 1. Let ℓ be a distribution of F. If the restriction of p to ℓ is of degree 1, then the image $f(\ell^*)$ is isomorphic to the line \mathbb{C} .

Proof. Suppose ℓ is a distribution component of F and the degree of the restriction $p_{|\ell}$ equals 1. Then $p_{|\ell} : \ell \to \mathbb{P}^1$ is injective, and hence bijective, since ℓ is isomorphic to \mathbb{P}^1 . This ensures that the curve $f(\ell^*)$ intersects each line $\{(u, v) \in \mathbb{C}^2 : u = c\}, c \in \mathbb{C}$, in a unique point. Then the polynomial H(u, v) defining the curve $f(\ell^*) \subset \mathbb{C}^2$ can be chosen of the form v + h(u), $h \in \mathbb{C}[u]$. So, the automorphism A(u, v) := (u, v - h(u)) maps isomorphically the curve $f(\ell^*)$ onto the line v = 0.

Proof of Theorem 2. Suppose F = (P,Q) with $JF \equiv c \neq 0$ and P is a simple polynomial. Note that each distributional component of F must be a horizontal component of P or Q. Since $JF \equiv c \neq 0$ and P is simple, in view of Theorem 4 and Lemma 1, a horizontal component of P cannot be a distribution distribution of F. So, if ℓ is a distribution distribution of F, then ℓ must be a horizontal component of Q and the restriction $p_{|\ell|}$ maps ℓ to a finite constant. Thus, for such ℓ the image $f(\ell^*)$ is a line u = const. This is impossible again by Theorem 4 as $JF \equiv c \neq 0$. Hence, F has no distribution component. Thus, $A_F = \emptyset$ by Proposition 2 and F is a proper map by the definition of A_F . Therefore, by simple connectedness of \mathbb{C}^2 , the locally diffeomorphic map F must be bijective. Thus, F is an automorphism of \mathbb{C}^2 . Acknowledgments. The author wishes to thank Prof. Lê Dũng Tráng for his help and useful discussions on the Jacobian problem.

References

- S. S. Abhyankar and T. T. Moh, *Embeddings of the line in the plane*, J. Reine Angew. Math. 276 (1975), 148–166.
- [2] H. Bass, E. Connell and D. Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287–330.
- [3] E. B. Bartolo, Ph. Cassou-Noguès and H. Maugendre, Quotients jacobiens d'applications polynomiales, Ann. Inst. Fourier (Grenoble) 53 (2003), 399–428.
- [4] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math. 190, Birkhäuser, Basel, 2000.
- [5] R. Heitmann, On the Jacobian conjecture, J. Pure Appl. Algebra 64 (1990), 36–72; Corrigendum, ibid. 90 (1993), 199–200.
- Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259–266.
- [7] O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299–306.
- [8] Lê Dũng Tráng, The Jacobian conjecture for rational polynomials, Acta Math. Vietnam. 32 (2007), 295–301.
- [9] —, Simple rational polynomials and the Jacobian conjecture, to appear.
- [10] Lê Dũng Tráng and C. Weber, A geometrical approach to the Jacobian conjecture, Kodai Math. J. 17 (1994), 374–381.
- [11] —, —, Polynômes à fibres rationnelles et conjecture jacobienne à 2 variables, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 581–584.
- [12] W. Neumann and P. Norbury, *Rational polynomials of simple type*, Pacific J. Math. 204 (2002), 177–207.
- [13] —, —, Nontrivial rational polynomials in two variables have reducible fibres, Bull. Austral. Math. Soc. 58 (1998), 501–503.
- [14] Nguyen Van Chau, Non-zero constant Jacobian polynomial maps of C², Ann. Polon. Math. 71 (1999), 287–310.
- [15] —, Note on the Jacobian condition and the non-proper value set, ibid. 84 (2004), 203–210.
- [16] —, A note on singularity and non-proper value set of polynomial maps of C², Acta Math. Vietnam. 32 (2007), 287–294.
- [17] S. Yu. Orevkov, On three-sheeted polynomial mappings of C², Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 2131−2140 (in Russian).
- [18] M. Razar, Polynomial maps with constant Jacobian, Israel J. Math. 32 (1979), 97–106.
- [19] A. Vitushkin, Some examples relating to the problem of transformations of Cⁿ, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 269–279 (in Russian).

Institute of Mathematics 18 Hoang Quoc Viet, 10307 Hanoi, Vietnam E-mail: nvchau@math.ac.vn

> Received 25.11.2007 and in final form 25.2.2008

(1836)