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On the Green function on a
certain class of hyperconvex domains

by GREGOR HERBORT (Wuppertal)

Abstract. We study the behavior of the pluricomplex Green function on a bounded
hyperconvex domain D that admits a smooth plurisubharmonic exhaustion function
such that 1/[¢] is integrable near the boundary of D, and moreover satisfies the estimate
[¥] < Cexp(—C’(log(1/6p))®) at points close enough to the boundary with constants
C,C" > 0 and 0 < a < 1. Furthermore, we obtain a Hopf lemma for such a function ).
Finally, we prove a lower bound on the Bergman distance on D.

1. Introduction. In 1985 M. Klimek introduced the pluricomplex Green
function of a bounded domain D C C". It is defined by

Yp(z,w) =sup{u(z) | u: D — [-00,0), u € PSH(D),
u(z) — log|z — w| is bounded from above near w},

where PSH(D) denotes the family of plurisubharmonic functions on D. In
[18] and [9] the important properties of the Green function were established
and also its relationship to the complex Monge—-Ampére equation was clari-
fied.

The Green function is a powerful tool for investigations in Bergman the-
ory, when one wants to construct good holomorphic square-integrable func-
tions by means of the O-technique with weights (see for example [5, 12, 15,
17]). On a hyperconvex domain it is known from [9, 18] that ¥p(z,w) — 0
as z tends to the boundary and w is kept fixed. A domain D C C" is called
hyperconvez (|21]) if it admits a bounded continuous plurisubharmonic ex-
haustion function ¢ : D — (—1,0).

When using the Green function as a weight, one needs, however, infor-
mation on the sublevel sets of the Green function ¥p (-, w) as w tends to the
boundary; more precisely, it is desirable to describe, in terms of the bound-
ary distance of the pole w, where the sets {¥p(-,w) < —1} are situated.
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This is a difficult question, since for n > 1 the pluricomplex Green function
is no longer symmetric (see |2]). Recently, some progress has been made in
this direction: see for example |5, 12, 16].

Carlehed, Cegrell and Wikstrom [8] obtained a first result on the behavior
of the Green function ¥p(-,w) as w approaches a boundary point wg: If
(wj); is a sequence of points in D that tends towards wp, then there exists
a pluripolar set F such that

limsup¥p(z,w;) =0 forze D\ E.
J—00

We prove that under a mild additional condition on D (which is consid-
erably weaker than those from [12] and [16]), the set E is empty and the
lim sup is in fact a limit. We assume in Sections 2 through 6 that n > 1. The
case n = 1 will be discussed in Section 7.

THEOREM 1.1. Let D be a bounded hyperconvex domain in C™ withn > 2
that admits a plurisubharmonic smooth exhaustion function 1 : D — [—1,0)
with the following two properties:

(1) There is a positive measurable function h such that h=/("=1 s in-
tegrable over D (with respect to the Lebesgue measure) and

(dd°g)" > h(dd|=?)"
(2) There are constants 1 > a > 0 and Cy,Cy > 0 such that

. . 1\%
P> —Cq exp(—Cz (log ) )
op

on DN {0p < 1}, where dp denotes the boundary distance function
on D.

Then there are constants 5’, 0o > 0 such that for any compact subset K C D
and w € D\ K with ép(w) < min{dy, 0p(K)/4},

- w 1/3n
sup |9p(z, w)| < C’((‘;ﬁEK))‘M+3 + 5D(w)).

zeEK
A function with property (1) of the above theorem exists on a general
hyperconvex domain, as follows from a result of [6]:

THEOREM 1.2. Let D be a bounded hyperconver domain. Given a con-
tinuous function f on 0D that extends to a plurisubharmonic function on
D, and a continuous function F : D — [0,00), there exists a uniquely de-
termined continuous function u = us gy on D that is plurisubharmonic on
D and such that uw = f on 0D, and (dd°u)™ = Fdzy ANdzy A -+ Ndz, N\ dZy,
on D.

The uniquely determined solution ¢p from Theorem 1.2 which corre-
sponds to the data f =0, F = 1 will of course satisfy the requirement (1).
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With slight changes the method used to prove Theorem 1.1 yields

THEOREM 1.3. Let n > 2. Suppose that D CC C" is hyperconvex and
admits a smooth plurisubharmonic exhaustion function v : D — (—1,0) that
satisfies with some constant Cy > 0 the estimate

@ Llog L) <pi<cifiog L)
o\ ®e,)  =MI=R9%s)

on DN{ép < 1} with exponents M, N > 2(n + 1) such that N < M <
—1+4 N?/4n. Then there exist constants C, 6, > 0 such that for any compact
set K C D and any w € D\ K with ép(w) < min{d.,o0p(K)/4},

~ Y(n—=1)/n
sup |9p(z,w)| < C(%

)00,
z€K
where B=3(N(n—1)/n*~M’' +1/N'), N'=N(1—1/n), M'=M(1—1/n),
v =nfB/2N(n—1), and f; = min{B,1/n —~v}. Note that B > N/48n for
n > 2.

Under the hypotheses of Theorem 1.1 a lower bound on the Bergman
distance can be obtained (using the idea of [14]):

THEOREM 1.4. Let D and i be as in Theorem 1.1. Then there exists a
constant Cy. > 0 such that for any fized P € D,

d2(Q, P) > C,loglogl L
p(Q,P) > ogloglog Trry

whenever 0p(Q) < 1.
Note that no Holder condition on the exhaustion function 1 is needed.

Acknowledgements. I would like to express my thanks to the referee for
a patient and careful reading of my manuscript. His suggestions were a valuable
help for me to remove defects in the statements and proofs in this article.

2. Lower bounds on the Demailly regularization of a plurisub-
harmonic function

Some notations. Let D CC C™ be a pseudoconvex domain and V' a nega-
tive plurisubharmonic function on D. Following the method of Demailly [10]
we regularize V. For this let m > 0 be a positive number and Hop,v (D) the
Hilbert space of holomorphic functions in D such that the weighted L2-norm

I llzmy = (§ 17272V dgnz)m
D
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is finite. We denote by Kp 2, the Bergman kernel associated to Hap,y .
Then the function

1
Vin(z) :== C- log Kp amv (2, 2)
is plurisubharmonic, and we have
1
Vin(2) == %Sup{log 1F(2)? | f € Hamv, [ fllzmy < 1}

It is shown in Proposition 3.1 of [10] that, with suitable constants C1, Ca,
for any z € D and any 0 < r < dp(z) one has

)

n’

1 1
— <Van(z)< sup V(x)+ —lo
Cim 2) IEB(Iz),r) (=) m ey

(2.1) V()

and moreover V,, tends to V pointwise and in the Llloc—topology on D as
m — 00.

For 2 € D and r € (0,0p(2")), and a measurable function V on D,
we denote by MV, 2% 7] the spherical mean of V over dB(z°,r) and by
A[V, 2°, 7] the average of V over the full ball B(z°,7).

For any subharmonic function V' on D one has
AV, 2%, ] < MV, 2%, ).

Given 2° € D, we need a lower estimate for V;,(2°) in terms of the mass
of the ball B(z",r) with respect to the measure AV. Then we can apply the
result to the case where V' is the Green function with a pole at w € D. This
together with an estimate of Btocki will help control the value V;,(2°) as w
tends to a boundary point.

We begin with a comparison lemma for the weighted Bergman kernel.

LEMMA 2.1. Let 0 <7 < 6p(2°)/2. Then:

(a) We have
1

Ale=2mV 20 r]’

where Cp > 0 depends only on the diameter of D.
(b) The regularization V,, can be estimated from below by

KQmV(zov ZO) > C’D

(2.2) Vin(2%) > —

Proof. We choose a cut-off function y € C*°(R) with x(s) = 1fors < 1/4
and x(s) = 0 for s > 9/16. Then the (0, 1)-form

= |z — 20)2 |z — 292\ 9|z — 29)?
v = 8<X<7«2 = X, 7,.2 ,,,.2




Green function of hyperconver domains 153

is smooth and O-closed on D. We will solve a suitable d-problem for these
data on D with weight function

©(2) := 2mV (2) + 2nlog |z — 2|

Our plan is to use the L*-technique developed in [20, 3] (see also [13]). The
relevant tool for solving 9 will be the following slight modification of Lemma
2.2 from [17]:

LEMMA 2.2. Let 2 CC C" be a pseudoconver domain with a C?-smooth
boundary. Suppose that on §2 we are given two smooth functions p,7, where

n > 0, whose Levi forms £ and £5 satisfy
- 1057 ®on
nL; - 25> Q+ 1 %

with some positive hermitian form Q on (2. Then, given a smooth O-closed
(0,1)-form v = v1dz1 + - - - + v dZ, on 2 such that

Hogv) = S |v|ée_“5d2”z < 00,
2

one can solve the equation O(\/1 + N2 u) = v with a smooth function u on 2
such that

S lu2e=? d*"z < 20 7 5(v).
Q

Here \U% denotes the square of the length of v with respect to the form Q: If
(QaE)Z,bzl is the coeﬁigz’ent matriz of Q and (Qab)Z’bzl 1s its inverse matric,
then |v|2Q = ube1 Q v,y

Let (D'),~¢~0 be an exhaustion for D by smooth bounded pseudoconvex
domains D! such that B(z°,2r) cC D? for each t.

CASE 1: V is continuous. On each D! we can choose a regularization V'
of V such that V < V! <V 4+ 1/2m on D!. Then in the above lemma we
choose 2 := D! and

Bi(2) = |2? + 2mVi(2) + nlog(t? + |z — 2°%).
Next we put
ne = e + log e,

where
r?+t2 4]z — 20
2
8eR7,

and Rp is the diameter of D. This function has values > 1, and —n; and

n(z) := —log
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—1); are plurisubharmonic on D?. We estimate

. . 1 Oy @ Oy
L, — L, >mLpe— 1+ — | L+ ———5
NZ G, e Z Mt z|2 < + 77t> ne T (1 T 7715)2
~ O @ Oy
> T,t%zp - gﬁt + =
4ny
because —.7;, is positive and 1 +n; < 21 < 2. We will choose @ :=

MLz — Lo,
Our next aim is to estimate |v|g. On the support of v, which is contained
in B(z%,7)\ B(z",r/2), we have
r? + ¢

Q=MLep — Ly 2 L + (r2 4+ 2 + |z — 202)2

.,gﬁz,zop

.y 2 — 202 P
Z Ljz2 T (r2 + 12 + |z — 20]2)2 |z—2012
N (= — 2°1) ® 9(|= — 2°?)
= “z? (r2 12 + |z — 20]2)2
~ oz =) _ 8z = P)
Z Q=L + 3r2 © 32
which implies
d|z — 22 |2 = 2°?

2 2 112
[v]g < vl < & (sup X' | =3 Mz 0P

= 9&(sup |}])?
3
< 9¢,(sup |X'])?,

where &, is the characteristic function of B(2°,7)\ B(z%,7/2). On the support
of v we also have
ot(z) > 2mV (z) + 2nlog(r/2).

This yields
4n
0z ®) <suw X)? =5 | eV dz = cp Al 200,
" B0

with ¢, = 9-4"(sup |x’|)? times the volume of the unit ball. By Lemma 2.2
we obtain a smooth solution u; to the equation 9(\/7; + 77us) = v such that

S |ut|2e_5t d?"z < 20c, Ale 2™V 20 ).
Dt
Next we observe that

~ _ >. ~ 2 t_
(77t +7A7Jt2)e 2mV pr (nt +7~7’t2)€\z| +2m(V V)(t2 + |Z . zO|2)n

0 8eR? 8eR3 \?
< 4eBbT max x| log # + | log 26 D <Cp
0<z<(2Rp)?2 re+x re+x
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with

- 5 4e)\?
Rp :=max|z|, C} =8t (2Rp)" max (5" <log > )
zeD 0<¢< §

The function

i =1 - VAT ue)

r

now becomes an element of Hay,y (DY), with norm

I fellamv.pt < (WRp + 54/Cp)/ Ale=2mV, 20, 7],

where 7, := v/volume of the unit ball. To see this, note that

|z — 2°|2 2
X -2

2mV,D?t

< 772LT2nA[€_2mV7 ZO,’F]

and r < Rp.
By a standard weak-star limit argument (similar to [17]) we find a holo-
morphic function f on D of the form

For 1B - viF R ute),

where
n=mn+logn, n=-—log

that satisfies

1fll2mv,p < (R + \/Cp)v/Ale=2V, 20,7].
Moreover,
S lul2e™? d?"z < 20¢, Ale 2™V, 20, 1]
D
with ¢ = 2|2 +2mV (2) + 2nlog |z — 2°|. This gives u(z") = 0. The function
F/1Iflamy is a candidate for Komy (2°). So we obtain

IR o

—2mV 0
||f”2mv [ B ,7“]

with Cp := (v, R +5,/C7,) 2. From this the first claim follows immediately.

KQmV( )y % )

CASE 2: V is arbitrary. First we fix a number s < 1 and consider the
Demailly regularizations of the functions V¢, taken over the domain D*. We
will denote them by (V?'),, ps. Here t < s. In explicit form, (V?'),, ps =
(2m)~!log Koyt ps, where

Komyt,ps(2) = sup{| fe(2)|* | fr € Homyt (D), || fellamye < 1}
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on D?. Our first claim is: There exists a null sequence (¢) such that

Koyt ps (2°) = Kopy,ps(2°) := sup{|f(2)|? | f € Homv (D), || fllamv <1}

To see this we choose for each ¢t < s a function f; s € Hy,ye(D?®) with
| fell2myt < 1 such that

Koyt ps(2°) = |fr,s ()2
Then the Alaoglu—Bourbaki theorem can be applied to the functions ﬁs =

frse”™ " which belong to L2(D*). We have Hﬁ sllz2(psy < 1. We can choose

a null sequence (t) and a function fog € L?(D?), having norm < 1 in
L?(D?), such that ftk s — f05 in the weak-star topology in L?(D*). The

function fo s := f() s~ ™V is square-integrable with respect to the weighted
Lebesgue measure e=2mV 205 over D® with | fo.sllemy < 1.

We claim that fp s is even holomorphic. Since V and V' are negative,

the functions e™V, ™™ are bounded. Therefore, the sequences (fi, s)r and

(ﬁwemv)k tend to fo s in the weak-star topology of L?(D?). If now 3 denotes
an arbitrary test form of bidegree (0, 1), and ¢ is the formal adjoint of 0 (in
L?(D?%)), then

(foss98) = lim (fy, 5™V, 05) = lim (fy, s, ™"V 9)
= lim ({fy,98) + (Foss ("7 = 1)93))
= lim (fy,.s, €™V V) —1)93).
k—oo
But
[{Fiss (€™V 7V = 1)98)] = [(Frsr €™ ™ (™) —1)03)|
< | Fewsllzzosy le™ ™ €™V V™) — 1)098]| 12 ey
< (™YY — 1)98] 2 (psy — O

as k — oo. This proves that fos € Hopmy(D?®). It also follows that the
functions f;, s tend pointwise to fos. Hence we obtain the desired lower

bound:

. 1
K2mV,DS(ZO) = |f0,s(20)|2 — kli,rgo‘ftk7s( )‘ > Cps 11)1210 A[ oV 20 r]

>C -
Ale=2mV 0 p] = 7P Ale=2mV 0 4]

Finally, we apply a similar weak-star limit argument to the functions

¥ fose™™V(2) for z € D*,
fioe) = { 5
0 for € D\ D

> Cps
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to obtain a function fo € Hapmy (D) with norm || fol|2my < 1 such that
Cp
0y[2
e —
‘fO(Z )| = A[efsz,ZO,r]a
proving part (a) of the lemma.

(b) The second assertion follows by taking the logarithm on both sides
in (a) |

We next estimate the integral
Im(r) = S e 2V 2y
B(2%r)
for r € (0,6p(2")/16). Let py be the measure defined by AV.

LEMMA 2.3. Let 20 and 0 < ¢ < §p(2°)/4 and 0 < r < €/4 as in the
preceding lemma. If
2n—2
m < (22) ,
~ 16(n + ey (B(29,2¢))

then
I9m B(0,¢
Im(r) < Crwane™ eXP(SC W
n

with some unimportant constant C, > 0. Here wa, is the area of the unit
sphere in C™.

— 4" 2mMV, 0,5]>

Proof. Let us assume that z° = 0. We choose a number ¢ € (4r,5p(0)).
By the Riesz representation theorem we can write

V(z) = PX(z) + he(2) for z € B(0,¢),

where P is the Green potential,

€
Pi(z)= | Gel=Q)duv(0),
I¢l<e
and G¢(z,() denotes the (real) Green function of B(0,¢). Further, h. is the
smallest harmonic majorant for V on B(0,e) and is given by the Poisson
integral of V,
1 S 52 — |Z|2

he() = EENE

woan€
I¢|=¢

The Green function for n > 2 is defined by
E(z =) —E((z" = Q)lzl/e) ifz#( z#0,

1 1
Ge(5:Q) = BQ+ r—gym s 2 #G2=0,

—00 if z=2¢.

V() dS(¢)-
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Here 2* := £22/|2|? and E is the fundamental solution to the Laplacian,
—1 1
(2n — 2)way, |z|*—2
First we apply Harnack’s inequality to the harmonic function h.. Note that
he <0, because V' < 0. For |z| < r we have

E(x) :=

1+ |z|/e 1+r/e
") 2 et MO 2 e 1O
1
:u—;gil MIV,0,e] > 4" M|V, 0,¢].
Furthermore, G.(z,() > E(z — (). Therefore, if we put
-1 1

I¢l<e
we obtain Pf(z) > P.(z), and altogether
e—2mV(z) < 6—4"~2mM[V,O,a]e—2mPg(z).

This gives us
(23) /m(r) < e—4"~2mM[V70,5] S e—QmPs(z) d2nz‘
|z[<r

Next we transform the term P.(z) using ideas of [22| (see for instance
p. 475). For s € (¢/3,¢/2) and = € C" with |z| = s and z € B(0,r) we write

|P.(2) — P. y<u_4§ (2 + t(x — 2))| dt
0

1
_r+syvgz+tx—@ﬂm

Integrating over the sphere {|z| = s} we find (note that r < e/4 <3s/4 < s)

(24) | P(x)dS(z) —I(s,2)
|z|=s
Swyns™ ' P(z) < | Pew)dS(x) +1(s,2),

|z|=s

where
1

I(s,2):=2s | ||VP.(2+t(x — 2))|dtdS(z).
|z|=s0
To estimate the integral I(s,z), we parametrize the positive hemisphere

F =1 = s | & > 0} by ¢(a) = (o, /5% — |a]?). Let ¥(t,a) =
z + t(¢(a) — z) for (t,a) € (0,1) X Bap—1(0,s). This defines an injective
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mapping from (0, 1) x Ba,—1(0,s) into Be,(0,2s). Its Jacobian determinant
is

det Jy(t,a) = —

(where (-, -) denotes the euclidean inner product). Since r < 3s/4, we obtain

i G 1) 2 B '

det Jy (t, )| > > .
|det Jy (2, ) E I B
Then
| IVE(z + t(x - 2))|dS(x)
M
= | VRt Hé(@) - 2)| e d*"
s2 — |af?
Ban—1(0,s)
4 _
<o | VR ) det Jy(t0)| d o,
Ban—1(0,s)

Now we observe that
[(t, ) — 2| = tp(a) — 2| < t(s+|z]) < 2st,

which implies

4 1
< 22n+182n—2 )
ot = [t a) — 2P

We obtain
1

| | IVP(2+ t(a — 2))] dS(x) dt
0 My

S VP (4(t, )| det Jy (t, @)

d*" o dt
[ (t,a) — 22T “

< 4n82n—2
(0,1) XBanl (O,S)

S V()]

n 2n—2
=t =P

d2n<-‘
B2,,(0,2s)
A corresponding estimate holds for Sé S IVP(2+t(z—2))| dS(z) dt, where
My ={¢|=¢e M}
This proves that (note that 2s < ¢)
S ‘vpa(O’

+1 2n—1
I(s,z) < 4" s e

dQnC'
Bgn (0,6)

We now integrate over all s € (¢/3,¢/2) and divide by £2". This gives, in
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conjunction with (2.4),

1
(25) — | Pa)d™a - H(2)
T e/3<w|<e/2
1
<P(2)<—5 | Po)da+ A(2),
" a<lal<es2

where ¢, 1= 42 ((1/2)*" — (1/3)*") and

_ 4 IVE(¢)]

%(Z) - 2n—1 d2n<
Wan Ban (0,6) ’Z_C‘
We estimate
1 dpy (C) 2
P 2N, n
) Plodn I e e L
e/3<|z|<e/2 e/3<|z|<e/2 [Cl<e
1 d*x )
-1 ) an
_ _ (|2n—2
e NP2y oy TG
1 d*x
- g s ) ()
e N T Dy 12 =G

9 2
> B
> — et (B(0,9))

for ¢ < 1/2. Thus we obtain from (2.5), since P <0,
9
~ Loz M (B(0,8)) = Ho(2) < Pe(2) < He(2)

and

(2.6) S e 2mP:(2) g2ny < exp(

|z|<r

9-4m
o e (BO.2)) ) § O
n
|z|<r

We only have to estimate the integral

1
(2.7) S e2mHe(2) g2 — o wanr?" 4 2m S He(z)d*z

|z|<r |z|<r

-~ (2m)
+2 o 1N o B 0,0
q=2
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First,
ne< dpv(y) Y\ o
(2:8) VPO d?¢ < — ( n_) pone
B%S(QE) o BZnS(Uva) B2nS(075) <=yt
1 dQnC
T wan S ( S ¢ =yp2nT1 dpy (y) < (26)pv (B(0,¢€)).

B2, (0,£) “Ban(0,)

By Fubini’s theorem we get

4n+1 P
2m S H(z)d*z =2m S L(f)_‘l d?"¢ d*z
wan |z —¢[*
|z|<r |z|<r B2n(0,¢)
ml 1 2n 2n
=2m S IVP.(0)] S 7271_161 z ) d™"¢
Wan o |z — (]
2n (0,€) |z|<r

< (2m)(2e)" | [VR(Q)d*C < 4™ - 2m - (22) v (B(0,¢)),
Bgn(O,e)

using (2.8). For ¢ > 2 we estimate the norms H,%/EHQLQ(B( by means of

0,r))
Holder’s inequality (see also the proof of Theorem 1 in [22, p. 476]). We use

the formula

| Z2l a(B(or) = sup | Pl)Ae(x)d™a
FeLr(B(0.), I1Fllze (0, =1" p(o,r)

(where p = q/(¢ —1)). Let F € LP(B(0,7)) be normalized. Then we get

|| F@g@ e < [ f@ Qe Q) ded
B(0,r) B(0,7)x B(0,¢)

with
VPOl M AZAGIIRNG
[z, Q) = <|$—C2"_1/q> ;o 9(@,Q) = F($)<|9[:_C’2,L_1_1/€,> :
The L%-norm of f is estimated by
S IVP:(Q)

2n 2n
EEICE R

||f”qu(B(0,r) xB(0,6)) —
B(0,r)xB(0,¢)

- 1 (5m) b R

— (|2n—-1
B(0,r) @ — ¢J2n=t/a B(0,)
< wonq(r + &)Y S IVP.(¢)| d*"¢ < dwange™ 9y (B(0,€)),
B(0,e)

again by (2.8).
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We next consider the LP-norm of g. Let

u(t) = | [VPA(Q]d*¢.

B(z,t)
First we observe that
IVE(Ol IVE(Ol
| e dcs | S
_ /2n—1-1 _ /2n—1-1
B(0,e) |ZL‘ <| /i B(z,2¢) |ZL‘ C| /i
2e
IVP-(¢) )
() =l ds))
_ (]2n—1-1/q
2e 1 ,
- S t2n—1-1/q u (t) dt
0

:M%)‘*@”—1—1>T u(t)

2n—1—1 1 .
(25) n /q q 0 ten /q

Now we note that

/LV(B(Oat)) ,UV(B(Ong))
and prT (2¢)2n—2

The second inequality follows from the fact that the function

t — py (B(0, t))/th_z

ult) < 2ty (B(0,1))

is increasing (see [19, pp. 72-73]). Hence

2e 2e

| e <2 2GR | e FCED

0 0
This implies

VPOl o 1/q 1 (B(0, 2¢))
S iz — C[Zn—1-1/d d™'C < 2(2n + 2)ge (2¢)2n—2
B(0,e)
Then
‘VP (<)| 2n 2n
l9Es (500 x B0y = ) ’F(‘”)‘p< S gt ¢) 4

B(0,r) B(0¢)

B(0,2
< 2(2n+2)ge'/ “V(;E)(Qn_,f))

/g v (B(0,29))
(26)27172 '

| IF(@)P e
B(0,r)

=2(2n+2)qe
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By Hoélder’s inequality we find (using 1/p + 1/q = 1) that
|} P@)Aele) 2] < (g (B0, €)))

B(0,r)
g v (B(0,26))\ /7
X (2(2n+2)q£ /a (20)22 )

< (20 + 2)(2wan) /7 - 2quv (B(0, 2¢) ) (2¢) /P
= (2n +2)(2wan) /- 2qpv (B(0, 22) ) (22) > F20/4,

This implies

A 0.y < 2020 (20)° <(2n 1 2) “VMO’%))Y@E)%.

(
(25)2n72
Substituting this into (2.7) we obtain

S GQm%(z) d2n s

|z|<r

1 a2, (90)? = (29)7 (8(n + 1)mpuy (B(0,2¢))
< an2n52na

if we choose
(28)271—2

<
"= 16(n + Depy (B(0, 22))
in order to make the above series converge.
In conjunction with (2.3) we get

jm(r) < 6—4”~2mM[V,0,5] S 6—2mP5(z) d2nz
|z|<r
B ,
< exP(gm M — 4™ . 2mM]V, 075]> S e2mAe(2) g2n

SCn 62n—2
lz|<r

9m py (B(0,¢))
8¢,  e2n—2
This will give a lower bound for the regularization V,,:
LEMMA 2.4. Let D be as above and z° € D. Let e < dp(2°)/4. If
< (2¢)2n—2
~ 16(n+ 1)euy (B(2,2¢))’

< Cwone™ exp< — 4" 2mM]|V,0, 5]) .

then

Vm(zo) < _log(C’D/C’n) B 9 uy(B(%¢))

0
> o Toc 902 + 4" A[V, 27 €].



164 G. Herbort

Proof. We combine Lemmas 2.1 and 2.3 with r = ¢/8:

log C 1 —om
Vinl2) 2 — 52— —log(Ale™™Y 20,8
logCp 1 2n82"
— — —log( —— Fm
5 L og(wm% Fmle/8)
log(2nCD/Cn) 9 uv(B(ZO,E,‘)) n 0
> — .
> o T “n3 +4"M[V, 2", €]

This gives the desired estimate, since M[V, 2%, ¢] > A[V, 2% ¢]. m

3. Application to the pluricomplex Green function. We start with
a technical lemma:

LEMMA 3.1. Assume that D is bounded and hyperconvex and ¢ € PSH(D)
is continuous, negative and satisfies ||V|lcc = 1 and condition (1) of Main
Theorem 1.1. Let w,2° € D. Then, for any 0 < r < %513(20),

6
6§ Wplwl@e < ) ) (Snn).
B(z9,6r/5)
and
Hgp (- w (B(ZO7T)) C;: 6
(32)  Alp(w)|, 20 ] + TRETTE < )M S ek

with some constant C}; that depends only on n. Here we define, for 0 < o <
5p(2Y),

I(Q7 h) = ( S h_l/(n—l) d2nx>1_1/n

B(z%,0)

Proof. We apply an idea from [7]. The key tool is an estimate obtained
in [5]: Given an arbitrary bounded domain D’ and negative locally bounded
plurisubharmonic functions u, v1, ..., v, on D’ such that lim,_., u(z) = 0 for
any q € 0D’, we have

D' D’

(33) | ul"ddvy A -+ Addvn < nll[villoc - on-tlloo | onl(ddu)".

For an arbitrary number L > 1 we put
ur, = max{¥%p(-,w),—L}.

By the Holder inequality we have
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1

2n ., 1/n 2n
(3.4) V' luld®z= | Jug|p!/ i
B(29,6r/5) B(29,6r/5)
1/n 1 1-1/n
n 2n 2n
<( 0 qulhdna) (o)
B(29,6r/5) B(29,67/5)
We see that

Voofumhde < | Jug|” (ddy)”.

B(29,6r/5) B(29,6r/5)
Now we can apply (3.3) for D' := D and v; = --- = v, = 9 to obtain
(because of ||9]|ec = 1)
(3.5) | " hda <\ Jug|"(ddoy)"
B(=0,6r/5) D
< n! | [v[(dd° max{Fp (-, w), —L})".
D

We want to let L tend to infinity. This is allowed, since the well-known
convergence theorem of Bedford—Taylor gives that the currents

Tr, = (dd° max{¥%p(-,w),—L})"

tend weakly to (27)" times the Dirac measure with center w as L — oo. But,
since all of them have the same total mass (namely (27)"), we may apply
Satz 45.7 of [1]|. This gives us, in conjunction with the Beppo-Levi theorem,
on letting L — oo in (3.5),

| e, w)["hd®e < nl| [p](ddGp(,w))" = 2m) 0!l (w),
B(29,67/5) D
and because of (3.4),

[ 9n(w)l " < (@ryalp@)) " (- § aen e

B(29,6r/5) B(29,6r/5)

From this we get (3.1).
Next we prove (3.2). This time we use (3.3) with D’ := B(z°,6r/5) and

1+ |z — 202 /4r?

u(z) = log - ,

and v1(2) = -+ = vp_1(2) = |2 — 2012 — 42, v, 1(2) = max{¥p(z,w), —L}
for a number L > 0. Now (3.3) applies and gives, because of |u| > log(8/5)
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on B(2°,r),
8\" 0
log 5 :U’Un,L (B(Z ’ T))

< | @ rdp, ()= | lu(z)"ddv A A ddooy,
B(20,r) B(20,r)

< | @Mddov A Addoo, < nl(@)m | o ] (ddCu)”
B(29,6r/5) B(29,6r/5)

<ep %2 S min{|¥%p(z,w)|, L} d*"z
B(29,6r/5)
with some constant ¢,. We let L tend to infinity. By Beppo-Levi’s theorem
we obtain
K (- w) (B(zov ’I")) Cn S

< g
r2n—2 - rQn(log(8/5))n ’gD(xﬂU)‘d x

B(9.67/5)
From this and (3.1) the lemma follows. m

We apply the above lemmas 2.4 and 3.1 to the case V' = ¥p(-,w) for
w € D and find

LEMMA 3.2. Assume that D is hyperconver and v € PSH(D) is contin-
uous and satisfies ||¢]lco = 1 and condition (1) from Main Theorem 1.1. Let
C* be the constant from Lemma 3.1. Then, for any point 2° € D and any
0<e<dp(z0)/4,

1, 2000 & oy 0@
(“p (-, w))m(z0) = —%log . CnC I o
provided that
C’** €2n
[ (w)[1/m

with the constants C* := 1/16e(n + 1)C 1y, Cy, := (9/16¢, +4™), and Iy :=
\p R/ (=1 (z) d**x. The constant ¢, was defined after formula (2.5).

Proof. By Lemma 2.4 we have
(“p (- w))m(z°) > “om lo

9 Hagp (- w) (B(ZO, 5)) )
16¢, g2n—2 ’
provided that
(26)271—2
= 16e(n 4 1) g, (.w) (B(20,2¢))
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Now, estimate (3.2) of Lemma 3.1 with r = ¢ gives us

9 gy () (B(2°,€)) [ (w) [/
0 9p (-, *
A (- w), 20 ell + e = < GGy S o
In particular,
(25)21172 1 g2n

> .
16e(n + 1) e, () (B(29,2¢)) — 16e(n + 1)Cilo [¢h(w)[M/™
This proves the lemma. =

We want to apply the above results to the localization of the sublevel
sets of the regularizations of ¥p (-, w).
A first step in this direction is

LEMMA 3.3. Let D CC C™ be hyperconver and ¢ as in Lemma 3.2.
There exists a constant ry > 0, depending only on n, such that for z° € D
and 0 < r < min{r,, 6p (2%},

42n Cy
@ >__ = nloge 22
xe]SSI(lB),r) p(zw) 2 Cr*ép(20)2n o(w) " log rn

with the constants Co from (2.1) and C}* from Lemma 3.2.

Proof. As in (2.1), for any [ > 0 we have

1. C
(I w)(") < —M(r) + Llog 2,
where M (r) := |[supgep(:0,r) 9p(7, w)|. The number Cy in (2.1) depends only

on the dimension n. We assume r < {/C5. Then the number

- 2log(Co/r™)
= M)
is positive. This gives
(3.6 (I (") < —5 M(r).

Further we put

1/2n
o= (g o)

where C}* is as in Lemma 3.2. Suppose that ¢ < §p(2°)/4. Then Lemma 3.2
applies with m = [ and we obtain

1 2nCp  ~ |9 (w) /™ Cl
0 * n
(3'7) (gD('aw))l(Z ) > _2l log C, - CnCnIO ET = —T
with onC
O/ = log =L + C*CLCE .
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Combining this with (3.6) we find

1 C M (r)
- M >_n__of Y7
2 ()= I " 2log(Cq/r™)’
Hence we would have, for 0 < r < ry,
o C!

1< < <1,
= log(Ca/r™) ~ log(C2/r7})

provided we choose 7, suitably; the latter is possible uniformly in 2°, w. This
contradiction implies
l

log(CQ/rn) n o__ n __ n n
T M) [ (w) [V = 2C [ (w) V™ = 262" > (6p(2°)/4)*".

This means that

M(r) < (

which proves the lemma. =

[ (w) ",

4 \*"log(Cy/r™)
dp(2°) Cr

The same method allows a growth estimate in the spirit of the Hopf
lemma:

LEMMA 3.4. Suppose that ) : D — [—
exhaustion function for D with property (1
ezists a constant v > 0 such that

Y < —moB.
Proof. Let w € D. We choose

3n 1/2n .
cm ()

where C}* is the constant from Lemma 3.2. For any point z € D such that
dp(z) > 4e, Lemma 3.2 applies with m = 3n. Hence

1/n
ol w)n() 2~ log a2 - ¢ 1)

_ 1, 20 GGy

T T on B C, 3n

Since m > 2n, the function (¢9p (-, w)), has a pole at w, which implies

,0) is a smooth plurisubharmonic

1
) of Main Theorem 1.1. Then there

€2n

Op(w) §4€:4< s ) [ (w)] /2

From this the claim follows with ~; := 427" (CH*/3nCl)™. w
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LEMMA 3.5. If D and v are as in the preceding lemma, then

(a) G () > log(2Rp/dp(w)) ‘
T T inf gy w)/2) 1Y)

and in particular

(b) Gp(z,w) > 72 5[)(15}(;)”2“

for any z € D such that |z — w| > 6p(w) /2, where v := 22T Rp /1.

Proof. We proceed as in the proof of Lemma 2.4 of [12|. Let v be the
following function:

|z — wl

max{Czp(x), log
|z — wl
Rp

The lemma will be proved if v is well-defined. For this the constant C' > 0
must be chosen in such a way that

if |z —w| > dp(w)/2,
v(z) = }

log if |z —w| < dp(w)/2.

(%) Cy(z) < log 55;5? on 0B(w, dp(w)/2).

This estimate is satisfied, if we choose
log(2Rp /dp(w))
inf Bw,sp (w)/2) V]

C>

This proves (a).

For the proof of (b) we observe that from Lemma 3.4 we know ¢(x) <
—116p(x)2"* for all z € D. Since p(z) > dp(w)/2 on dB(w, dp(w)/2), this
gives

1p(z)| > 272" 15 (w)? on OB(w,dp(w)/2).

Hence we choose

C _ 22n2+1RD e 22n2+1RD

- mép(w) L ' mno
In both cases (a) and (b), on D\ B(w,dp(w)/2) we get
¥(2)

Yp(z,w) > v(z) > CP(2) = 72 W

4. On the boundary behavior of the pluricomplex Green func-
tion. First we make two general observations.
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LEMMA 4.1. Let D be a bounded domain in C". For any m > 1 and
w,z € D,

|Z o ’LU| 2m+-2
Kgng(.’w)(Z,Z) 2 < ) KD(Z,Z)

and hence

|2 — vl

(“p(-,w))m(z) > <1 + ;) log Wb + %log Kp(z,2).

Proof. Given z € D we choose j such that |z; — w;| > |z —w|/n. For
m > 1 let [m] denote the integer part of m. If now f € H?(D) is arbitrary
with || f|| = 1, then the function

= () s

|z— w|)

belongs to Hopa,,(..w) (D), since (note that ¥p(x,w) > log

|z — wl

13 (a) Pe2mo ) < \fj(a:)!2<

This implies (if we choose f = Kp(-,2)/v/Kp(z, 2)

Koy ay(5:2) > M > 1)1
7

|Z - U)| 2m—+2
> W Kp(z,2).

Taking log on both sides and dividing by 2m we obtain the lemma. =

Next we estimate the modulus of continuity of the Demailly regulariza-
tion (9p (-, w))m as follows:

LEMMA 4.2. Suppose that Dy CC C" is any bounded domain. Then there
is a constant C}y > 0 such that, for anym > 0 and 2°,w € Dy with 6p, (2°) >
45D1 (w),

onRp, \" |z, — 20
INED) Spy (20)nt1

(FD, (-, 0))m(2) = (@, (-, w))m ()] < Cf — <

whenever z, € B(2°,6p, (2")/8).
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Proof. Fix 1 € {1,...,n}. Then we have

a ]. ‘%szng(',w)(Z7Z>|

95, o w)m(2)| = 50 Komt, (-w)(%:2)

92 1/2
1 |5e0m Komdp, () (2:2)]

T 2m VEKomgy, ()(252)
The second inequality is due to the logarithmic plurisubharmonicity of
KngDl(.vw)(z, z). From Bergman theory we know that

0 of \|?
— Kng Sw (Z,Z) = sup a2
0207 21(0) JER@nG, (), [ lamenyy, (=11 07
from which it follows that
of
9 1 SUPsEH@mSD, (). Wfllamenp, (=1 |55 (Z)]
G, w)n(2)| < 5 D ey
1 KngDl (Z, w)
Now, any function f € H(2m%p,(-,w)) belongs to H?(D;). Hence
of 1 fll2(Dy) £ ll2mep, ()

2 (z)‘ = O ()t = T Gy

for any z € D;. Furthermore,

. . Iz — wl 2m+2K ) 1 Iz — w|) 22
2m¥p, (zw)\%) 2) = n Rp, P ~ vol(D1) \ nRp, '

This will give

of
9 1 SUPfer@mp, (). ey, =1 |55 ()]
5 (@D, (- w)m(2)]| < 5—
0z 2m \/sz%l (-;w) (2,2)
vol(D1) ( nRp, \™™ —(n+1)
- 2m (\z—w\ o0, (%)

vol(D1) (2nRp, m+15D (Z)—(n—i-l)
2m dp, (29) !

on B(2°,6p,(2°)/8). From this the assertion follows by the mean value the-
orem. m

In the next step we prove a quantitative result on upper semicontinuity
of the Green function.

LEMMA 4.3. Assume that D and ¢ are as in Theorem 1.1 and 72 is
the constant from Lemma 3.5. Then there are constants &g, C1,Cy > 0 such
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that, for any 2°,w € D with dp(w) < min{dy,dp(z)/4} and ¥p(z°,w) <
—v20p(w), we have
()|

0 ~
gD(Z*,ZU) < g4D(z vw) + CléD(w) C 5D( O)n+3

whenever |z, — 29| < exp(—1/[(w)|/?").
Proof. Let m > n. We define the function

() {%D(:E,w) if 9p(x,w) > —y2dip(w),
v(x) =
max{¥p(x,w),v,(x)} if ¥p(x,w) < —y2dp(w).
Let C5 be the constant from the proof of Lemma 3.3. We define the function
Uy by
~ 1 C
(@) = (D, w))m(2) - — 10g773 — 726p(w).

w
If the radius r,, is less than or equal to the boundary distance of the set
S:={x ed| 9(x,w) = —ydp(w)}, the function v is well-defined and
negative. We have
v<(1-=n/m)¥%p(-,w).

Next we want to estimate the boundary distance of S from below, using the
growth condition on .

Let x € S with dp(z) < 1. If [x—w| < dp(w)/2, we get dp(x) > dp(w)/2,
hence

log < log

1 2
dp(z) dp(w)’
If |z —w| > dp(w)/2, we find, because of Lemma 3.5,

()

(w2 < o) < Crexp( ~Colog 5 )>>
o:

For w € D with dp(w) < dp := min{1/2, 1/(@n*+2) Cl/ (2n? +2)} this leads
to

—Y2dp(w) = ¥p(z, w) > 72

hence

log

! < <1lo 701 )1/0<
op(z) — \ O, g5D(w)2"2+2 ’

1 61 1/a
) > —| =log ———— .
plz) 2 eXp( <02 o 5D(w)2"2+2> )

This estimate holds trivially for z € S with dp(z) > 1.

and hence



Green function of hyperconver domains 173

Hence we may choose

‘ 1 61 1/a
w = mind 5p(w)/2,exp( — (5 log — '
, mm{ p(w)/ eXP( (02 %8 5D(w>2n2+2) >}

We want to estimate the term log(Cs /7 ), which appeared in the definition
of Uy, when dp(w) < do.

From [ (w)| < Cy exp(—Calog(1/6p(w))®) we obtain

1 <<1 log Gy >1/a
—— < =log—— .
op(w) = \Cy ~ lh(w)]
Assume now that r,, = dp(w)/2. Then

log

C
log R log C5 4+ nlog
rn

w 5D(w)
1
<
<logCs + 2nlog e
1 62 1/a
<logCy + Qn(/\ log > .
Cy  [P(w)]
If
w — - Tl
g eXp( < y o 5D(w)2”2+2> )
we get

C 1
log—2 =logCy + nlog —
i T

w w

1 62 1/a
=108t n( 5 ow e

9 1/a 1 1/a
<toxCatn( ) (1005

2712 +92 2/a? 62 1/a?
<logCs + n<A> <10g ) .
? Cy |th(w)]

Let 2°,w € D be as in the hypothesis of the lemma. If z, € D is close enough
to 29, we can estimate, for any m > 0,

(@1)  Fplenw) < @plw)n(z) + o (by (21)
= @) (=)

(@ 0))m(z) — (@ () () + =

Clm'
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But 9p(2°, w) < —y28p(w), hence

(12) (@l w)nl=) < Bul) + - log 2 + ()

1 Cy
<w 0)+E10g7+725D( w)

C
—n>gp z2°,w) + —log—f+’yg5D(w)
m moor

w

log C
< ( —>54D z0,w) + Oi,b 2 4+ y90p (w)
o <2n +2>2/a <log 61 >1/a2
m\ ¥ (w)]
and

n mH g, — 20
|(gD(',w))m(z*) - (gD("w))m(ZO)’ < C(/) % (;D(}ijoj)> 5|D(20)n+|1

if |z — 2% < dp(2Y)/8. We choose
B 1 1
log(2nRp/06p(2°)) [v(w)[H/2

Then for z, € D such that |z, — 20| < exp(—1/|¢p(w)|'/?*) we estimate
m+1 .0 _ -0
C(')l 2nRp |26 — 27| SC(,) 1 exp 1 |z« — 27
m \dp(z0) Sp (20t [ (w)[V/2n ) 5p(20)ntT
1 1
m 5D(20)n+1

For this we note that, after shrinking dy if necessary, for dp(w) < dp(2°)/4
we have

<Ch—

m%|w;m0g@mmg@wm.
We combine (4.1) and (4.2) and the estimate
Rp < n og 2ip .
|20 —w| = m T dp(2Y)
This in conjunction with our choice of m gives, for 2°,w € D as in the

hypothesis of the lemma and dp(w) < dp,

log(2nRp /o 2;0 ,
g(dD(j)gan( )) |w(w)|1/2n(log(1/|¢(w)|))1/a

_n Gp(2°,w) < n log
m m

Gp(ze,w) < Gp(2°, w)+C3

+725D(w).

From this we obtain the lemma. =
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Proof of Theorem 1.1. Let g > 0 be as in the preceding lemma. Let
K C D be compact; without loss of generality, let dp(K) < 1. Assume that
w € D is such that dp(w) < min{dg,0p(K)/4} and A :=sup,cx |9p (2, w)|.
Then there exists a 20 € K such that 9p(z’,w) = —A. We put r :=
exp(—1/[¢(w)[Y/?"). Assume that A > v20p(w). Then, combining Lemmas
3.3 and 4.3, we obtain

O 1/3n
A= 9o w) 2 - 53)2 ) 1og €2 — Guaptu) - &, LT
1/3n
1/3n _
> (’;ﬁgw)>zn+3 Chop (w)

with some universal constant C*. The case A < ~vdp(w) is trivial. This
implies the theorem. m

5. Estimation of the Bergman distance. We are now going to prove
Theorem 1.4. The proof is based on the methods developed in [14].
Using Theorem 1.1 we localize the sublevel sets of the Green function.

LEMMA 5.1. Under the hypotheses of Theorem 1.4, there are constants
0 < ChY<1<CY,C% such that for any w € D sufficiently close to 0D,

{z€ D |9 (z,w) < -1}

1/a?
c{sen|cen(-ci(le =) ) <ot e L

Proof. Suppose z € D and 9p(z,w) < —1.

CASE 1: 6p(w)/4 < 0p(z) < 46p(w). Then, because

cy exp<—0§ <log M) Ua) < bp(w)

and dp(w) < _1/2n lp(w)|V/2* < 7{1/2n2|¢(w)|1/3”(2"+1) (for w close
to 0D), as follows from our hypothesis on the growth of |[¢)| and from
Lemma 3.4, respectively, we obtain

1 1/ L Jom
Chewp(~CYlom ) ) < 0(a) < 07

CASE 2: 6p(z) > 46p(w). First, Theorem 1.1 with K = {z} gives
5p(z) < CY 4D ) (w) /37241 For the lower bound on dp(z) we note
that for z with dp(z) < 1 Lemma 3.5 implies, in conjunction with condition
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(2) of Main Theorem 1.1,

[¥(2)] 5 exp(=Chllog dp(2)|*)
1< |9p(2,w)] < 72 W < 701 5D(w)2”2+1 :

This implies

R 1/
19D

We apply the growth condition on 1, this time at the point w, to find

1 <<110 51 >1/a
Spw) = \G, Elpw)) -

Combining this with the preceding estimate we obtain

dp(z) > C} eXp<—C§ <log W(lw)\) 1/a2>

with a suitable constant C% < 1. If 6p(z) > 1, this estimate holds trivially.

log

CASE 3: 0p(2) < 0p(w)/4. Again we have |z —w| > dp(w)/2, hence the
lower bound on dp(z) follows as in Case 2. The upper bound on dp(z) is
obtained as in Case 1. =

The above lemma enables us to estimate the Bergman distance between
two points that have different boundary distances.

LEMMA 5.2. In the situation of Theorem 1.4 there exists a constant co>0
such that for A, B € D one has d3(A, B) > ¢y provided that

1 1/a2 - om
Cé exp(— C:/a <10g WJ(A)|> ) > Cﬂ"‘ﬂ(B)‘l/g (2 H),

where C,Ch, C4 are as in Lemma 5.1.

Proof. Under the hypothesis of the lemma, the sublevel sets {¥4p(-, A)
< —1} and {¥9p(-, B) < —1} are disjoint. Hence by Theorem 4.4 of [4],

4 n
d3(A,B) > ¢p = T_ arctan(l + e),
2 Mn

o0 dx
n xe®’

with 7, = §

Proof of Theorem 1.4. Let 0 < 19 < e ¢ be so small that sup |¢| > 27
and

YN 1
() 3 exp<—C’§ <10g x) > < 3 Cl /A forall 0 < z < 7.



Green function of hyperconver domains 177

We first consider a smooth curve I" : [0, L] — D such that [(I'(0))| = 7o
and [(I'(L))| < 0. Furthermore, we suppose that

!
(H_) |1[)(F(L))|1/3n(2n+1) < min{7_01/3n(2n+1)’ % eC§|10g7'0\1/a2 }
1
We put

o(t) = Cl exp <—og <10g W) v >

Ci’w(F(L))‘l/i%n(Qn—&-l) < (p(O) < C{W(F(O))flmn(%—i_l).

The left inequality comes from (11) and the right from (f). Hence we find
t1 € (0, L) such that

Then

CHlw (I (£1))]*7 D = (0).
We choose a sequence 0 = tg < t1 < --- < t, < L of maximal length such
that

(5.1) p(ts) = ChIB(T (1) /32D 0 <5 <.

Then we obtain
v—1

(5.2) Bergman length(I") > Z Bergman length(I'|[ts, ts+1]) > cov
s=0

with ¢o as in Lemma 5.2.

Next we estimate v from below. By (5.1) we have
/

‘P(ts>.

1 1.
B T (c’lg <>> ’

1
log TGl =3n(2n+1)log

Also,

which gives
2

1 C; @ C!
5.3 lo 2 ) =3n(2n+1)lo L
(5.3) (C, %8 i) ( ) 8 o)
We write
C1
Qs C” log o)

and deduce from (5.3) that
(—Cy+ as+1)°‘2 = 3n(2n + 1)Clas

with C} := &7 log % Note that C > 0. In this way we obtain the recursive
3 2

formula
Qor1 = C/ /a + Cl
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with Cf := (3n(2n + 1)0{)))1/0‘2. Hence the sequence (as)s increases, and

1/a?

S I

as41 < Cha

_ 2
where the constant Cf;, := 1+ Cf + Cja, 1/a depends only on 7.
By induction on | we get

s 14a= 244200 -2

a; < Cg ag
Note that
1 ! 1 C'
ag C’é 0og SD(O) - Cé og 017—(}/3n(2n+1) et

after shrinking 79 again. Also, as > 1 for all s > 0.
We choose | = v and take logarithms on both sides:

loga, < (14+a 24+ oz_Q(”_l)) log Cf + a~?" log ag

a1

- —= 7 log Cf + a~*" log ag < Cha™?”
with C7 := % log C§ + log ag. Finally, we get
log CY,
5.4 > Cflogl - —7
( ) v — 8 Og Og aV log(l/a)’
. o 1

We now estimate a, from below as follows: Assume that
p(t,) > Cle(I (L)),
Then we would obtain
CLlp(I(L))|[Y3 D < o(t,) < CHB(I(t,,))[ /3t

the right inequality being implied by (). In particular, we could choose a
number ¢,41 € (t,, L) such that

O (by42)) [P = o(t,),

which is (5.1) for s = v, a contradiction to the maximality of v.
Thus we have ¢(t,) < C}o(1'(L))|/3*"*+D) and consequently
ay = S log 1 > 1 log ! .
Cz 7 o(ty) ~ 3n2n+1)C3 7 [$(I(L))]
Combining this with (5.4) and (5.2) we obtain
Bergman length(I") > logloglog(1/|4(I'(L))|) — Cy.

The right-hand side is well-defined, since [(I'(L))| < 19 < e €.




Green function of hyperconver domains 179

Finally, we fix P € D such that [¢)(P)| > 79, and @ € D close enough to
the boundary of D such that

1/a?
(@A) < ¢ exp<—0§ (log 1) )
T0

Then there exists a geodesic I in the Bergman metric with length d% (P, Q).
It contains a piece I : [0,L] — D such that I'(L) = @, to which the
preceding considerations apply. Its length satisfies

dp (P, Q) = logloglog(1/[(I'(L))|) — Cy = logloglog(1/[4(Q)[) — Co.

This gives the desired result. m

6. Supplementary remarks and proof of Theorem 1.3. We want
to discuss condition (1) of Main Theorem 1.1. A negative plurisubharmonic
function ¢ with property (2) of that theorem whose reciprocal is integrable
induces a function t; that has both properties (1) and (2). We will prove
this as follows.

LEMMA 6.1. Assume that ¢ : D — [—1,0) is plurisubharmonic and con-
tinuous. Then the following statements are equivalent:

(a) There exists an exponent n > 0 such that [1p|~" is integrable over D.
(b) There exists an exponent N and a constant 7, such that 1p < —7*55.
Proof. The implication (b)=(a) is clear.

For the proof of the reverse implication we use Lemma 6.2 below. If

n > 0 is sufficiently small, then for a suitable choice of L > 0 we can apply
Lemma 3.4 to the function

bi(2) = —(=()e M),
since
(dd®4pr)™ = (nL/2)" [ipr|" (dd°|=|*)".
Now 1, and hence also 1, satisfies an estimate of the form ¢ < —mﬁg. "

We complete the proof of the above lemma by proving

LEMMA 6.2. Let ¢ be a continuous negative plurisubharmonic function
on a domain D1 CC C". Then, given a number n € (0,1), one can choose
L > 0 in such a way that the function 11(2) == —(—(z)e L) is also
plurisubharmonic, and satisfies

(ddy1)" = (nL/2)"[¢r|" (dd"|[*)".

Proof. Because the desired estimate is meant in the sense of distributions,
it is enough to show it over an arbitrary subdomain D’ CC D.
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First we assume that 1 is of class C°*°. We repeat the computation from
[11] to find

Ly (23 X) = (= p(z)e M1 HP (.,%(z; X) + Lip(2)] [ X

- 2L Re(0(2), X}, X) + L (00(2) X = 2212, X))

But
172L2

1_77!¢(Z)||<Z7X>|2-

—2LnRe(@0(2). X) 2, X) + < |(00(2). X) =

This gives
Ly, (2 X) = n(—p(z)e LA =t L=

nL
< (e + LI (1XP - 25 0k ) ).
Given 7 we let L be so small that nL|z|?/(1 — ) < 1/2 throughout D. Then
oy (35 X) 2 n(-(a)e I (24065 X) + £ (2] 1XP)

nL
> 2 i (2)] X P
Taking the determinants we obtain
(dd®4p1)™ = (nL/2)" [ipr|" (dd°|=|*)".

If 1) is not necessarily smooth, we approximate v from above on D’ by a
sequence (v;); which decreases to ¢ and apply the first part of the proof.
The numbers 7, L do not depend on the v;’s or on D’. Then we get

(dd° — (—v; e M5y > (nLj2)" (—oy e M (dde | ).

Now Bedford—Taylor’s approximation theorem for the Monge—-Ampére oper-
ator gives the claim. =

This enables us to replace (roughly speaking) condition (1) of Main The-
orem 1.1 by the condition that 1/|¢| is integrable over D.

COROLLARY. Assume that the continuous plurisubharmonic function
is negative on D and 1/|y| is integrable over D. Then 1y = — (=)' =1/ is
also negative and plurisubharmonic, and

(ddapr)™ = sl (ddC|=[*)".

If, furthermore, 1 is smooth and satisfies also condition (2) of Main Theo-
rem 1.1, then 1y satisfies both conditions (1) and (2) of that theorem.



Green function of hyperconver domains 181

Proof of Theorem 1.8. For a suitable choice of the constant L > 0 we
have seen that

Y1(2) = —(=(z)e I
satisfies condition (1) of Theorem 1.1 and also condition (3) of Theorem 1.3,
but with M replaced by M' := (1 — 1/n)M and N by N’ := (1 —1/n)N.
Let 2 € K. From Lemma 3.3 we have, for any 0 < 7 < min{r,,dp(z%)},

Ch Co

6.1 sup 9p(z,w) > ————— |11 (w 1/"log—.

60 s ) 2~ ] os

First we use part (a) of Lemma 3.5, applied to 1;: By condition (3) we find
log(2Rp/ép(w))

inf g6, (w)/2) V1]

< C'13W1(w)\_(M/+1)/N/

and hence

P1(2)

Yp(z,w) > Ci3 |1/}1(w)|(M/+1)/N"

provided that |z —w| > dp(w)/2. We want to modify the proof of Lemma 4.3
in order to estimate the left-hand side from above for those 2° € D for which
9p(2°,w) < =Cslihr (w)|”.

For this purpose we define S := {z € D | 9p(z,w) < —C13)¢1 (w)|’} and

o(z) :{%D(ac,w) forz € D\ S,

max{¥p(z,w),vy(z)} forxe S,
where 7, is the distance of 95 to the boundary of D, and v,, is defined by

D) == (@ w))n(x) — - log 2 — Ciglun (w)l?,

where C is the constant from (2.1). Then v is plurisubharmonic, and v <
(1 — n/m)¥p(-,w). We want to estimate log(1/r,) from above. For this
purpose let z € 9S with dp(x) < 1. If |x — w| < dp(w)/2 we have dp(x) >
dp(w)/2, and hence (since dp(w) < 1/2)

1 9 1 Cy N
5o(@) = 8 Sp(w) 6D<w>§2<|¢<w>|> |

[¢1(2)]

This implies

1 _$(5+M)
1 < N(n—1) N/
og (5[)(56) ~ CMWJl(w)’
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Trivially, this holds if x € S and dp(x) > 1. In particular, if ip(w) < d§, < 1,
then o
log 77? < Cus [ty (w)| 727,
w

because

n M +1 1 5
"N -1 <ﬁ+ N > TRt
Let K C D be a compact set and z° € K and w € D\ K with dp(w) <
min{d,, dp(K)/4}. For z. € B(z",0p(2")/2) we can estimate ¥p (2., w) in
terms of ¥p (2, w) and |¢(w)|. Let us assume that ¥p (2%, w) < —Cy3|v(w)|?.
As in the proof of Lemma 4.3, we have

G (20, w) < (Ip (-, w))m(2) +

Cim

= (Y (-, w))m(2") + + (Do (-, w))m(z:) = (Ip (-, w))m(2°)

Cim
1
Cim

+(@p (s w0)m(z) — (G (- w))m(2")

1 C
< (2% + — log Tnz + Cuslyr (w)]? +

w

1. C 1
< <1 - n)%)(zo,w) + —log —* + Cualtr (w)|” + ——
m m r Cim

+(@p (-, w)m(2:) = (I (-, w))m(2")

n R C _1/m
< Gp (2 w) + —log 4+ —2 |4y (w)| T/ 4 Cuglr (w)]?
m o |ze—w|  m

+ g @l wDn () — @l w)n(),
We note that
RD 8RD
log————— <1 <1 .
©8 |z —w| — °8 |20 —w| — |z — 29 — °8 56p(29)

Next choose )

" Yog(2nRp /6p(20))
From Lemma 4.2 we get, as in the proof of Lemma 4.3,
(“p (-, w))m(24) = (DD (- w))im(2°)]
m+1 .0
<c 1/ 2nRp |ze — 27|
m \ 6p(z0) Sp(20)n+1

[ o1 ()7

0
n— Zx T Z —1/n
< 016|¢1(w)|1/ v (S|D(Z0)n+|2 exp(|1/)1(w)\ 1/ +'Y).
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For z, € B(2°,0p(2°)/8) (after possibly shrinking d,) this yields

(1 + 7 exp(|ehr (w)[ /1))
Sp(20)n+2

gD(Z*a w) < gD(Zov ’LU) + C17 |¢1 (w)|1/n—’y

+ Oz [h1 (w) |

with 41 = min{3,1/n — v}. Now we choose the radius r from (6.1) as r =
exp(— |11 (w)| /™ +7). Inserting this into (6.1) we find

|1 (w) [V

0

+ Clalthr (w)| ™

C

Cy _ Culth(w)]

> sup Yp(r,w)>— on ’¢1<w)’1/n logr—n > 5p(z0)2n

z€B(29,r) 5D(ZO)
if op(w) <6, < 1.
This proves (because of v < 1/2n)
Cao[t1 (w)[?
Gp (20, w)| < L
(0. w)| < )
whenever 2 € K and 9p(2°,w) < —Ci3|¢1(w)|?. (Again, we tacitly sup-
posed that 6p(K) <1, which is allowed.) For those 2° for which ¥p (2%, w)
> —C3)11(w)|? there is nothing to be done.
The proof of Theorem 1.3 is complete. »

+ Ol (w) !

7. The case n = 1. In the one-dimensional case things are much eas-
ier, since the pluricomplex Green function equals the classical one and, in
particular, it is symmetric.

THEOREM 7.1. Let D C C be a bounded hyperconver domain and ¢p be
as in the introduction. Then

Ip(z,w) > —;10g<1 +4 |@D(w)’>.

|z —wl?

Proof. Let z,w € D be different points. Then the function

1
8() 1= ppla) — 1 o —wf
is subharmonic on D and negative. Also (since pp < 0)

2 — wl? <1

—d¢(z)
As the left-hand side is logarithmically subharmonic, the function
|z — w]?

1
i) =log |z —w| — 5 log(—4¢(z))

1
)
9 %%
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is a candidate for ¢p (-, w), and for z = z we obtain

1, —Ae(z) _ 1 lop(2)|
> —log PV Zog( 144 12PN
oz w) 2 9 8 |z — wl|? 2 og< * |z — w|?

By symmetry,

(1]
2]

3l
(4]
]
(6]
(7]
18]

9]
(10]
[11]

[12]

[13]
[14]
[15]
[16]

[17]

= > = +4—7= .
Yp(z,w) =9p(w, 2) 5 log<1 4 Iz — wl? L]
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