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Meromorphic solutions of a kind of functional equations of
Diophantine type

by Ping Li and Xianyang Zhang (Hefei)

Abstract. We apply Nevanlinna’s value distribution theory to show that some func-
tional equations of Diophantine type have no admissible meromorphic solutions. This
result confirms a recent conjecture of Li and Yang.

1. Introduction and result. In the 1920s, R. Nevanlinna developed
the so-called value distribution theory which enables one to give an ele-
mentary proof of Picard’s theorem and Borel’s theorem. Nevanlinna’s the-
ory mainly consists of the so-called first and second fundamental theorems,
expressed in terms of three quantities T (r, f), m(r, f) and N(r, f) asso-
ciated with a given meromorphic function f ; they are called the charac-
teristic function, the proximate function and the counting function of f,
respectively. A meromorphic function a(z) is called a small function of f
if T (r, a) = o(T (r, f)), as r → ∞, outside possibly an exceptional set of r
values of finite linear measure. The study of the value distribution theory
has been extended to algebroid functions, meromorphic mappings, complex
geometry and differential geometry. Also the value distribution theory is
of great importance in the research of nonlinear differential equations. We
know that the two fundamental theorems remain valid when the values ai

are replaced by ai(z), which are small functions of f. By applying Nevan-
linna’s second fundamental theorem, it is easy to prove that Fermat’s type
functional equation

a1f
n + a2g

n = 1

has no pair (f, g) of admissible meromorphic solutions when n ≥ 4, where a1

and a2 are two given meromorphic functions which do not vanish identically.
By “admissible” we mean that all coefficients are small functions of the
solutions. If n = 3, then the above equation may have some elliptic functions

2000 Mathematics Subject Classification: 30D35, 30D05.
Key words and phrases: meromorphic function, functional equation, Nevanlinna

theory.

[265] c© Instytut Matematyczny PAN, 2008



266 P. Li and X. Y. Zhang

as its solutions. If n = 2, then the above equation may have entire solutions,
for example, sin2 z + cos2 z = 1.

Recently, P. Li and C.-C. Yang considered the following Diophantine
type equation:

(1) fn + a1f
m + a2 = a3g

k,

and proved the following result.

Theorem A ([4], [5]). Suppose that a1, a2, a3 are meromorphic func-
tions not vanishing identically. If the positive integer triple (n,m, k) satisfies
k > 1, m < n, and n > k(m+ 2)/(k−1) or n < k(m−2), then equation (1)
has no pair of admissible meromorphic solutions. In addition, the equation
has no pair (f, g) of admissible meromorphic solutions when n = 5, m = 2,
k = 4.

By Theorems 2 and 3 in [6], equation (1) may have admissible solutions
(f, g) when n ≤ 4 and k ≤ 4. Moreover, we can show easily that (1) has
no pair of admissible solutions when n = 5, m = 2 or 3, and k ≥ 3, in
the case where a1, a2, a3 are constants. It is then conjectured in [4] that the
conclusion of Theorem A remains true when k ≥ 3, n = 5, m = 2 or 3. The
purpose of the present paper is to confirm this conjecture by proving the
following result.

Theorem 1. Suppose that a1, a2, a3 are meromorphic functions not
vanishing identically , and k,m (k ≥ 3, m ≤ 4) two positive integers. Then
the functional equation

(2) f5 + a1f
m + a2 = a3g

k

has no pair (f, g) of admissible meromorphic solutions.

Remark. Equation (2) may have meromorphic solutions when k = 2.
For example, let f be a solution of the Weierstrass elliptic equation (f ′)2 =
f3 +6f2 +12f+18. One can show easily that f5−15f3 +162 = ((f−3)f ′)2.

From Theorem A we see that equation (1) has no pair of admissible
meromorphic solutions when n = 4, k = 5, m = 1 or 3. However, Theo-
rem A cannot tell us whether (1) has admissible meromorphic solutions when
(n,m, k) = (4, 2, 5). By the method similar to that in the proof of Theorem 1,
we can prove that (1) has no pair of admissible meromorphic solutions when
(n,m, k) is any of the following triples: (7, 2, 2), (7, 5, 2), (9, 3, 2), (9, 6, 2),
(10, 3, 2), (10, 7, 2), (6, 2, 3), (6, 4, 3), (8, 4, 3), (9, 4, 3), (9, 5, 3) and (4, 2, 5).
Moreover, we can prove that (1) has no pair of admissible meromorphic
solutions when n = 2(m+ 2) and k = 2 for m ≥ 5.

By Nevanlinna’s second fundamental theorem, one can show easily that
equation (1) has no admissible meromorphic solutions when a1, a2 are con-
stants and (n,m, k) is one of the following triples: (9, 4, 2), (9, 5, 2), (10, 4, 2),
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(10, 6, 2), (7, 3, 2), (7, 4, 2), (8, 3, 2) and (8, 5, 2). However, we do not know
whether (1) has admissible meromorphic solutions when (n,m, k) is one of
these triples and a1, a2 are not constants.

2. Some lemmas. We need the following lemmas to prove the theorem.
The first one is a slight improvement of a result in [7]. The second one is
an improvement of Clunie’s lemma. The third one is a generalization of the
Malmquist–Yosida theorem.

Lemma 1. Let f be a transcendental meromorphic function in the com-
plex plane. Suppose that Pn(f) is a polynomial in f of degree n, and Q1(f),
Q2(f) are differential polynomials in f not identically zero. Let

F := Pn(f)Q1(f) +Q2(f).

Then

(n− γQ2)T (r, f) ≤ N(r, 1/F ) +N0(r, 1/Pn(f))

+ (ΓQ2 − γQ2 + 1)N(r, f) + S(r, f),

where ΓQ2 and γQ2 denotes the weight and degree of Q2 respectively , and
N0(r, 1/Pn(f)) denotes the reduced counting function of zeros of Pn(f) that
are not zeros of F .

Lemma 2 ([1], [2]). Let Pn(f) be a polynomial in f of degree n, and
Q1(f) and Q2(f) be differential polynomials in f with coefficients being small
proximate functions of f , with degQ2(f) ≤ n. If Pn(f)Q1(f) = Q2(f), then
m(r,Q1(f)) = S(r, f).

Remark. The conclusion of Lemma 2 remains true when Pn(f) is a
polynomial in f of degree n with the leading coefficient being a small func-
tion of f and the other coefficients being small proximate functions of f .

Lemma 3 ([3, p. 258]). Suppose that D(f) is a differential polynomial
in f , and P (f), Q(f) are polynomials in f with all coefficients being small
functions of f. If D(f) = Q(f)/P (f), then Q(f)/P (f) reduces to a polyno-
mial in f .

Lemma 4. Suppose that f is a nonconstant meromorphic function, and
P (f), Q(f) are polynomials in f with coefficients being small functions of f.
Let a be a small function of f. If

(3)
P (f2) + fQ(f2)

f2 − a
reduces to a polynomial in f, then P (a) = Q(a) = 0.

Proof. We rewrite the numerator of (3) as

P (f2)− P (a) + f(Q(f2)−Q(a)) + P (a) +Q(a)f.
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Since both P (f2)−P (a) and Q(f2)−Q(a) have the factor f2−a, we deduce
that f2−a is a factor of P (a)+Q(a)f under the given assumption. It follows
that P (a) = Q(a) = 0.

3. Proof of Theorem 1. The case k ≥ 6, m ≤ 4 and the case k ≥ 3,
m = 1 or 4 are covered by Theorem A. When k = 5, by dividing f5+a1f

m +
a2g

k = a3 by f5, we see that the cases m = 2 and m = 3 are equivalent.
Therefore, we only need to consider the following cases.

Case 1: m ≤ 4, k = 4. We are going to prove that the functional
equation

(4) f5 + a1f
m + a2 = a3g

4

has no pair (f, g) of admissible meromorphic solutions, where a1, a2, a3 are
small functions of f and a1a2 6≡ 0. Let F = f5+a1f

m+a2. From Theorem A,
we only have to consider the cases of m = 2 and m = 3. By Lemma 1, in
both cases we get

(5) 3T (r, f) ≤ N(r, 1/F ) +N(r, 1/f) +N(r, f) + S(r, f).

From equation (4), it is easily seen that 5T (r, f) = 4T (r, g) + S(r, f), and
all poles of f that are not poles or zeros of a1, a2 and a3 have multiplicities
at least 4. Therefore N(r, f) ≤ 1

4N(r, f) + S(r, f). It follows from (5) that

3T (r, f) ≤ N(r, 1/g) +N(r, 1/f) + 1
4N(r, f) + S(r, f)

≤ T (r, g) + T (r, f) + 1
4T (r, f) + S(r, f)

≤
(

5
4 + 1 + 1

4

)
T (r, f) + S(r, f)

≤ 5
2T (r, f) + S(r, f).

This is impossible.

Case 2: m = 2, k = 3. We are going to prove that the equation

(6) f5 + a1f
2 + a2 = a3g

3

has no pair (f, g) of admissible meromorphic solutions, where a1, a2, a3 are
small functions of f and a1a2 6≡ 0. Let F = f5 + a1f

2 + a2. By Lemma 1,
we have

3T (r, f) ≤ N(r, 1/F ) +N(r, 1/f) +N(r, f) + S(r, f).

From (6), we see that 5T (r, f) = 3T (r, g)+S(r, f), and all poles of f that are
not poles or zeros of the coefficients have multiplicities at least 3. Therefore
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N(r, f) ≤ 1
3N(r, f) + S(r, f). It follows that

3T (r, f) ≤ N(r, 1/g) +N(r, 1/f) + 1
3N(r, f) + S(r, f)

≤ T (r, g) + T (r, f) + 1
3T (r, f) + S(r, f)

≤
(

5
3 + 1 + 1

3

)
T (r, f) + S(r, f)

≤ 3T (r, f) + S(r, f).

Hence

T (r, f) = N(r, f) + S(r, f),(7)

T (r, 1/f) = N(r, 1/f) + S(r, f),(8)

T (r, 1/g) = N(r, 1/g) + S(r, f).(9)

From (7)–(9), we obtain

m(r, f) = S(r, f), m(r, 1/g) = S(r, f), m(r, 1/f) = S(r, f),

N(r, 1/f) = N(r, 1/f) + S(r, f), N(r, 1/g) = N(r, 1/g) + S(r, f).

Since

F ′ =
F ′

F
(f5 + a1f

2 + a2) = 5f4f ′ + a′
1f

2 + 2a1ff
′ + a′

2,

we have

(10) f4a =
F ′

F
a1f

2 +
F ′

F
a2 − a′

1f
2 − 2a1ff

′ − a′
2,

where a = 5f ′ − (F ′/F )f . It is easily seen that a 6≡ 0, since otherwise we
have 5f ′/f = F ′/F , which leads to F = df5, where d is a nonzero constant;
then f5 + a1f

2 + a2 = df5, which is impossible. From (6) and the definition
of a, we see that poles of ag come from poles of f , poles of g, or zeros of F .
Because poles of g come from poles of f or of the coefficients, we only need
to consider poles of f and the zeros of F which are not poles or zeros of a1,
a2 and a3. From (6), we see that the multiplicities of all poles of f which
are not poles or zeros of the coefficients are divisible by 3. From (10), we
see that any pole of f of multiplicity 3k is a zero of a of multiplicity 6k− 1.
Such poles of f must be poles of g with multiplicity 5k. Thus poles of f are
not poles of ag. On the other hand, if a zero of F is a pole of a, then it must
be a simple pole. From the equation F = a3g, we see that zeros of F must
be zeros of g or of a3. Therefore, zeros of F cannot be poles of ag. Hence we
have N(r, ag) = S(r, f). Note that m(r, f) = S(r, f) and m(r, g) = S(r, f).
By Lemma 2, we get m(r, a) = S(r, f). It follows that T (r, ag) = S(r, f),
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which means that ag is a small function of f. Define G = aF . Then

G = 5f ′F − F ′f

= 5f ′(f5 + a1f
2 + a2)− (5f4f ′ + a′

1f
2 + 2a1ff

′ + a′
2)f

= (3a1f
2 + 5a2)f ′ − (a′

1f
3 + a′

2f),

and thus G3 = a3F 3 = a3a3g
3F 2 = F 2h, where h = a3(ag)3 is a small

function of f. It follows that

F 2h = ((3a1f
2 + 5a2)f ′ − (a′

1f
3 + a′

2f))3.

Therefore,

(11)
F 2h+ (a′

1f
3 + a′

2f)3

3a1f2 + 5a2
=: D(f),

which is a differential polynomial in f. By Lemma 3 we see that D(f) re-
duces to a polynomial in f. The left-hand side of the above equation can be
expressed as

(12)
P (f2) + fQ(f2)

3a1(f2 + 5a2/3a1)
,

where

P (z) = hz5 + h(a1z + a2)2,

Q(z) = 2hz2(a1z + a2) + z(a′
1z + a′

2)3.

By Lemma 4, we have P (−5a2/3a1) = Q(−5a2/3a1) = 0. Note that h is not
identically zero. It follows from P (−5a2/3a1) = 0 that (a2/3)3 = 4(a1/5)5.
Substituting this into Q(−5a2/3a1) = 0 yields a2 = 0, a contradiction.
Hence equation (6) has no nonconstant meromorphic solutions.

Case 3: m = 3, k = 3. We are going to prove that the functional
equation

(13) f5 + a1f
3 + a2 = a3g

3

has no pair (f, g) of admissible meromorphic solutions, where a1, a2, a3 are
small functions of f and a1a2 6≡ 0. Set F = f5 + a1f

3 + a2. By Lemma 1,
we still have

3T (r, f) ≤ N(r, 1/F ) +N(r, 1/f) +N(r, f) + S(r, f).

By using an argument similar to Case 1, we see that (7)–(9) are still valid
in this case. Therefore, we have

m(r, f) = S(r, f), m(r, 1/g) = S(r, f), m(r, 1/f) = S(r, f),

N(r, 1/f) = N(r, 1/f) + S(r, f), N(r, 1/g) = N(r, 1/g) + S(r, f).
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Taking the derivative of F , we get

F ′ =
F ′

F
F = 5f4f ′ + 3a1f

2f ′ + a′
1f

3 + a′
2 = f5 F

′

F
+ a1f

3 F
′

F
+ a2

F ′

F
.

It follows that

f2a = a2
F ′

F
− a′

2,

where a = 5f2f ′ + 3a1f
′ + a′

1f − f3F ′/F − a1fF
′/F . It is easily seen that

a 6≡ 0, since otherwise we have F ′/F − a′
2/a2 = 0, and integrating this

equation yields F = da2, where d is a nonzero constant; then f5 + a1f
3 +

a2 = da2, which is impossible. By an argument similar to Case 1, we have
T (r, ag) = S(r, f). Hence ag is a small function of f. Set G = aF . We have

G = 5f2f ′F + 3a1f
′F + a′

1fF − f3F ′ − a1fF
′

= (5f2a2 + 3a1a2)f ′ − (a′
2f

3 + a1a
′
2f − a′

1a2f).

From (13), we get G3 = a3F 3 = a3(ag)3F 2 = hF 2, where h = a3(ag)3 is a
small function of f. It follows that

hF 2 = ((5f2a2 + 3a1a2)f ′ − (a′
2f

3 + a1a
′
2f − a′

1a2f))3.

Therefore,

(14)
hF 2 + (a′

2f
3 + a1a

′
2f − a′

1a2f)3

5a2f2 + 3a1a2
=: D(f),

which is a differential polynomial in f. By Lemma 3, D(f) reduces to a
polynomial in f. We can rewrite the numerator of the left-hand side of (14)
as hP (f2) + fQ(f2), where

P (z) = z(z2 + a2z)2 + a2
2,

Q(z) = 2a2h(z2 + a1z)− z(a′
2z + a1a

′
2 − a′

1a2)3.

By Lemma 4, we have P (−3a1/5) = Q(−3a1/5) = 0. That is,

3(a1/5)5 = (a2/6)2, 50ha1a2 = 3(2a1a
′
2 − 5a′

1a2)3.

It follows from the above equations that ha1a2 = 0. This is impossible.
Hence equation (13) has no nonconstant meromorphic solution.

Case 4: m = 2, k = 5. We are going to prove that the functional
equation

(15) f5 + a1f
2 + a2 = a3g

5

has no pair (f, g) of admissible meromorphic solutions, where a1, a2, a3 are
small functions of f and a1a2 6≡ 0. Let F = f5 + a1f

2 + a2. By Lemma 1,

3T (r, f) ≤ N(r, 1/F ) +N(r, 1/f) +N(r, f) + S(r, f).
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From (15), it is easily seen that T (r, f) = T (r, g) + S(r, f). Therefore,

3T (r, f) ≤ N(r, 1/g) +N(r, 1/f) +N(r, f) + S(r, f)
≤ T (r, g) + 2T (r, f) + S(r, f) ≤ 3T (r, f) + S(r, f).

Hence

T (r, 1/f) = N(r, 1/f) + S(r, f),(16)
T (r, f) = N(r, f) + S(r, f),(17)

T (r, 1/g) = N(r, 1/g) + S(r, f).(18)

From (16)–(18), we obtain

m(r, f) = S(r, f), m(r, 1/g) = S(r, f), m(r, 1/f) = S(r, f),

N(r, 1/f) = N(r, 1/f) + S(r, f), N(r, 1/g) = N(r, 1/g) + S(r, f).

Since

F ′ =
F ′

F
F = 5f4f ′ + 2a1ff

′ + a′
1f

2 + a′
2 =

F ′

F
(f5 + a1f

2 + a2),

we have

(19) f4a =
F ′

F
(a1f

2 + a2)− 2a1ff
′ − a′

1f
2 − a′

2,

where a = 5f ′ − (F ′/F )f . From (15), we see that poles of ag come from
poles of f , poles of g or zeros of F . Note that poles of g must be poles of
f if they are not poles of a1, a2 and a3. We only need to consider the poles
of f and the zeros of F which are not poles or zeros of a1, a2 and a3. From
(19), we see that any pole of f of multiplicity k is a zero of a of multiplicity
2k− 1. Such poles of f must be poles of g with multiplicity k. Thus poles of
f are not poles of ag. On the other hand, if a zero of F is a pole of a, then
it must be a simple pole. From the equation F = a3g, we see that zeros of
F must be zeros of g if they are not zeros of a3. Therefore, zeros of F are
not poles of ag. Hence N(r, ag) = S(r, f). Note that m(r, f) = S(r, f) and
m(r, g) = S(r, f). By Lemma 2, we get m(r, a) = S(r, f). It follows that
T (r, ag) = S(r, f). So, ag is a small function of f. Let G = aF. We have

G = 5f ′F − F ′f

= 5f ′(f5 + a1f
2 + a2)− (5f4f ′ + a′

1f
2 + 2a1ff

′ + a′
2)f

= (3a1f
2 + 5a2)f ′ − (a′

1f
3 + a′

2f)(3a1f
2 + 5a2)f ′ − (a′

1f
3 + a′

2f),

and thus G5 = a5F 5 = a3(ag)5F 4 = hF 4, where h = a3(ag)5 is a small
function of f. It follows that

hF 4 = ((3a1f
2 + 5a2)f ′ − (a′

1f
3 + a′

2f))5.
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Hence the function

(20)
hF 4 + (a′

1f
3 + a′

2f)5

3a1f2 + 5a2
=: D(f)

is a differential polynomial in f. By Lemma 3 we see that D(f) reduces to
a polynomial in f. Since the numerator of the left-hand side of (20) can be
written as hP (f2) + fQ(f2), where

P (z) = z10 + 6z5(a1z + a2)2 + (a1z + a2)4,

Q(z) = 4hz7(a1z + a2) + 4hz2(a1z + a2)3 + z2(a′
1z + a′

2)5,

by Lemma 4 we get P (−5a2/3a1) = Q(−5a2/3a1) = 0, i.e.,(
(a2/3)3 − 4(3 + 2

√
2)(a1/5)5

)(
(a2/3)3 − 4(3− 2

√
2)(a1/5)5

)
= 0,(21)

6355a3
2((a2/3)3 − 4(a1/5)5)h+ 3(3a1a

′
2 − 5a′

1a2)5 = 0.(22)

From (21), we see that a3
2/a

5
1 is a constant, and thus 3a1a

′
2 − 5a′

1a2 = 0.
Then from (22) we get h = 0, a contradiction. Hence equation (15) has no
nonconstant meromorphic solution. This completes the proof of Theorem 1.
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