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A general Dirichlet problem for the
complex Monge–Ampère operator

by Urban Cegrell (Umeå)

Abstract. We study a general Dirichlet problem for the complex Monge–Ampère
operator, with maximal plurisubharmonic functions as boundary data.

1. Introduction. In classical potential theory, the Riesz representation
theorem says that every negative subharmonic function can be written as a
sum of a Green potential and a harmonic function. The smallest harmonic
majorant of the potential is zero and the harmonic function is determined
by its behaviour near the boundary. So it is natural to say that the harmonic
part is the boundary value of the subharmonic function.

The purpose of this paper is to formulate and study a pluripotential
analogue of the classical setting.

In pluripotential theory, the reminiscence of the Riesz representation the-
orem is inequality (∗) below. Here the harmonic functions are replaced by
the so called maximal functions, already considered by Bremermann in [6].
We refer to the books [15] and [16] for background and references.

We will find that important results from classical potential theory carry
over to our setting but we will also note some significant differences.

In this paper we study a particular class of plurisubharmonic functions,
the class E , defined in [11]. The reason for this choice is that the complex
Monge–Ampère operator (ddcu)n is well-defined in this class and the maxi-
mal functions u in E are precisely the functions with (ddcu)n = 0.

Subclasses of functions in E with continuous boundary values have been
studied in [1] and [8]. The case of upper semicontinuous boundary values
was considered in [14]. Here, we allow any bounded maximal function as
boundary value when we show existence and uniqueness in the Dirichlet
problem for the complex Monge–Ampère operator.
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In the notation of Section 2, we formulate one of our main results, The-
orem 4.1:

Suppose µ = (ddcv)n where v ∈ N a. For every H ∈ M∞ there is a
uniquely determined function ϕ ∈ N a(H) with (ddcϕ)n = µ.

It is a great pleasure for me to thank Slimane Benelkourchi and Per Åhag
for many fruitful comments.

2. The boundary values. We start by recalling some notations. Denote
by PSH(Ω) the plurisubharmonic functions on Ω ⊂ Cn and by PSH−(Ω)
the subclass of negative functions. A set Ω ⊂ Cn is said to be a hyperconvex
domain if it is open, bounded, connected and if there exists ϕ ∈ PSH−(Ω)
such that {z ∈ Ω; ϕ(z) < −c} ⊂⊂ Ω for all c > 0. Such a function is called
an exhaustion function for Ω.

Throughout this paper, we let Ω denote a hyperconvex domain.
We define the classes of plurisubharmonic functions, studied in this paper.

Details can be found in [11], where among other things it is proved that the
functions in these classes have well-defined Monge–Ampère measures. We set

E0 = E0(Ω)

=
{
ϕ ∈ PSH− ∩ L∞(Ω); lim

z→ξ
ϕ(z) = 0, ∀ξ ∈ ∂Ω,

�

Ω

(ddcϕ)n < +∞
}
,

F = F(Ω)

=
{
u ∈ PSH−(Ω); ∃uj ∈ E0(Ω), uj ↘ u, sup

j

�

Ω

(ddcuj)n < +∞
}
,

E(Ω) =
{
u ∈ PSH−(Ω); ∀z0 ∈ Ω, ∃ω, a neighbourhood of z0,

∃hj ∈ E0(Ω), hj ↘ u on ω, sup
j

�

Ω

(ddchj)n < +∞
}
.

We define Fa to be the class of functions u in F such that (ddcu)n vanishes
on all pluripolar sets. The class Ea is defined similarly.

It can be proved that every u ∈ E(Ω) is locally in F(Ω): for every u ∈
E(Ω) and every ω, open and relatively compact in Ω, there is a uω ∈ F(Ω)
with u ≤ uω with equality on ω.

In [11] it was proved that for every u ∈ PSH−(Ω) there are uj ∈ E0(Ω)
with uj ↘ u as j → +∞. This, together with integration by parts, shows
that F is closed in the following sense: if uj∈F(Ω), uj↘ and supj

	
Ω(ddcuj)n

< +∞, then limj→+∞ uj ∈ F(Ω).
We now come to the boundary values.
Let Ωj be a fundamental sequence of strictly pseudoconvex subdomains

of Ω. Let u ∈ E be given and put

uj = sup{ϕ ∈ PSH(Ω); ϕ|CΩj ≤ u|CΩj}.
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Then u ≤ uj ≤ uj+1, hence each uj is in E , and so is ũ = (limj→+∞ u
j)∗,

the smallest upper semicontinuous majorant of limuj .
Note that the definition of ũ is independent of the sequence Ωj , that

(ddcũ)n = 0, and that if u is continuous up to the boundary then so is ũ. For
if f is continuous on the boundary of Ω and if there is a function ϕ ∈ PSH(Ω)
with limz→ξ ϕ(z) = f for all ξ ∈ ∂Ω, then by a theorem of Walsh [18],
ϕ̃ ∈ PSH(Ω) ∩ C(Ω).

We define

M = {u ∈ E ; (ddcu)n = 0}, M∞ =M∩ L∞, N = {u ∈ E ; ũ = 0},
and let N a be the class of functions u in N such that (ddcu)n vanishes on
all pluripolar sets.

Note that E0 ⊂ Fa ⊂ F ⊂ N ⊂ E . Also, the classes Ep, p > 0, defined
in [8], are subsets of N a.

We say that u ∈ E has boundary value ũ if there is a function ψ ∈ N
such that

(∗) ũ ≥ u ≥ ũ+ ψ.

It follows from [4] or [10] that “ũ is the smallest maximal plurisubhar-
monic function above u”, so in particularM = {u ∈ E ; ũ = u}.

It was shown in [11] that if µ is any positive measure that vanishes on
all pluripolar sets and µ(Ω) < +∞, then there is a uniquely determined
function ϕ ∈ Fa such that (ddcϕ)n = µ. We write ϕ = U(µ, 0), a notation
which will be generalized in Sections 3 and 4.

We define F(H) (= F(H,Ω)) for H ∈M to be the class of plurisubhar-
monic functions u such that

H ≥ u ≥ H + ψ, ψ ∈ F .
In particular, H = ũ. We define E0(H) etc. similarly.

A problem is now to decide which functions in E have boundary values.
Some particular cases were studied in [1] and [8]. We do not know if every
function in E has a boundary value, but we have the following theorem.

Theorem 2.1. Suppose u ∈ E with
	
Ω(ddcu)n < +∞. Then u ∈ F(ũ)

and u ≥ ψ + ũ for some ψ ∈ F with
	
Ω(ddcψ)n ≤

	
Ω(ddcu)n.

Proof. Choose uj ∈ E0 ∩ C(Ω) decreasing to u and Ωj a fundamental
sequence of Ω. Then for each j there is sj > sj−1 such that for s ≥ sj ,�

Ω

χΩj (dd
cus)n ≤

�

Ω

(ddcu)n + 1/j.

Now, us ≥ U(χΩj (dd
cus)n, 0) + ujs by the comparison principle (see Sec-

tion 3), so if t ≥ s ≥ sj , then

us ≥ ut ≥ U(χΩj (dd
cut)n, 0) + ujt .
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In particular,
us ≥ (sup

t≥s
U(χΩj (dd

cut)n, 0))∗ + uj

and
u ≥ lim

s→+∞
(sup
t≥s

U(χΩj (dd
cut)n, 0))∗ + uj = ψj + uj .

Now, ψj is a decreasing sequence of functions in F and
	
Ω(ddcψj)n ≤	

Ω(ddcu)n + 1/j, so ψ = limψj ∈ F since F is closed, as noted above.
Since uj increases a.e. to ũ as j → +∞, we find that u ≥ ψ + ũ and	
Ω(ddcψ)n ≤

	
Ω(ddcu)n, which completes the proof.

Remark. The condition
	
Ω(ddcu)n < +∞ is not necessary for u to

be in F(ũ). For Ω = the bidisc, an example of a function u ∈ F(ũ) with	
Ω(ddcu)n = +∞ is given in [13]. See also Example 2.4 in [2].

Theorem 2.2. For every u ∈ E , there is a sequence us ∈ E0(ũ) such that
us decreases to u as s→ +∞.

Proof. Choose vj ∈ E0 ∩C(Ω) decreasing to u. Then vs ≥ vs + ũ. Define
us = max(u, vs + ũ). Then ũ ≥ us ≥ vs + ũ, so us ∈ E0(ũ). Also (us) is a
decreasing sequence and limus = u, which proves the theorem.

3. The Dirichlet problem in F(f) for f ∈ M(Ω) ∩ C(Ω). In this
section, we consider the case when the maximal function f is continuous up
to the boundary.

We begin with the comparison principle for PSH ∩ L∞loc(W ), where W is
a domain in Cn.

Theorem 3.1. If u, v ∈ PSH ∩ L∞(W ) and u ≥ v near ∂W , then	
{u<v}(dd

cu)n ≥
	
{u<v}(dd

cv)n.
If u, v ∈ PSH ∩ L∞(W ), limz→ζ(u(z) − v(z)) = 0 for all ζ ∈ ∂W and

(ddcu)n ≤ (ddcv)n on W , then u ≥ v on W .

These statements were proved in [3]. (See also [7], [8].)
We recall the (relative) capacity introduced by Bedford and Taylor [3]:

for E ⊂W , cap(E) is defined as

cap(E) = sup
{ �

E

(ddcu)n; −1 ≤ u ≤ 0, u ∈ PSH(W )
}
.

The next lemma should have been included in [11].

Lemma 3.2. Assume upj , u
p ∈ E(Ω), upj ≥ up, 1 ≤ p ≤ n, h ∈ PSH− ∩

L∞(Ω) and upj tends weakly to up. Then h(ddcu1
j ∧ · · · ∧ ddcunj ) tends weakly

to h(ddcu1 ∧ · · · ∧ ddcun) as j → +∞.

Proof. Since every function in E is locally the restriction of a function in
F , we can assume that all the functions are in F . Choose gpj ↘ up, gpj ∈ E0,
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and put vpj = (sups≥j(g
p
j , u

p
s))∗. It follows from Proposition 5.1 and Corollary

5.2 in [11] that
	
h(ddcv1

j ∧ · · · ∧ ddcvnj ) tends to
	
h(ddcu1 ∧ · · · ∧ ddcun) as

j → +∞ and that h(ddcv1
j∧· · ·∧ddcvnj ) tends weakly to h(ddcu1∧· · ·∧ddcun)

as j → +∞. Integration by parts gives�
h(ddcv1

j ∧ · · · ∧ ddcvnj ) ≥
�
h(ddcu1

j ∧ · · · ∧ ddcunj ) ≥
�
h(ddcu1 ∧ · · · ∧ ddcun).

Therefore

lim
j→+∞

�
h(ddcv1

j ∧ · · · ∧ ddcvnj ) = lim
j→+∞

�
h(ddcu1

j ∧ · · · ∧ ddcunj )

=
�
h(ddcu1 ∧ · · · ∧ ddcun)

and

lim
j→+∞

(ddcv1
j ∧· · ·∧ddcvnj ) = lim

j→+∞
(ddcu1

j ∧· · ·∧ddcunj ) = ddcu1∧· · ·∧ddcun.

Hence

lim
j→+∞

h(ddcu1
j ∧ · · · ∧ ddcunj ) ≤ h(ddcu1 ∧ · · · ∧ ddcun),

and since both measures have the same total mass, they are equal.

Lemma 3.3. Assume that Ω is hyperconvex , w ∈ F(Ω),−1 ≤ h ∈
PSH−(Ω) and u, v ∈ PSH. If F 3 wj ↘ w as j →∞ and

	
E(1+h)(ddcwj)n

is uniformly small when cap(E) is small then�

{u<v}

(1 + h)(ddcw)n ≤ lim
j

�

{u<v}

(1 + h)(ddcwj)n

≤ lim
j

�

{u≤v}

(1 + h)(ddcwj)n ≤
�

{u≤v}

(1 + h)(ddcw)n.

Proof. Since, by Proposition 5.1 in [11],�

Ω

(ddcw)n = lim
j→+∞

�

Ω

(ddcwj)n

and h(ddcwj)n tends weakly to h(ddcw)n as j → +∞ it follows that
(1 + h)(ddcwj)n tends weakly to (1 + h)(ddcw)n as j → +∞.

Let δ > 0 be given. Since, by [3], u and v are quasicontinuous, there is an
open set Oδ with supj

	
Oδ

(1 + h)(ddcwj)n < δ and there are two continuous
functions ũ and ṽ such that {u 6= ũ} ∪ {v 6= ṽ} ⊂ Oδ. Therefore

{u < v} ⊂ {ũ < ṽ} ∪Oδ ⊂ {u < v} ∪Oδ,
{u ≤ v} ⊂ {ũ ≤ ṽ} ∪Oδ ⊂ {u ≤ v} ∪Oδ

and�

{u<v}

(1+h)(ddcw)n≤ lim
�

{eu<ev}∪Oδ
(1+h)(ddcwj)n≤ lim

�

{u<v}

(1+h)(ddcwj)n+2δ,
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which proves the first inequality of the statement of Lemma 3.3. Moreover,

lim
j

�

{u≤v}

(1 + h)(ddcwj)n ≤ lim
j

�

{eu≤ev}(1 + h)(ddcwj)n + δ

≤
�

{eu≤ev}(1 + h)(ddcw)n + δ ≤
�

{u≤v}

(1 + h)(ddcw)n + 2δ.

This completes the proof of the lemma.

Lemma 3.4. Suppose ω ∈ E. Then

(ddcω)n = f(ddcψ)n + ν,

where ψ ∈ E0, f ∈ L1
loc((dd

cψ)n) and ν is carried by {ω = −∞}. Moreover ,
if m < s, then

χ{ω≥−m}(dd
c max(ω,−s))n = fmf(ddcψ)n,

where 0 ≤ fm ≤ 1.

Proof. The first statement is Theorem 5.11 in [11]. To prove the second
statement we can, as in the proof of Lemma 3.2, assume that ω ∈ F . By
Lemma 5.4 in [8],

χ{ω>−m}(dd
c max(ω,−s))n

is independent of s if s > m. Hence

χ{ω>−m}(dd
c max(ω,−s))n ≤ χ{ω≥−m}f(ddcψ)n,

so
χ{ω>−m}(dd

c max(ω,−s))n = fmf(ddcψ)n,

where 0 ≤ fm ≤ 1 and fm ↗ 1.

Lemma 3.5. Suppose ω ∈ F and u, v ∈ PSH(Ω). Then�

{u<v}∩{ω>−∞}

(ddcω)n ≤ lim
j→+∞

�

{u<v}

(ddcωj)n,

where ωj = max(ω,−j).
Proof. For E ⊂ Ω we write hE = sup{ϕ ∈ PSH−; −1 ≤ ϕ, ϕ =

−1 on E}. Let hr = h{ω<−r}, where r > 0 is given. It follows from Lemma 3.4
that

	
E(1 + hr)(ddcωp)n is uniformly small when cap(E) is small. By Lem-

ma 3.3, we have�

{u<v}

(1 + hr)(ddcω)n ≤ lim
p

�

{u<v}

(1 + hr)(ddcωp)n ≤ lim
p

�

{u<v}

(ddcωp)n.

Therefore,�

{u<v}∩{ω>−∞}

(ddcω)n = lim
r→+∞

�

{u<v}

(1 + hr)(ddcω)n ≤ lim
j

�

{u<v}

(ddcωj)n.

This proves Lemma 3.5.



Dirichlet problem for the complex Monge–Ampère operator 137

Corollary 3.6. If u ∈ F and v ∈ E , then�

{u<v}

(ddcv)n ≤
�

{u<v}∪{u=−∞}

(ddcu)n.

Proof. In the case u, v ∈ F ∩L∞, the inequality follows from Lemma 4.4
in [8], but let us give a complete proof. Let

uj , vj ∈ E0, uj ↘ u, vj ↘ v, j → +∞.
Using Theorem 3.1 and Lemma 3.3 we have, for ε > 0,�

{uk+ε<v}

(ddcv)n ≤ lim
j

�

{uj+ε<vj}

(ddcuj)n ≤ lim
j

�

{u+ε≤vk}

(ddcuj)n

≤
�

{u+ε≤vk}

(ddcu)n.

If we let k tend to +∞ and ε tend to 0 we get the desired conclusion.
Let now uj = max(u,−j) and vj = max(v,−j). Then, by the above,

�

{uj+ε<vj}

(ddcvj)n ≤
�

{uj+ε<vj}

(ddcuj)n.

For every fixed k Lemma 3.5 gives

lim
j

�

{uj+ε<vj}

(ddcvj)n ≥ lim
j

�

{uk+ε<v}

(ddcvj)n ≥
�

{uk+ε<v}

(ddcv)n

and
lim
j

�

{vj+ε<uj}

(ddcuj)n ≥
�

{vk+ε<u}

(ddcu)n.

Moreover,�

{uj+ε<vj}

(ddcuj)n =
�

Ω

(ddcuj)n −
�

{vj<uj+ε}

(ddcuj)n −
�

{vj=uj+ε}

(ddcuj)n,

where we can assume ε > 0 is chosen so that�

{vj=uj+ε}

(ddcuj)n = 0, ∀j ≥ 1.

Then

lim
j

�

{uj+ε<vj}

(ddcuj)n =
�

Ω

(ddcu)n − lim
j

�

{vj<uj+ε}

(ddcuj)n

≤
�

Ω

(ddcu)n −
�

{v<u+ε}

(ddcu)n =
�

{u+ε≤v}

(ddcu)n

≤
�

{u<v}

(ddcu)n +
�

{u=v=−∞}

(ddcu)n.
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Combining these estimates and letting ε→ 0 we get�

{u<v}

(ddcv)n ≤
�

{u<v}

(ddcu)n +
�

{u=v=−∞}

(ddcu)n.

If v ∈ E only, put vj = sup{g ∈ PSH−(Ω); g|Ωj ≤ v|Ωj}. Then vj ∈ F and
�

{u<vj}

(ddcvj)n ≤
�

{u<vj}

(ddcu)n +
�

{u=vj=−∞}

(ddcu)n

so for j > k, �

{u<vj}∩Ωk

(ddcv)n =
�

{u<vj}∩Ωk

(ddcvj)n ≤
�

{u<vj}

(ddcvj)n

≤
�

{u<vj}

(ddcu)n +
�

{u=vj=−∞}

(ddcu)n.

To obtain the desired inequality, we let first j and then k tend to +∞.

The comparison principle is not true in general in F (cf. [19, Example
3.4]. However, we have

Theorem 3.7. Suppose u ∈ Fa, v ∈ E and (ddcu)n ≤ (ddcv)n. Then
v ≤ u on Ω.

Proof. Via Corollary 3.6, the proof of Theorem 3.1 can be adapted to
this case. A different proof was given in [11].

We now extend the comparison principle to the classes Fa(f), f ∈M(Ω)
∩ C(Ω). As a consequence, we have the following generalization of Theo-
rem 3.7.

Theorem 3.8. Suppose u ∈ Fa(f) and v ∈ F(g), where 0 ≥ f ≥ g are
boundary values of two plurisubharmonic functions on Ω, continuous on the
closure of Ω. If (ddcu)n ≤ (ddcv)n, then v ≤ u on Ω.

Theorem 3.9. Suppose µ is a positive measure which vanishes on all
pluripolar subsets of Ω and with bounded total mass. Then there is a uniquely
determined u ∈ Fa(f) with (ddcu)n = µ.

Proof. The case f = 0 is Lemma 5.14 in [11] and the general case was
proved in [1], where methods from [11] were used. The uniqueness can also
be proved using Theorem 3.10 below.

We define U(µ, f) to be the function determined in Theorem 3.9.
Throughout the rest of this section we assume that 0 ≥ f ≥ g are bound-

ary values of two maximal plurisubharmonic functions on Ω, continuous on
the closure of Ω.
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Theorem 3.10. If u ∈ Fa(f), then there exists an increasing sequence
(rj) of functions in F , tending to 0 a.e. such that

�

{u+ε<v+rj}

(ddcv)n ≤
�

{u+ε<v+rj}

(ddcu)n

for every v ∈ F(g) and every ε > 0.

Proof. Since u ∈ Fa(f) and v ∈ F(g), we can find ϕ ∈ Fa and ν ∈ F
such that f ≥ u ≥ f + ϕ and g ≥ v ≥ g + ν. It follows from results in [11]
that (ddcϕ)n = p(ddcψ)n, where ψ ∈ E0. It follows from Theorem 3.7 that
ϕ ≥ us + rs, where us = U(min(p, s)(ddcψ)n, 0) is the unique solution to
the Dirichlet problem us ∈ F , (ddcus)n = min(p, s)(ddcψ)n, which exists by
Lemma 5.14 in [11]. It follows that us ∈ E0 since us ≥ s1/nψ. The function rs
is defined as

rs = U(χ{p≥s}p(dd
cψ)n, 0).

We see that rs increases to 0 a.e. and

{u+ ε < v + rs} ⊂ {ϕ+ f + ε < v + rs} ⊂ {us + rs + f + ε < v + rs}
⊂ {us + ε < 0} ⊂⊂ Ω, ∀s.

Let R ∈ E0 be any continuous exhaustion function for Ω such that R < g
near the closure of {us + ε < 0}. Then max(u, ϕ + max(U(0, f), R)) ∈ Fa,
max(v, ν + max(U(0, g), R)) ∈ F , and

u = max(u, ϕ+ max(U(0, f), R)), v = max(v, ν + max(U(0, g), R))

near the closure of {us + ε < 0}. The conclusion of the theorem now follows
from Corollary 3.6.

We finish this section by generalizing Theorem 3.7. We will need a result
by Błocki [5], which in our setting is: If u ∈ PSH− ∩ L∞ and v ∈ F then

�
(−v)n(ddcu)n ≤ n!(sup−u)n−1

�
−u(ddcv)n.

We first generalize our notation U(µ, 0). Let µ = (ddcv)n for some v ∈ Ea.
Define U(µ, 0) to be limj U(χΩjµ, 0). Then U(µ, 0) ∈ Ea and U(µ, 0) ≥ v.

Theorem 3.11. Suppose u ∈ N a. Then u = U((ddcu)n, 0).

Proof. It follows from Theorem 3.7 that u ≤ U((ddcu)n, 0), so it remains
to prove the opposite inequality. Let t ∈ C∞0 , 0 ≤ t ≤ 1, and put

uts = U(t(ddc max(u,−s))n, 0).

Then uts ≥ max(u,−s) ≥ uts + uk when Ωk ⊂ {t = 1}. We claim that
limuts ≥ U((ddcu)n, 0). If we prove this, then max(u,−s) ≥ U((ddcu)n, 0)+
uk and therefore u ≥ U((ddcu)n, 0) since uk tends to 0 as k → +∞.
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Now, for s > q,
uts = U(t(ddc max(u,−s))n, 0)
≥ U(χ{u>−q}t(dd

c max(u,−s))n, 0) + U(χ{u≤−q}t(dd
c max(u,−s))n, 0)

and by Lemma 3.4,
uts = U(t(ddc max(u,−s))n, 0)
≥ U(χ{u>−q}t(dd

cu)n, 0) + U(χ{u≤−q}t(dd
c max(u,−s))n, 0)

and
uts = U(t(ddc max(u,−s))n, 0)
≥ U(t(ddcu)n, 0) + U(χ{u≤−q}t(dd

c max(u,−s))n, 0).

It remains to prove that U(χ{u≤−q}t(ddc max(u,−s))n, 0) is close to zero.
Let ψ ∈ E0,−1 ≤ ψ < 0. Then by [5],�

(−U(χ{u≤−q}t(dd
c max(u,−s)n, 0))n(ddcψ)n

≤ n!
�
χ{u≤−q}t(dd

c max(u,−s))n

≤ n!
�
−max(u/q,−1)t(ddc max(u,−s))n.

By Lemma 3.2, −max(u/q,−1)(ddc max(u,−s))n tends weakly to
−max(u/q,−1)(ddcu)n as s→∞. Thus

lim sup
s→+∞

�
(−U(χ{u≤−q}t(dd

c max(u,−s), 0)n)n(ddcψ)n

≤ n!
�
−max(u/q,−1)t(ddcu)n.

Since the right hand side tends to 0 as q →∞, the proof is complete.

Theorem 3.11 together with Theorem 3.7 gives

Theorem 3.12. Suppose u ∈ N a, v ∈ E and (ddcu)n ≤ (ddcv)n. Then
v ≤ u on Ω.

Theorem 3.11 together with Corollary 3.6 gives

Corollary 3.13. If u ∈ N a and v ∈ E , then�

{u<v}

(ddcv)n ≤
�

{u<v}

(ddcu)n.

Corollary 3.14. If u ∈ N a and u ≤ v ∈ E , then v ∈ N a.

Proof. It is no restriction to assume that v ∈ F . We know that u =
U((ddcu)n, 0) and we write

uj = U(χΩj (dd
cu)n, 0), ej = U((1− χΩj )(ddcu)n, 0).

Then v ≥ u ≥ uj + ej so v ≥ uj + max(v, ej). Let P be a given compact
pluripolar set and let h ∈ E0 with h ≤ −1 near P. Given ε > 0, choose j so
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that
	
h(ddc max(v, ej))n > −ε. We get�

h(ddcv)n =
�
vddch ∧ (ddcv)n−1 ≥

�
(uj + max(v, ej))ddch ∧ (ddcv)n−1

≥
�
ujdd

ch ∧ (ddcv)n−1 − ε =
�
hddcuj ∧ (ddcv)n−1 − ε.

Thus,
	
t(ddcv)n ≥

	
tddcuj ∧ (ddcv)n−1− ε for every t ∈ E0 with t ≥ h. Since

P is pluripolar, we can choose 0 ≥ hp ≥ h with hp = −1 on P so that hp
increases to 0 outside a pluripolar set. It follows that (ddcv)n vanishes at P ,
and the proof is complete.

We have already noted that the comparison principle fails to hold in F .
However, the following identity theorem does hold.

Theorem 3.15. If u, v∈F(Ω), (ddcu)n = (ddcv)n and u≤v then u=v.

Proof. By [12], there is a strictly plurisubharmonic exhaustion function
ψ ∈ E0 ∩ C∞(Ω) for Ω. We would like to show that�

d(u− v) ∧ dc(u− v) ∧ (ddcψ)n−1 = 0.

It is easy to see that

0 =
�
d(u− v) ∧ dc(u− v) ∧ (ddcu)a ∧ (ddcv)b ∧ ddcψ, a+ b = n− 2.

Assume

0 =
�
d(u− v) ∧ dc(u− v) ∧ (ddcu)a ∧ (ddcv)b ∧ (ddcψ)p,

a+ b = n− 1− p.
Then for a+ b = n− 2− p we have

0 ≤
�
d(u− v) ∧ dc(u− v) ∧ (ddcu)a ∧ (ddcv)b ∧ (ddcψ)p+1

=
�
−(u− v)ddc(u− v) ∧ (ddcu)a ∧ (ddcv)b ∧ (ddcψ)p+1

=
�
−ψ(ddc(u− v))2 ∧ (ddcu)a ∧ (ddcv)b ∧ (ddcψ)p

=
�
dψ ∧ dc(u− v) ∧ ddc(u− v) ∧ (ddcu)a ∧ (ddcv)b ∧ (ddcψ)p

≤
∣∣∣ � dψ ∧ dc(u− v) ∧ ddcu ∧ (ddcu)a ∧ (ddcv)b ∧ (ddcψ)p

∣∣∣
+
∣∣∣ � dψ ∧ dc(u− v) ∧ ddcv ∧ (ddcu)a ∧ (ddcv)b ∧ (ddcψ)p

∣∣∣
≤
[ �
dψ ∧ dcψ ∧ (ddcu)a+1 ∧ (ddcv)b ∧ (ddcψ)p

×
�
d(u− v) ∧ dc(u− v) ∧ (ddcu)a+1 ∧ (ddcv)b ∧ (ddcψ)p

]1/2
+
[ �
dψ ∧ dcψ ∧ (ddcu)a ∧ (ddcv)b+1 ∧ (ddcψ)p

×
�
d(u− v) ∧ dc(u− v) ∧ (ddcu)a ∧ (ddcv)b+1 ∧ (ddcψ)p

]1/2
= 0.
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Remark. A different proof is given in [17].

4. The Dirichlet problem in N a(H) for H ∈ M∞. In this section,
we prove the following theorem.

Theorem 4.1. Suppose µ = (ddcv)n, where v ∈ N a. For every H ∈M∞
there is a uniquely determined function ϕ ∈ N a(H) with (ddcϕ)n = µ.

We extend our definition from Section 3 and define U(µ,H) to be this
function. In the previous section, we treated the case when v ∈ Fa and
H ∈ PSH(Ω)∩C(Ω), (ddcH)n = 0. To proceed to the general case, we need
a lemma.

Lemma 4.2. Suppose H ∈ M∞, ψ ∈ E0(Ω), and supp (ddcψ)n ⊂⊂ Ω.
Then there is a u ∈ E0(H) such that (ddcu)n = (ddcψ)n.

Proof. Put µ = (ddcψ)n, let suppµ ⊂⊂ Ω0 ⊂⊂ · · · ⊂⊂ Ωj ⊂⊂ Ω
be a fundamental sequence of strictly pseudoconvex subsets of Ω, and let
Hk, ψk ∈ E0 ∩ C(Ω) with Hk decreasing to H and ψk to ψ as k → +∞.
Solve for uj,k ∈ F(µ, (ψk + Hk)|{∂Ωj}) on Ωj . Define hj,k to be equal to
max(uj,k, ψk+Hj

k) on Ωj and ψk+Hj
k on CΩj . Then hj,k ∈ PSH−(Ω), Hj

k ≥
hj,k ≥ ψk + Hj

k and obviously hj,k+1 ≤ hj,k on Ω, uj,k+1 ≤ uj,k on Ωj , so
limk→+∞ hj,k = hj satisfies H ≥ hj ≥ ψ + H. Define uj = limk→+∞ uj,k
on Ωj .

Claim 1. uj = hj on Ωj .

Indeed, it is clear that hj ≥ uj . But on ∂Ωj we have limz→ξ(ψ +H) ≤
uj,k = ψk+Hk, and onΩj , (ddc(ψ+H))n ≥ (ddcuj,k)n = µ.Hence uj ≥ ψ+H
on Ωj , which proves the claim. In particular, (ddchj)n|Ωj = µ.

Claim 2. hj+1 ≥ hj on Ω.

Indeed, on CΩj+1, hj+1 = hj = H + ψ. On Ωj+1, hj+1 = uj+1 by
Claim 1, so

• (ddchj+1)n = µ on Ωj+1 and (ddchj)n ≥ µ on Ωj+1,
• on Ωj+1 ∩ CΩj , hj+1 = uj+1 ≥ ψ +H = hj .

Hence hj+1 ≥ hj on Ωj+1, so hj+1 ≥ hj on Ω.
Put u = (limj→+∞ hj)∗. Then (ddcu)n = µ and H ≥ u ≥ H + ψ, which

concludes the proof of the lemma.

Note that if ψ1 ≤ ψ2 are as in Lemma 4.2 with (ddcψ2)n ≤ (ddcψ1)n,
then u1 ≤ u2 for the solutions obtained in the lemma.

We now turn to the existence part of the proof of Theorem 4.1.
Using [11], we find that

(ddcv)n = µ = f(ddcg)n, g ∈ E0(Ω).
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Consider ψk = U(χΩk inf(f, k)(ddcg)n, 0) ∈ E0(Ω) and by Lemma 4.2 find
uk ∈ E0(H) such that (ddcuk)n = χΩk inf(f, k)(ddcg)n.

As already noted, (uk) is a decreasing sequence and H ≥ uk ≥ ψk +H ≥
v +H, so limuk = u ∈ N a and (ddcu)n = µ.

This establishes the existence of a solution. If Ω is a so-called B-regular
domain, the proof of the existence part can be simplified. The uniqueness
will follow from Theorem 4.4 below.

Theorem 4.3. Assume u ∈ N a(F ), F − ε ≥ v ∈ E , F ∈ M∞ and
ε > 0. Then there is an increasing sequence (rj) of functions in N a such
that limj→+∞ rj = 0 (a.e.) and

�

{u<v+rj}

(ddcv)n ≤
�

{u<v+rj}

(ddcu)n, ∀j ∈ N.

Proof. Let ϕ ∈ N a be such that F ≥ u ≥ F + ϕ, as in the definition
for u. By [11], we know that (ddcϕ)n = P (ddcψ)n for some ψ ∈ E0(Ω) and
P ∈ L1

loc((dd
cψ)n). Then, by Corollary 3.12, ϕ ≥ us + rs, where

us = U(χΩs min(P, s)(ddcψ)n, 0), rs = U(χ{P≥s}P (ddcψ)n, 0),

us ∈ E0, rs ∈ N a and rs increases to 0 as s→ +∞. We have

{u < v + rs} ⊂ {ϕ+ F < F − ε+ rs} ⊂ {us + rs + ε < rs}
⊂ {us + ε < 0} ⊂⊂ Ω, ∀s.

Let R ∈ E0 be any continuous exhaustion function for Ω such that R < F−ε
near the closure of {us + ε < 0}. Then, by Corollary 3.14, w1 = max(u, ϕ+
max(F,R)) ∈ N a, w2 = v+ rs ∈ E and w1 = u, w2 = v+ rs near the closure
of {us + ε < 0}.

Also, u ≥ v + rs on the complement of {us + ε < 0}, so w1 ≥ w2 on the
complement of {us + ε < 0}. Then, by Corollary 3.13,�

{w1<w2}

(ddcw2)n ≤
�

{w1<w2}

(ddcw1)n,

so �

{u<v+rs}

(ddc(v + rs))n ≤
�

{u<v+rs}

(ddcu)n,

which completes the proof.

Theorem 4.4. Assume u ∈ N a(F ) and F ≥ v ∈ E where F ∈ M∞. If
(ddcu)n ≤ (ddcv)n then u ≥ v on Ω.

Proof. We can assume that F − ε ≥ v for some ε > 0. Let (rj) be
a sequence as in Theorem 4.3. If there is a point z0 ∈ Ω with u(z0) <
v(z0) + rj(z0), then there is a constant η > 0 such that u(z0) < ηT (z0) +
v(z0) + rj(z0), where T ∈ E0, (ddcT )n = dV = Lebesgue measure near z0.
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By Theorem 4.3 with u = u, v = ηT + v we get�

{u<ηT+v+rj}

(ddc(ηT + v))n ≤
�

{u<ηT+v+rj}

(ddcu)n ≤
�

{u<ηT+v+rj}

(ddcv)n.

Hence �

{u<ηT+v+rj}

(ddcv)n + ηn
�

{u<ηT+v+rj}

(ddcT )n ≤
�

{u<ηT+v+rj}

(ddcv)n.

so
	
{u<ηT+v+rj}(dd

cT )n = 0, which shows that u ≥ ηT+v+rj in a neighbour-
hood of z0, contrary to the assumption that u(z0) < ηT (z0)+v(z0)+rj(z0).

5. Some examples and remarks. In this section, we discuss some
examples.

In classical potential theory, a positive measure µ is the Laplacian of a
negative subharmonic function if and only if

	
ψ dµ > −∞ for some negative

subharmonic function ψ. The corresponding statement for plurisubharmonic
functions is not true as Example 5.3 shows. But we have:

Proposition 5.1. Suppose E0(Ω) 3 uj ↘ u as j → +∞ and there is a
ψ ∈ E0(Ω) with ψ 6≡ 0 and supj

	
Ω −ψ(ddcuj)n < +∞. Then u ∈ E.

Proof. Let ω ⊂⊂ Ω be given and consider ujω = sup{ϕ ∈ PSH−(Ω); ϕ|ω
≤ uj |ω}. Then ujω ∈ E0(Ω) and ujω ↘ u on ω as j → +∞. Integration by
parts gives

sup
j

�
−ψ(ddcujω)n ≤ sup

j

�
−ψ(ddcuj)n < +∞

and since supp (ddcujω)n ⊂ ω and

sup
j

�

Ω

(ddcujω)n ≤ (inf
ω
−ψ)−1 sup

j

�
−ψ(ddcujω)n,

it follows that limj→+∞ ujω ∈ F , so u ∈ E .
Proposition 5.2. If µ is a positive measure which vanishes on all pluri-

polar sets and if there is a ψ ∈ E with ψ 6≡ 0 and
	
ψ dµ > −∞, then

U(µ, 0) ∈ N a and (ddcU(µ, 0))n = µ.

Proof. By [11], we can assume that −1 ≤ ψ ∈ E0. Then, by Błocki’s
inequality [5],�

(−U((1− χΩj )µ, 0))n(ddcψ)n ≤ n!
�
−ψ(1− χΩj ) dµ.

By Lebesgue’s monotone convergence theorem, the right hand side tends to
zero as j tends to +∞.

Example 5.3. We construct a function W ∈ N ∩L∞(Ω) with the prop-
erty that

	
ψ(ddcW )n = −∞ for all ψ ∈ PSH−, ψ 6≡ 0.
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Put uj = max(j2 log |z|,−1/j2) ∈ E0(B), B = the unit ball in Cn. Then
�

B

max(log |z|,−1)(ddcuj)n

= j2n
�

B

max(log |z|,−1)(ddc max(log |z|,−1/j4))n = j2n(2π)n
−1
j4
.

Thus if wp =
∑p

j=1 uj then�

B

max(log |z|,−1)(ddcwp)n ≤ −p→ −∞, p→ +∞,

but W = limp→+∞wp ∈ E since W ∈ PSH−(B) ∩ L∞.
Finally, W̃ ≥

∑∞
j=k uj for all k. Since the right hand side tends to zero

as k tends to ∞, it follows that W̃ = 0.

Remark. If n > 1, there is no 0 6≡ u ∈ F(B) with −(−u)1/n ∈ F .
Indeed, suppose u exists and use W from Example 5.3. Then, by Błocki’s
inequality,

�

B

(−u)(ddcW )n =
�

B

((−u)1/n)n(ddcW )n

≤ n!(sup−W )n
�

B

(ddc − (−u)1/n)n < +∞,

which is a contradiction, since u ≤ αmax(log |z|,−1) < 0 for some α > 0.

Example 5.4. We will now construct a sequence of functions
∑m

j=1 ϕj ∈
E0(B) such that

∑m
j=1 ϕj ↘ −∞ as m→ +∞ and

sup
m

�

B

(log |z|2)2
(
ddc

m∑
j=1

ϕj

)2
< +∞.

Put
aj =

1
j1/2

, bj =
1

j1/2 log j
, j ≥ 2.

Then
∑∞

j=2 a
2
j = +∞,

∑∞
j=2 ajbj = +∞ but

∑∞
j=2 b

2
j<+∞. Also aj

∑j
k=2 ak

≤ 6 for all j ≥ 2. Define

ϕj =
aj
2π

max(log |z|, log(1− bj)), j ≥ 2.

Then

ddcϕj ∧ ddcϕk =

{
a2
jσ1−bj , j = k,

ajakσmax(1−bj ,1−bk), j 6= k.

Here, σr denotes the normalized Lebesgue measure on the sphere with
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radius r. Now
�
(log |z|2)2

(
ddc

m∑
j=2

ϕj

)2
=

m∑
j,k=2

�
(log |z|2)2(ddcϕj ∧ ddcϕk)

≤ 2
m∑
j=2

j∑
k=2

�
(log |z|2)2(ddcϕj ∧ ddcϕk)

≤ 2
m∑
j=2

(log 1− bj)2aj
j∑

k=1

ak ≤ 12
∑

(log 1− bj)2 < +∞.

Remark. To conclude that a sequence ϕj ∈ E0 decreases to a plurisub-
harmonic function 6≡ −∞, it is not enough to know that (ddcϕj)n is weak∗-
convergent.

Remark. If ψ,ϕ1, ϕ2 ∈ E0(Ω) with ϕ1 ≥ ϕ2 then�
−ψ(ddcϕ1)n ≤

�
−ψ(ddcϕ2)n,

which is a very useful inequality.
This cannot be generalized to higher powers of ψ. For n = 2, there is no

constant c such that�
(−ψ)2(ddcϕ1)2 ≤ c

�
(−ψ)2(ddcϕ2)2, ∀ψ,ϕ1, ϕ2 ∈ E0(Ω), ϕ1 ≥ ϕ2.

For assume there is such a constant. Let 0 > v ∈ PSH− be any function and
consider hm = max(v,

∑m
j=2 ϕj), where (ϕj)∞j=1 is the sequence of functions

in Example 5.4. Then we would have

lim
m→+∞

�
(− log |z|2)2(ddchm)2 ≤ c lim

m→+∞

�
(log |z|2)2

(
ddc

m∑
j=1

ϕj

)2
< +∞,

so it would follow that v = limhm ∈ E , which is not true in general (see for
instance [9]).

Remark. Let µ be a weak limit of (ddc
∑m

j=1 ϕj)
n where

∑m
j=1 ϕj ∈

E0(B) is the sequence of functions constructed in Example 5.4. Then there
is no function u ∈ E with (ddcu)2 = µ. For, by Theorem 3.7, u ≤

∑m
j=1 ϕj

for every j, which forces u to be −∞ everywhere.
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