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Interpolating sequences, Carleson measures
and Wirtinger inequality

by Eric Amar (Bordeaux)

Abstract. Let S be a sequence of points in the unit ball B of Cn which is separated
for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We
prove that the associated measure µS :=

P
a∈S (1− |a|2)nδa is bounded, by use of the

Wirtinger inequality. Conversely, if X is an analytic subset of B such that any δ-separated
sequence S has its associated measure µS bounded by C/δn, then X is the zero set of a
function in the Nevanlinna class of B.

As an easy consequence, we prove that if S is a dual bounded sequence in Hp(B),
then µS is a Carleson measure, which gives a short proof in one variable of a theorem of
L. Carleson and in several variables of a theorem of P. Thomas.

1. Introduction. Let B be the unit ball of Cn and σ the Lebesgue
measure on ∂B. As usual we define the Hardy spaces Hp(B) as the closure
in Lp(∂B) of the holomorphic polynomials, and H∞(B) as the algebra of all
bounded holomorphic functions in B.

The Nevanlinna class, N (B), is the set of holomorphic functions f in B
such that

‖f‖∗ := sup
r<1

�

∂B
ln+ |f(rζ)| dσ(ζ) <∞.

The hyperbolic distance between a, b ∈ B is

dh(a, b) := |Φa(b)| for any automorphism Φa of B exchanging 0 and a.

Definition 1.1. Let S be a sequence of points in B and δ > 0. We shall
say that S is δ-separated if δ ≤ infa,b∈S, a6=b dh(a, b).

We shall need stronger notions.

Definition 1.2. We say that the sequence S ⊂ B is dual bounded in
Hp(B) if there is a bounded sequence {%a}a∈S ⊂ Hp(B) such that
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∀a, b ∈ S, %a(b) = δa,b(1− |a|2)−n/p.

This coincides with the uniform minimality introduced by N. Nikolskii
([5, p. 131]) to study Carleson’s interpolation theorem.

Definition 1.3. We say that a sequence S ⊂ B is Hp(B)-interpolating
for 1 ≤ p <∞, S ∈ IHp(B) for short, if

∀λ ∈ `p, ∃f ∈ Hp(B), ∀a ∈ S, f(a) = λa(1− |a|2)−n/p.

We say that S ⊂ B is H∞(B)-interpolating, S ∈ IH∞(B), if

∀λ ∈ `∞, ∃f ∈ H∞(B), ∀a ∈ S, f(a) = λa.

Clearly if S is Hp(B)-interpolating, then S is dual bounded in Hp(B).
In one variable, L. Carleson [1] proved that if S is dual bounded in

H∞(D) then the measure µS :=
∑

a∈S (1− |a|2)δa is a Carleson measure,
which was the main step in his characterization of interpolating sequences
in the unit disc. Here we reprove this in a very simple way.

With the stronger hypothesis that S is H∞(B)-interpolating, N. Varo-
poulos [10] proved that µS is a Carleson measure, and P. Thomas [8] im-
proved it: if the sequence S is Hp(B)-interpolating for a p ≥ 1, then µS is a
Carleson measure.

Our main result is the following

Theorem 1.4. Let X be an analytic subvariety of pure codimension 1
in the unit ball B ⊂ Cn. The variety X is the zero set of a function in the
Nevanlinna class of B if and only if there is a constant C such that for any
δ-separated sequence S ⊂ X,

δn
∑
a∈S

(1− |a|2)n ≤ C.

Remark 1.5. In the unit disc D of the complex plane, this is just the
well known Blaschke characterization of the zero sets of functions in the
Nevanlinna class.

As a corollary of the direct part of Theorem 1.4 we get (an improvement
of) P. Thomas’ theorem:

Theorem 1.6. Let S be a sequence in the unit ball B of Cn which is
dual bounded in Hp(B) for some p ≥ 1. Then µS :=

∑
a∈S (1− |a|2)nδa is a

Carleson measure.

Remark 1.7. This proof is simpler than those of L. Carleson [1], J. Gar-
nett [3] and P. Thomas [8], but in fact they proved more: their theorems are
also valid for harmonic interpolation.

I thank the referee for his pertinent questions and remarks.
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2. Proof of the main result. We shall argue in the ball of C2, the
general case being more combinatorial but completely analogous.

We shall use the following lemma ([2, p. 40]):

Lemma 2.1. Let B be the unit ball in C2 and X an analytic subvariety
of B. Denote by PN (X) the projection of X on N := {z := (z1, z2) : z2 = 0},
counting multiplicity , and PT (X) the projection of X on T := {z := (z1, z2) :
z1 = 0}, still counting multiplicity. Then

(i) Area(X) = Area(PN (X)) + Area(PT (X)).
(ii) Area(X) ≥ π (Wirtinger inequality).

Let a ∈ B and define

Φa(z) :=
a− Paz − saQaz

1− a · z
,

with W. Rudin’s notations ([6, Theorem 2.2.2]): Pa is the orthogonal pro-
jection of Cn on the subspace [a] generated by a and Qa = I − Pa is the
projection on the orthogonal complement of [a]. Precisely,

Paz =
a · z
|a|2

a for a 6= 0 and sa :=
√

1− |a|2.

Let
Q(a, δ) := Φa(B(0, δ)),

the hyperbolic ball “centered” at a of radius δ.
Let X be an analytic subvariety of B and a ∈ X. Denote by PN the

orthogonal projection on the complex normal at a to ∂B, counting multi-
plicity, and by PT the orthogonal projection on the complex tangent at a to
∂B, still counting multiplicity.

Let Xa := X ∩Q(a, δ) and Ya := Φ−1
a (Xa) ⊂ B(0, δ); we have

Lemma 2.2.

(i) Area(PN (Xa)) is comparable to (1− |a|2)2Area(PN (Ya)).
(ii) Area(PT (Xa)) is comparable to (1− |a|2)Area(PT (Ya)).

(iii) Area(Ya) = Area(PN (Ya)) + Area(PT (Ya)) ≥ δ2π.
Proof. By rotation we can suppose that a = (a1, 0). Let X1 := PN (Xa),

X2 := PT (Xa), and similarly Y1 := PN (Ya), Y2 := PT (Ya). Because a =
(a1, 0), we have Φa(z) = (Z1(z), Z2(z)) with

(2.1) Z1(z) =
a1 − z1
1− a1z1

, Z2(z) =
z2
√

1− |a1|2
1− a1z1

.

Hence X1 = Z1(Y1) and Z1 is an automorphism of the unit disc. Its jacobian
is equivalent to (1−|a|2)2 on the discD(0, δ). The change of variables formula
gives

Area(X1) ' (1− |a|2)2PN (Ya).
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For X2 we have

Z2 ∈ X2 ⇔ ∃(z1, z2) ∈ Ya, Z2(z) =
z2
√

1− |a1|2
1− a1z1

;

we also have

Z2 ∈ Φa(Y2) (⊂ {Z1 = a1}) ⇔ ∃(z1, z2) ∈ Ya, Z2(z) = z2
√

1− |a1|2.
Hence Z2 ∈ X2 ⇔ Z2(1 − a1z1) ∈ Φa(Y2), for all (z1, z2) ∈ Ya. Because
z1 ∈ D(0, δ), we get

Area(Φa(Y2))
(1 + δ)2

≤ Area(X2) ≤ Area(Φa(Y2))
(1− δ)2

.

On Y2 we have Φa(z) = z2
√

1− |a|2 because z1 = 0, and its jacobian is
1− |a|2, so we get

Area(X2) ' (1− |a|2)PT (Ya).

This gives (i) and (ii) of the lemma. Item (iii) is just the Wirtinger inequality
applied to Ya ⊂ B(0, δ).

2.1. Proof of the direct part of Theorem 1.4. Let X be the zero set of
a function u in the Nevanlinna class containing S; S separated implies the
existence of δ > 0 such that the hyperbolic balls {Q(a, δ) : a ∈ S} are
disjoint. Then the sets Xa := Q(a, δ) ∩X, a ∈ S, are still disjoint.

Let Θ := ∂∂ ln |u|, the current of integration on X. By [7], with % :=
|z|2 − 1 we get

AT :=
�

X

(−%)Θ <∞ (Blaschke condition),

AN :=
�

X

Θ ∧ ∂% ∧ ∂% <∞ (Malliavin condition).

Let a ∈ X. Lemma 2.2 gives

Area(PN (Xa)) = (1− |a|2)2Area(PN (Ya)),

Area(PT (Xa)) = (1− |a|2)Area(PT (Ya)).

Hence
(1− |a|2)Area(PT (Xa)) = (1− |a|2)2Area(PT (Ya)),

so

(1− |a|2)2[Area(PT (Ya)) + Area(PN (Ya))]
= (1− |a|2)Area(PT (Xa)) + Area(PN (Xa)).

By Lemma 2.1(iii),

δ2(1− |a|2)2π ≤ (1− |a|2)2Area(Ya)(2.2)
= (1− |a|2)Area(PT (Xa)) + Area(PN (Xa)).
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We have
�

Xa

(−%)Θ ≥ (1− |a|2)
�

Xa

Θ ≥ (1− |a|2)Area(PT (Xa)),

because on Xa, −% ' 1− |a|2 and Area(Xa) ≥ Area(PT (Xa)).
Now we want to estimate Area(PN (Xa)). We have

(2.3) Area(PN (Xa)) =
�

Xa

Θ ∧ ∂%(a) ∧ ∂%(a)

with ∂%(z) = z1 dz1 + z2 dz2 and ∂%(a) = a1 dz1 + a2 dz2, because ∂%(z) ∧
∂%(z) is the area element on the complex normal to the ball at z. The Taylor
formula, with %(z) := |z|2 − 1, gives ∂%(a) = ∂%(z) + (a− z) · dz, so

∂%(a) ∧ ∂%(a) = ∂%(z) ∧ ∂%(z) + |a1 − z1|2 dz1 ∧ dz1 + |a2 − z2|2 dz2 ∧ dz2

+ (a1 − z1)(a2 − z2) dz2 ∧ dz1

+ (a2 − z2)(a1 − z1) dz1 ∧ dz2.

But for z ∈ Q(a, δ) we have

|(ai − zi)(ak − zk)| . δ2(1− |z|2) = δ2(−%(z)), i, j = 1, 2;

this can be easily seen for a = (a1, 0), by (2.1), hence is always true by
rotation.

Putting this in (2.3) we get

Area(PN (Xa)) ≤
�

Xa

Θ ∧ ∂%(z) ∧ ∂%(z) + δ2
�

Xa

(−%(z))Θ(z).

By (2.2) we then have

δ2(1− |a|2)2π ≤ (1 + δ2)
�

Xa

(−%)Θ +
�

Xa

Θ ∧ ∂% ∧ ∂%.

Summing over a ∈ S and using the Blaschke and Malliavin conditions, we
get

πδ2
∑
a∈S

(1− |a|2)2 ≤ (1 + δ2)
∑
a∈S

�

X∩Q(a,δ)

(−%)Θ +
∑
a∈S

�

X∩Q(a,δ)

Θ ∧ ∂% ∧ ∂%

≤ (1 + δ2)AT +AN <∞.
Hence ∑

a∈S
(1− |a|2)2 ≤ (1 + δ2)AT +AN

πδ2
=
C

δ2
.

2.2. Proof of the converse part of Theorem 1.4. We still give the proof
in two variables to simplify notation.

Let X be an analytic variety of pure codimension 1 in the ball B of C2

and let σX be the area measure [4] on X.



84 E. Amar

Let r < 1. Denote by Σ(r) the singular set of Xr := X ∩B(0, r); it has a
finite number n(r) of points (we are in C2), and each singularity has a finite
number of branches, b(r) at most.

At a singular point of X, all the branches are regularly situated [9], hence
there is a number m = m(r) such that outside R :=

⋃
s∈Σ(r)B(s, δ1/m) one

can find a δ-separated sequence S covering Xr\R and such that X ∩Q(a, δ)
is a manifold for each a ∈ S.

The σX -area of R ∩ Xr then goes to 0 as δ → 0, r being fixed; by
hypothesis we have

δ2
∑
a∈S

(1− |a|2)2 ≤ C,

so there is a δ0 = δ0(r) > 0 such that
(2.4) ∀δ < δ0, σX(Xr ∩R) ≤ C.

Moreover, for r > 0 fixed, there is a δ1 = δ1(r) > 0 so small that the
pseudo-ballQ(a, δ) for δ < δ1 contains only the sheet ofX passing through a,
which is a manifold, and X∩Q(a, δ) is as near as we wish to Ta(X)∩Q(a, δ),
where Ta(X) is the tangent space to X at a. Using this and the geometry
of the pseudo-balls, we get

∀δ < δ1, σX(Xr ∩Q(a, δ)) ≤ 2δ2(1− |a|2).
On the other hand,�

Xr\R

% dσX ≤
∑
a∈S

(1− |a|2)σX(Xr ∩Q(a, δ)),

hence
∀δ < δ1,

�

Xr\R

% dσX ≤ 2δ2
∑
a∈S

(1− |a|2)2 ≤ 2C.

Now using (2.4) we get

∀δ < min(δ0, δ1),
�

Xr

% dσX =
�

Xr\R

% dσX +
�

Xr∩R
% dσX ≤ 2C + C = 3C.

This is true for any r < 1, so finally�

X

% dσX ≤ 3C

and X satisfies the Blaschke condition, hence by the Henkin or Skoda the-
orem, X is the zero set of a function in the Nevanlinna class of B.

3. Proof of Theorem 1.6

Lemma 3.1. If S is a dual bounded sequence in Hp(B) then φ(S) is dual
bounded in Hp(B) for any automorphism φ of B, with a constant indepen-
dent of φ.
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Proof. Let φ ∈ Aut(B), α := φ(0), p ∈ [1,∞[, and set

Tφf(z) :=
(1− |α|2)n/p

(1− α · z)2n/p
f(φ−1(z)).

Then Tφ is a surjective isometry on Hp(B) (as proved in [6, p. 155]). Be-
cause S is dual bounded, there is a dual sequence {%a}a∈S such that (Defi-
nition 1.2)

∃C > 0, ∀a ∈ S, ‖%a‖p ≤ C,
∀a, b ∈ S, %a(b) = δa,b(1− |a|2)−n/p.

To have a dual sequence for φ(S), just set

%̃φ(a) := Tφ%a.

By isometry we already have ‖%̃φ(a)‖p = ‖%a‖p ≤ C; now let us compute

%̃φ(a)(φ(b)) = Tφ%a =
(1− |α|2)n/p

(1− α · φ(b))2n/p
%a(φ−1(φ(b)))

=
(1− |α|2)n/p

(1− α · φ(b))2n/p
%a(b).

But %a(b) = δa,b(1− |a|2)−n/p, hence

%̃φ(a)(φ(b)) = δab
(1− |α|2)n/p

(1− α · φ(b))2n/p
(1− |a|2)−n/p.

If a 6= b, then %̃φ(a)(φ(b)) = 0, which is the right value, so it remains to
compute for b = a:

(3.1) %̃φ(a)(φ(a)) =
(1− |α|2)n/p

(1− α · φ(a))2n/p
(1− |a|2)−n/p.

A simple computation gives ([6, Theorem 2.2.2])

(3.2) 1− |φ(a)|2 =
(1− |α|2)(1− |a|2)
|1− α · a|2

,

hence, putting this in (3.1), we get

%̃φ(a)(φ(a) = (1− |φ(a)|2)−n/p,

and this is again the right value, proving the lemma.

Lemma 3.2. If S is dual bounded in Hp(B), then

∃C > 0, ∀φ ∈ Aut(B),
∑
a∈S

(1− |φ(a)|2)n < C.

Proof. Let φ ∈ Aut(B). We have just seen that φ(S) is still a dual
bounded sequence with the same constant. AnHp(B) dual bounded sequence



86 E. Amar

S′ is always contained in the zero set of a nonzero Hp(B) function, namely
choose any a ∈ S′ and set f(z) := (z1 − a1)%a(z) ∈ Hp(B) ⊂ N (B).

Hence S′ is contained in a zero set of a Nevanlinna function. Because
the separating constant is also controlled by the dual constant, using The-
orem 1.4 we get ∑

a∈S
(1− |φ(a)|2)n < C,

and C being independent of φ ∈ Aut(B), we get the assertion of the lemma.

Lemma 3.3. If

∃C > 0, ∀φ ∈ Aut(B),
∑
a∈S

(1− |φ(a)|2)n < C,

then µS :=
∑

a∈S (1− |a|2)nδa is a Carleson measure.

To prove this, we use a lemma by Garnett ([3, p. 239]) which generalizes
straightforwardly to the ball of Cn:

Lemma 3.4 (J. Garnett). A positive measure µ in the unit ball of Cn is
Carleson if and only if

sup
z∈B

�

B
P (z, ζ) dµ(ζ) = M <∞,

where P (z, ζ) = (1− |z|2)n/|1− z · ζ|2n is the Poisson–Szegö kernel of the
ball.

Proof of Lemma 3.3. Let φα be an automorphism of B which exchanges
α and 0:

φα(ζ) :=
α− Pαζ − sαQαζ

1− α · ζ
.

Then
∑

a∈S (1− |φα(a)|2)n ≤ C. By (3.2),

1− |φα(a)|2 =
(1− |α|2)(1− |a|2)
|1− α · a|2

,

hence,

(3.3)
∑
a∈S

(1− |φα(a)|2)n =
∑
a∈S

(
(1− |α|2)(1− |a|2)
|1− α · a|2

)n
≤ C.

Let dµ :=
∑

a∈S (1− |a|2)nδa be the measure associated to S. Then the
inequality (3.3) says �

B
P (α, ζ) dµ(ζ) ≤ C,

hence the measure µ is Carleson by Garnett’s lemma.
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Now combining Lemma 3.1 with Lemma 3.3 we get the assertion of
Theorem 1.6.
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