Interpolating sequences, Carleson measures and Wirtinger inequality

by Eric Amar (Bordeaux)

Abstract

Let S be a sequence of points in the unit ball \mathbb{B} of \mathbb{C}^{n} which is separated for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We prove that the associated measure $\mu_{S}:=\sum_{a \in S}\left(1-|a|^{2}\right)^{n} \delta_{a}$ is bounded, by use of the Wirtinger inequality. Conversely, if X is an analytic subset of \mathbb{B} such that any δ-separated sequence S has its associated measure μ_{S} bounded by C / δ^{n}, then X is the zero set of a function in the Nevanlinna class of \mathbb{B}.

As an easy consequence, we prove that if S is a dual bounded sequence in $H^{p}(\mathbb{B})$, then μ_{S} is a Carleson measure, which gives a short proof in one variable of a theorem of L. Carleson and in several variables of a theorem of P. Thomas.

1. Introduction. Let \mathbb{B} be the unit ball of \mathbb{C}^{n} and σ the Lebesgue measure on $\partial \mathbb{B}$. As usual we define the Hardy spaces $H^{p}(\mathbb{B})$ as the closure in $L^{p}(\partial \mathbb{B})$ of the holomorphic polynomials, and $H^{\infty}(\mathbb{B})$ as the algebra of all bounded holomorphic functions in \mathbb{B}.

The Nevanlinna class, $\mathcal{N}(\mathbb{B})$, is the set of holomorphic functions f in \mathbb{B} such that

$$
\|f\|_{*}:=\sup _{r<1} \int_{\partial \mathbb{B}} \ln ^{+}|f(r \zeta)| d \sigma(\zeta)<\infty .
$$

The hyperbolic distance between $a, b \in \mathbb{B}$ is
$d_{\mathrm{h}}(a, b):=\left|\Phi_{a}(b)\right|$ for any automorphism Φ_{a} of \mathbb{B} exchanging 0 and a.
Definition 1.1. Let S be a sequence of points in \mathbb{B} and $\delta>0$. We shall say that S is δ-separated if $\delta \leq \inf _{a, b \in S, a \neq b} d_{\mathrm{h}}(a, b)$.

We shall need stronger notions.
Definition 1.2. We say that the sequence $S \subset \mathbb{B}$ is dual bounded in $H^{p}(\mathbb{B})$ if there is a bounded sequence $\left\{\varrho_{a}\right\}_{a \in S} \subset H^{p}(\mathbb{B})$ such that

[^0]$$
\forall a, b \in S, \quad \varrho_{a}(b)=\delta_{a, b}\left(1-|a|^{2}\right)^{-n / p}
$$

This coincides with the uniform minimality introduced by N. Nikolskii ([5, p. 131]) to study Carleson's interpolation theorem.

Definition 1.3. We say that a sequence $S \subset \mathbb{B}$ is $H^{p}(\mathbb{B})$-interpolating for $1 \leq p<\infty, S \in I H^{p}(\mathbb{B})$ for short, if

$$
\forall \lambda \in \ell^{p}, \exists f \in H^{p}(\mathbb{B}), \forall a \in S, \quad f(a)=\lambda_{a}\left(1-|a|^{2}\right)^{-n / p}
$$

We say that $S \subset \mathbb{B}$ is $H^{\infty}(\mathbb{B})$-interpolating, $S \in I H^{\infty}(\mathbb{B})$, if

$$
\forall \lambda \in \ell^{\infty}, \exists f \in H^{\infty}(\mathbb{B}), \forall a \in S, \quad f(a)=\lambda_{a}
$$

Clearly if S is $H^{p}(\mathbb{B})$-interpolating, then S is dual bounded in $H^{p}(\mathbb{B})$.
In one variable, L. Carleson [1] proved that if S is dual bounded in $H^{\infty}(\mathbb{D})$ then the measure $\mu_{S}:=\sum_{a \in S}\left(1-|a|^{2}\right) \delta_{a}$ is a Carleson measure, which was the main step in his characterization of interpolating sequences in the unit disc. Here we reprove this in a very simple way.

With the stronger hypothesis that S is $H^{\infty}(\mathbb{B})$-interpolating, N. Varopoulos [10] proved that μ_{S} is a Carleson measure, and P. Thomas [8] improved it: if the sequence S is $H^{p}(\mathbb{B})$-interpolating for a $p \geq 1$, then μ_{S} is a Carleson measure.

Our main result is the following
Theorem 1.4. Let X be an analytic subvariety of pure codimension 1 in the unit ball $\mathbb{B} \subset \mathbb{C}^{n}$. The variety X is the zero set of a function in the Nevanlinna class of \mathbb{B} if and only if there is a constant C such that for any δ-separated sequence $S \subset X$,

$$
\delta^{n} \sum_{a \in S}\left(1-|a|^{2}\right)^{n} \leq C
$$

REmark 1.5. In the unit disc \mathbb{D} of the complex plane, this is just the well known Blaschke characterization of the zero sets of functions in the Nevanlinna class.

As a corollary of the direct part of Theorem 1.4 we get (an improvement of) P. Thomas' theorem:

Theorem 1.6. Let S be a sequence in the unit ball \mathbb{B} of \mathbb{C}^{n} which is dual bounded in $H^{p}(\mathbb{B})$ for some $p \geq 1$. Then $\mu_{S}:=\sum_{a \in S}\left(1-|a|^{2}\right)^{n} \delta_{a}$ is a Carleson measure.

Remark 1.7. This proof is simpler than those of L. Carleson [1], J. Garnett [3] and P. Thomas [8], but in fact they proved more: their theorems are also valid for harmonic interpolation.

I thank the referee for his pertinent questions and remarks.
2. Proof of the main result. We shall argue in the ball of \mathbb{C}^{2}, the general case being more combinatorial but completely analogous.

We shall use the following lemma ([2, p. 40]):
Lemma 2.1. Let \mathbb{B} be the unit ball in \mathbb{C}^{2} and X an analytic subvariety of \mathbb{B}. Denote by $P_{N}(X)$ the projection of X on $N:=\left\{z:=\left(z_{1}, z_{2}\right): z_{2}=0\right\}$, counting multiplicity, and $P_{T}(X)$ the projection of X on $T:=\left\{z:=\left(z_{1}, z_{2}\right)\right.$: $\left.z_{1}=0\right\}$, still counting multiplicity. Then
(i) $\operatorname{Area}(X)=\operatorname{Area}\left(P_{N}(X)\right)+\operatorname{Area}\left(P_{T}(X)\right)$.
(ii) $\operatorname{Area}(X) \geq \pi$ (Wirtinger inequality).

Let $a \in \mathbb{B}$ and define

$$
\Phi_{a}(z):=\frac{a-P_{a} z-s_{a} Q_{a} z}{1-\bar{a} \cdot z}
$$

with W. Rudin's notations ([6, Theorem 2.2.2]): P_{a} is the orthogonal projection of \mathbb{C}^{n} on the subspace $[a]$ generated by a and $Q_{a}=I-P_{a}$ is the projection on the orthogonal complement of $[a]$. Precisely,

$$
P_{a} z=\frac{\bar{a} \cdot z}{|a|^{2}} a \quad \text { for } a \neq 0 \quad \text { and } \quad s_{a}:=\sqrt{1-|a|^{2}}
$$

Let

$$
Q(a, \delta):=\Phi_{a}(B(0, \delta))
$$

the hyperbolic ball "centered" at a of radius δ.
Let X be an analytic subvariety of \mathbb{B} and $a \in X$. Denote by P_{N} the orthogonal projection on the complex normal at a to $\partial \mathbb{B}$, counting multiplicity, and by P_{T} the orthogonal projection on the complex tangent at a to $\partial \mathbb{B}$, still counting multiplicity.

Let $X_{a}:=X \cap Q(a, \delta)$ and $Y_{a}:=\Phi_{a}^{-1}\left(X_{a}\right) \subset B(0, \delta)$; we have
Lemma 2.2 .
(i) $\operatorname{Area}\left(P_{N}\left(X_{a}\right)\right)$ is comparable to $\left(1-|a|^{2}\right)^{2} \operatorname{Area}\left(P_{N}\left(Y_{a}\right)\right)$.
(ii) $\operatorname{Area}\left(P_{T}\left(X_{a}\right)\right)$ is comparable to $\left(1-|a|^{2}\right) \operatorname{Area}\left(P_{T}\left(Y_{a}\right)\right)$.
(iii) $\operatorname{Area}\left(Y_{a}\right)=\operatorname{Area}\left(P_{N}\left(Y_{a}\right)\right)+\operatorname{Area}\left(P_{T}\left(Y_{a}\right)\right) \geq \delta^{2} \pi$.

Proof. By rotation we can suppose that $a=\left(a_{1}, 0\right)$. Let $X_{1}:=P_{N}\left(X_{a}\right)$, $X_{2}:=P_{T}\left(X_{a}\right)$, and similarly $Y_{1}:=P_{N}\left(Y_{a}\right), Y_{2}:=P_{T}\left(Y_{a}\right)$. Because $a=$ $\left(a_{1}, 0\right)$, we have $\Phi_{a}(z)=\left(Z_{1}(z), Z_{2}(z)\right)$ with

$$
\begin{equation*}
Z_{1}(z)=\frac{a_{1}-z_{1}}{1-\bar{a}_{1} z_{1}}, \quad Z_{2}(z)=\frac{z_{2} \sqrt{1-\left|a_{1}\right|^{2}}}{1-\bar{a}_{1} z_{1}} \tag{2.1}
\end{equation*}
$$

Hence $X_{1}=Z_{1}\left(Y_{1}\right)$ and Z_{1} is an automorphism of the unit disc. Its jacobian is equivalent to $\left(1-|a|^{2}\right)^{2}$ on the disc $D(0, \delta)$. The change of variables formula gives

$$
\operatorname{Area}\left(X_{1}\right) \simeq\left(1-|a|^{2}\right)^{2} P_{N}\left(Y_{a}\right)
$$

For X_{2} we have

$$
Z_{2} \in X_{2} \Leftrightarrow \exists\left(z_{1}, z_{2}\right) \in Y_{a}, Z_{2}(z)=\frac{z_{2} \sqrt{1-\left|a_{1}\right|^{2}}}{1-\bar{a}_{1} z_{1}}
$$

we also have

$$
Z_{2} \in \Phi_{a}\left(Y_{2}\right)\left(\subset\left\{Z_{1}=a_{1}\right\}\right) \Leftrightarrow \exists\left(z_{1}, z_{2}\right) \in Y_{a}, Z_{2}(z)=z_{2} \sqrt{1-\left|a_{1}\right|^{2}}
$$

Hence $Z_{2} \in X_{2} \Leftrightarrow Z_{2}\left(1-a_{1} z_{1}\right) \in \Phi_{a}\left(Y_{2}\right)$, for all $\left(z_{1}, z_{2}\right) \in Y_{a}$. Because $z_{1} \in D(0, \delta)$, we get

$$
\frac{\operatorname{Area}\left(\Phi_{a}\left(Y_{2}\right)\right)}{(1+\delta)^{2}} \leq \operatorname{Area}\left(X_{2}\right) \leq \frac{\operatorname{Area}\left(\Phi_{a}\left(Y_{2}\right)\right)}{(1-\delta)^{2}}
$$

On Y_{2} we have $\Phi_{a}(z)=z_{2} \sqrt{1-|a|^{2}}$ because $z_{1}=0$, and its jacobian is $1-|a|^{2}$, so we get

$$
\operatorname{Area}\left(X_{2}\right) \simeq\left(1-|a|^{2}\right) P_{T}\left(Y_{a}\right)
$$

This gives (i) and (ii) of the lemma. Item (iii) is just the Wirtinger inequality applied to $Y_{a} \subset B(0, \delta)$.
2.1. Proof of the direct part of Theorem 1.4. Let X be the zero set of a function u in the Nevanlinna class containing S; S separated implies the existence of $\delta>0$ such that the hyperbolic balls $\{Q(a, \delta): a \in S\}$ are disjoint. Then the sets $X_{a}:=Q(a, \delta) \cap X, a \in S$, are still disjoint.

Let $\Theta:=\partial \bar{\partial} \ln |u|$, the current of integration on X. By [7], with $\varrho:=$ $|z|^{2}-1$ we get

$$
\begin{aligned}
& A_{T}:=\int_{X}(-\varrho) \Theta<\infty \quad \text { (Blaschke condition) } \\
& A_{N}:=\int_{X} \Theta \wedge \partial \varrho \wedge \bar{\partial} \varrho<\infty \quad \text { (Malliavin condition). }
\end{aligned}
$$

Let $a \in X$. Lemma 2.2 gives

$$
\begin{aligned}
\operatorname{Area}\left(P_{N}\left(X_{a}\right)\right) & =\left(1-|a|^{2}\right)^{2} \operatorname{Area}\left(P_{N}\left(Y_{a}\right)\right) \\
\operatorname{Area}\left(P_{T}\left(X_{a}\right)\right) & =\left(1-|a|^{2}\right) \operatorname{Area}\left(P_{T}\left(Y_{a}\right)\right)
\end{aligned}
$$

Hence

$$
\left(1-|a|^{2}\right) \operatorname{Area}\left(P_{T}\left(X_{a}\right)\right)=\left(1-|a|^{2}\right)^{2} \operatorname{Area}\left(P_{T}\left(Y_{a}\right)\right)
$$

so

$$
\begin{aligned}
\left(1-|a|^{2}\right)^{2}\left[\operatorname{Area}\left(P_{T}\left(Y_{a}\right)\right)+\right. & \left.\operatorname{Area}\left(P_{N}\left(Y_{a}\right)\right)\right] \\
& =\left(1-|a|^{2}\right) \operatorname{Area}\left(P_{T}\left(X_{a}\right)\right)+\operatorname{Area}\left(P_{N}\left(X_{a}\right)\right)
\end{aligned}
$$

By Lemma 2.1(iii),

$$
\begin{align*}
\delta^{2}\left(1-|a|^{2}\right)^{2} \pi & \leq\left(1-|a|^{2}\right)^{2} \operatorname{Area}\left(Y_{a}\right) \tag{2.2}\\
& =\left(1-|a|^{2}\right) \operatorname{Area}\left(P_{T}\left(X_{a}\right)\right)+\operatorname{Area}\left(P_{N}\left(X_{a}\right)\right)
\end{align*}
$$

We have

$$
\int_{X_{a}}(-\varrho) \Theta \geq\left(1-|a|^{2}\right) \int_{X_{a}} \Theta \geq\left(1-|a|^{2}\right) \operatorname{Area}\left(P_{T}\left(X_{a}\right)\right)
$$

because on $X_{a},-\varrho \simeq 1-|a|^{2}$ and $\operatorname{Area}\left(X_{a}\right) \geq \operatorname{Area}\left(P_{T}\left(X_{a}\right)\right)$.
Now we want to estimate $\operatorname{Area}\left(P_{N}\left(X_{a}\right)\right)$. We have

$$
\begin{equation*}
\operatorname{Area}\left(P_{N}\left(X_{a}\right)\right)=\int_{X_{a}} \Theta \wedge \partial \varrho(a) \wedge \bar{\partial} \varrho(a) \tag{2.3}
\end{equation*}
$$

with $\partial \varrho(z)=\bar{z}_{1} d z_{1}+\bar{z}_{2} d z_{2}$ and $\partial \varrho(a)=\bar{a}_{1} d z_{1}+\bar{a}_{2} d z_{2}$, because $\partial \varrho(z) \wedge$ $\bar{\partial} \varrho(z)$ is the area element on the complex normal to the ball at z. The Taylor formula, with $\varrho(z):=|z|^{2}-1$, gives $\partial \varrho(a)=\partial \varrho(z)+(a-z) \cdot d z$, so

$$
\begin{aligned}
\partial \varrho(a) \wedge \bar{\partial} \varrho(a)= & \partial \varrho(z) \wedge \bar{\partial} \varrho(z)+\left|a_{1}-z_{1}\right|^{2} d z_{1} \wedge d \bar{z}_{1}+\left|a_{2}-z_{2}\right|^{2} d z_{2} \wedge d \bar{z}_{2} \\
& +\left(a_{1}-z_{1}\right)\left(\bar{a}_{2}-\bar{z}_{2}\right) d z_{2} \wedge d \bar{z}_{1} \\
& +\left(a_{2}-z_{2}\right)\left(\bar{a}_{1}-\bar{z}_{1}\right) d z_{1} \wedge d \bar{z}_{2} .
\end{aligned}
$$

But for $z \in Q(a, \delta)$ we have

$$
\left|\left(a_{i}-z_{i}\right)\left(\bar{a}_{k}-\bar{z}_{k}\right)\right| \lesssim \delta^{2}\left(1-|z|^{2}\right)=\delta^{2}(-\varrho(z)), \quad i, j=1,2
$$

this can be easily seen for $a=\left(a_{1}, 0\right)$, by (2.1), hence is always true by rotation.

Putting this in (2.3) we get

$$
\operatorname{Area}\left(P_{N}\left(X_{a}\right)\right) \leq \int_{X_{a}} \Theta \wedge \partial \varrho(z) \wedge \bar{\partial} \varrho(z)+\delta^{2} \int_{X_{a}}(-\varrho(z)) \Theta(z)
$$

By (2.2) we then have

$$
\delta^{2}\left(1-|a|^{2}\right)^{2} \pi \leq\left(1+\delta^{2}\right) \int_{X_{a}}(-\varrho) \Theta+\int_{X_{a}} \Theta \wedge \partial \varrho \wedge \bar{\partial} \varrho .
$$

Summing over $a \in S$ and using the Blaschke and Malliavin conditions, we get

$$
\begin{aligned}
\pi \delta^{2} \sum_{a \in S}\left(1-|a|^{2}\right)^{2} & \leq\left(1+\delta^{2}\right) \sum_{a \in S} \int_{X \cap Q(a, \delta)}(-\varrho) \Theta+\sum_{a \in S} \int_{X \cap Q(a, \delta)} \Theta \wedge \partial \varrho \wedge \bar{\partial} \varrho \\
& \leq\left(1+\delta^{2}\right) A_{T}+A_{N}<\infty
\end{aligned}
$$

Hence

$$
\sum_{a \in S}\left(1-|a|^{2}\right)^{2} \leq \frac{\left(1+\delta^{2}\right) A_{T}+A_{N}}{\pi \delta^{2}}=\frac{C}{\delta^{2}}
$$

2.2. Proof of the converse part of Theorem 1.4. We still give the proof in two variables to simplify notation.

Let X be an analytic variety of pure codimension 1 in the ball \mathbb{B} of \mathbb{C}^{2} and let σ_{X} be the area measure [4] on X.

Let $r<1$. Denote by $\Sigma(r)$ the singular set of $X_{r}:=X \cap B(0, r)$; it has a finite number $n(r)$ of points (we are in \mathbb{C}^{2}), and each singularity has a finite number of branches, $b(r)$ at most.

At a singular point of X, all the branches are regularly situated [9], hence there is a number $m=m(r)$ such that outside $R:=\bigcup_{s \in \Sigma(r)} B\left(s, \delta^{1 / m}\right)$ one can find a δ-separated sequence S covering $X_{r} \backslash R$ and such that $X \cap Q(a, \delta)$ is a manifold for each $a \in S$.

The σ_{X}-area of $R \cap X_{r}$ then goes to 0 as $\delta \rightarrow 0, r$ being fixed; by hypothesis we have

$$
\delta^{2} \sum_{a \in S}\left(1-|a|^{2}\right)^{2} \leq C
$$

so there is a $\delta_{0}=\delta_{0}(r)>0$ such that

$$
\begin{equation*}
\forall \delta<\delta_{0}, \quad \sigma_{X}\left(X_{r} \cap R\right) \leq C \tag{2.4}
\end{equation*}
$$

Moreover, for $r>0$ fixed, there is a $\delta_{1}=\delta_{1}(r)>0$ so small that the pseudo-ball $Q(a, \delta)$ for $\delta<\delta_{1}$ contains only the sheet of X passing through a, which is a manifold, and $X \cap Q(a, \delta)$ is as near as we wish to $T_{a}(X) \cap Q(a, \delta)$, where $T_{a}(X)$ is the tangent space to X at a. Using this and the geometry of the pseudo-balls, we get

$$
\forall \delta<\delta_{1}, \quad \sigma_{X}\left(X_{r} \cap Q(a, \delta)\right) \leq 2 \delta^{2}\left(1-|a|^{2}\right)
$$

On the other hand,

$$
\int_{X_{r} \backslash R} \varrho d \sigma_{X} \leq \sum_{a \in S}\left(1-|a|^{2}\right) \sigma_{X}\left(X_{r} \cap Q(a, \delta)\right),
$$

hence

$$
\forall \delta<\delta_{1}, \quad \int_{X_{r} \backslash R} \varrho d \sigma_{X} \leq 2 \delta^{2} \sum_{a \in S}\left(1-|a|^{2}\right)^{2} \leq 2 C
$$

Now using (2.4) we get

$$
\forall \delta<\min \left(\delta_{0}, \delta_{1}\right), \quad \int_{X_{r}} \varrho d \sigma_{X}=\int_{X_{r} \backslash R} \varrho d \sigma_{X}+\int_{X_{r} \cap R} \varrho d \sigma_{X} \leq 2 C+C=3 C .
$$

This is true for any $r<1$, so finally

$$
\int_{X} \varrho d \sigma_{X} \leq 3 C
$$

and X satisfies the Blaschke condition, hence by the Henkin or Skoda theorem, X is the zero set of a function in the Nevanlinna class of \mathbb{B}.

3. Proof of Theorem 1.6

LEmma 3.1. If S is a dual bounded sequence in $H^{p}(\mathbb{B})$ then $\phi(S)$ is dual bounded in $H^{p}(\mathbb{B})$ for any automorphism ϕ of \mathbb{B}, with a constant independent of ϕ.

Proof. Let $\phi \in \operatorname{Aut}(\mathbb{B}), \alpha:=\phi(0), p \in[1, \infty[$, and set

$$
T_{\phi} f(z):=\frac{\left(1-|\alpha|^{2}\right)^{n / p}}{(1-\bar{\alpha} \cdot z)^{2 n / p}} f\left(\phi^{-1}(z)\right)
$$

Then T_{ϕ} is a surjective isometry on $H^{p}(\mathbb{B})$ (as proved in [6, p. 155]). Because S is dual bounded, there is a dual sequence $\left\{\varrho_{a}\right\}_{a \in S}$ such that (Definition 1.2)

$$
\begin{aligned}
& \exists C>0, \forall a \in S, \quad\left\|\varrho_{a}\right\|_{p} \leq C \\
& \forall a, b \in S, \quad \varrho_{a}(b)=\delta_{a, b}\left(1-|a|^{2}\right)^{-n / p}
\end{aligned}
$$

To have a dual sequence for $\phi(S)$, just set

$$
\widetilde{\varrho}_{\phi(a)}:=T_{\phi} \varrho_{a} .
$$

By isometry we already have $\left\|\widetilde{\varrho}_{\phi(a)}\right\|_{p}=\left\|\varrho_{a}\right\|_{p} \leq C$; now let us compute

$$
\begin{aligned}
\widetilde{\varrho}_{\phi(a)}(\phi(b)) & =T_{\phi} \varrho_{a}=\frac{\left(1-|\alpha|^{2}\right)^{n / p}}{(1-\bar{\alpha} \cdot \phi(b))^{2 n / p}} \varrho_{a}\left(\phi^{-1}(\phi(b))\right) \\
& =\frac{\left(1-|\alpha|^{2}\right)^{n / p}}{(1-\bar{\alpha} \cdot \phi(b))^{2 n / p}} \varrho_{a}(b)
\end{aligned}
$$

But $\varrho_{a}(b)=\delta_{a, b}\left(1-|a|^{2}\right)^{-n / p}$, hence

$$
\widetilde{\varrho}_{\phi(a)}(\phi(b))=\delta_{a b} \frac{\left(1-|\alpha|^{2}\right)^{n / p}}{(1-\bar{\alpha} \cdot \phi(b))^{2 n / p}}\left(1-|a|^{2}\right)^{-n / p}
$$

If $a \neq b$, then $\widetilde{\varrho}_{\phi(a)}(\phi(b))=0$, which is the right value, so it remains to compute for $b=a$:

$$
\begin{equation*}
\widetilde{\varrho}_{\phi(a)}(\phi(a))=\frac{\left(1-|\alpha|^{2}\right)^{n / p}}{(1-\bar{\alpha} \cdot \phi(a))^{2 n / p}}\left(1-|a|^{2}\right)^{-n / p} \tag{3.1}
\end{equation*}
$$

A simple computation gives ([6, Theorem 2.2.2])

$$
\begin{equation*}
1-|\phi(a)|^{2}=\frac{\left(1-|\alpha|^{2}\right)\left(1-|a|^{2}\right)}{|1-\bar{\alpha} \cdot a|^{2}} \tag{3.2}
\end{equation*}
$$

hence, putting this in (3.1), we get

$$
\widetilde{\varrho}_{\phi(a)}\left(\phi(a)=\left(1-|\phi(a)|^{2}\right)^{-n / p}\right.
$$

and this is again the right value, proving the lemma.
Lemma 3.2. If S is dual bounded in $H^{p}(\mathbb{B})$, then

$$
\exists C>0, \forall \phi \in \operatorname{Aut}(\mathbb{B}), \quad \sum_{a \in S}\left(1-|\phi(a)|^{2}\right)^{n}<C .
$$

Proof. Let $\phi \in \operatorname{Aut}(\mathbb{B})$. We have just seen that $\phi(S)$ is still a dual bounded sequence with the same constant. An $H^{p}(\mathbb{B})$ dual bounded sequence
S^{\prime} is always contained in the zero set of a nonzero $H^{p}(\mathbb{B})$ function, namely choose any $a \in S^{\prime}$ and set $f(z):=\left(z_{1}-a_{1}\right) \varrho_{a}(z) \in H^{p}(\mathbb{B}) \subset \mathcal{N}(\mathbb{B})$.

Hence S^{\prime} is contained in a zero set of a Nevanlinna function. Because the separating constant is also controlled by the dual constant, using Theorem 1.4 we get

$$
\sum_{a \in S}\left(1-|\phi(a)|^{2}\right)^{n}<C
$$

and C being independent of $\phi \in \operatorname{Aut}(\mathbb{B})$, we get the assertion of the lemma.
Lemma 3.3. If

$$
\exists C>0, \forall \phi \in \operatorname{Aut}(\mathbb{B}), \quad \sum_{a \in S}\left(1-|\phi(a)|^{2}\right)^{n}<C,
$$

then $\mu_{S}:=\sum_{a \in S}\left(1-|a|^{2}\right)^{n} \delta_{a}$ is a Carleson measure.
To prove this, we use a lemma by $\operatorname{Garnett}([3, \mathrm{p} .239])$ which generalizes straightforwardly to the ball of \mathbb{C}^{n} :

Lemma 3.4 (J. Garnett). A positive measure μ in the unit ball of \mathbb{C}^{n} is Carleson if and only if

$$
\sup _{z \in \mathbb{B}} \int_{\mathbb{B}} P(z, \zeta) d \mu(\zeta)=M<\infty,
$$

where $P(z, \zeta)=\left(1-|z|^{2}\right)^{n} /|1-\bar{z} \cdot \zeta|^{2 n}$ is the Poisson-Szegö kernel of the ball.

Proof of Lemma 3.3. Let ϕ_{α} be an automorphism of \mathbb{B} which exchanges α and 0 :

$$
\phi_{\alpha}(\zeta):=\frac{\alpha-P_{\alpha} \zeta-s_{\alpha} Q_{\alpha} \zeta}{1-\bar{\alpha} \cdot \zeta} .
$$

Then $\sum_{a \in S}\left(1-\left|\phi_{\alpha}(a)\right|^{2}\right)^{n} \leq C$. By (3.2),

$$
1-\left|\phi_{\alpha}(a)\right|^{2}=\frac{\left(1-|\alpha|^{2}\right)\left(1-|a|^{2}\right)}{|1-\bar{\alpha} \cdot a|^{2}},
$$

hence,

$$
\begin{equation*}
\sum_{a \in S}\left(1-\left|\phi_{\alpha}(a)\right|^{2}\right)^{n}=\sum_{a \in S}\left(\frac{\left(1-|\alpha|^{2}\right)\left(1-|a|^{2}\right)}{|1-\bar{\alpha} \cdot a|^{2}}\right)^{n} \leq C . \tag{3.3}
\end{equation*}
$$

Let $d \mu:=\sum_{a \in S}\left(1-|a|^{2}\right)^{n} \delta_{a}$ be the measure associated to S. Then the inequality (3.3) says

$$
\int_{\mathbb{B}} P(\alpha, \zeta) d \mu(\zeta) \leq C,
$$

hence the measure μ is Carleson by Garnett's lemma.

Now combining Lemma 3.1 with Lemma 3.3 we get the assertion of Theorem 1.6.

References

[1] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930.
[2] H. Federer, Geometric Measure Theory, Grundlehren Math. Wiss. 153, Springer, 1969.
[3] J. Garnett, Bounded Analytic Functions, Academic Press, 1981.
[4] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Grundlehren Math. Wiss. 282, Springer, 1986.
[5] N. K. Nikolskii, Treatise on the Shift Operator, Grundlehren Math. Wiss. 273, Springer, 1986.
[6] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^{n}, Grundlehren Math. Wiss. 241, Springer, 1980.
[7] H. Skoda, Valeurs au bord pour les solutions de l'opérateur d", et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France 104 (1976), 225-299.
[8] P. J. Thomas, Hardy space interpolation in the unit ball, Indag. Math. 90 (1987), 325-351.
[9] J.-C. Tougeron, Idéaux de fonctions différentiables, Ergeb. Math. Grenzgeb. 71, Springer, 1972.
[10] N. Varopoulos, Sur un problème d'interpolation, C. R. Acad. Sci. Paris 274 (1972), 1539-1542.

UFR Mathématique et Informatique
Université de Bordeaux I
351, Cours de la Libération
33405 Talence, France
E-mail: Eric.Amar@math.u-bordeaux1.fr

Received 3.1.2008
and in final form 4.3.2008

[^0]: 2000 Mathematics Subject Classification: 32A35, 42B30.
 Key words and phrases: Hardy space, Nevanlinna class, interpolating sequence, Carleson measure.

