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Some monotonicity and limit results for the
regularised incomplete gamma function

by WoJCIECH CHOJINACKI (Adelaide and Warszawa)

Abstract. Letting P(u,xz) denote the regularised incomplete gamma function, it is
shown that for each a > 0, P(x,z + «) decreases as x increases on the positive real semi-
axis, and P(z,z + a) converges to 1/2 as x tends to infinity. The statistical significance
of these results is explored.

1. Introduction. Euler’s gamma function
[e.e]

rw=\etetdt  (u>0)
0
plays an important role in many areas of mathematics and has been widely

studied. The incomplete gamma function and its complement
x

v(u,z) = S tv e tdt
Y (w> 0, z>0),

[e.e]
Iu,z) 2 S tv et qt
x
and the regularised incomplete gamma function and its complement

a y(u, )

Pluz) I'(u) (u>0,x>0)

Qu,z) 21— P(u, )
also appear in many different contexts and applications. An extended and
highly readable overview on the incomplete gamma function and the related
functions can be found in [2]. For a sample of more recent work, see [3].

The aim of this paper is to prove that for each o« > 0, (i) P(z, 2 + «)

decreases as z increases on the positive real semi-axis; and (ii) P(z,z + «)
tends to 1/2 as x — 0.
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The original motivation for these results comes from estimation theory.
Suppose that the outcome of a chance experiment is described by a real-
valued random variable X with mean m and variance 2. In the event that
m and o2 are unknown, these values can be estimated based on several
repetitions of the experiment. If the outcomes of n repetitions are represented
by a sequence Xj,...,X, of n independent copies of X, then a natural
estimate of m is the sample mean

1 n
X, 2= X
n n Z k
k=1
and a natural estimate of o2 is the sample variance

1 o -
2 A 2
S22 EZ(Xk - X,)%
k=1
Sometimes the sample variance is defined as
n

1 _
2 A _ 2
The advantage of adopting the latter expression is that it specifies a mean-
unbiased estimator of o?—the expected value of S/? is equal to o2.
Assume henceforth that X is normally distributed. The random variable

1 « -
Yo 2 nSi/o’ = (n—1)S7 /0" = 53 (X~ Xn)®
k=1

then has a chi-square distribution with n — 1 degrees of freedom [14, Chap-
ter 8, §45, Theorem 1] and its cumulative distribution function is given by

1
f(n=1)/2=1,—1/2 3
IR (1)
with P(A) denoting the probability of the event A. Furthermore, in accor-

dance with a result of van der Vaart [11], S’ is a negatively median-biased
estimator of o2 in the sense that

(1) P(S? < 0%) > 5

xT

P(Y, <zx)= 5

for each n. Starting from the identities

() P(S2 < 0% =P((n—1)S2/0” <n—1) = P(4(n—1).3(n — 1)),
van der Vaart derived inequality (1) from a more general inequality that he
had established, namely,

(3) P(x,z) >

N | —

for each =z > 0.
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In light of the above, one may wonder whether S? is also negatively
median-biased. Noting, in analogy to (2), that

(4) P(S,zl < 0'2) = P(TLS?Z/O'Q <n)= P(%(n —1), %n),

one may ask, more generally, whether

(5) P(m,aH—;) >%

holds for each x > 0. It turns out that the answer to both these questions is
in the affirmative.

Indeed, the monotonicity and limit properties of the functions z +—
P(z,x + «), a > 0, that will be established below immediately imply that

1
P(z,z+ o) > 5

for each @ > 0 and each x > 0. This inequality subsumes (3) and (5) as
special cases corresponding to o = 0 and aw = 1/2.

But perhaps a more significant consequence of the afore-mentioned prop-
erties of the functions x — P(z,z 4+ «), a > 0, one that relies on relations
(2) and (4), is that the sequences {P(S2 < ¢%)}°°; and {P(S?? < 0?)}°,
decrease and have the common limit 1/2. Thus, while always non-zero, the
negative median bias in S2 and in S/?, measured by P(S2 < ¢?) — 1/2 and
P(S? < 0?) — 1/2, respectively, systematically decreases as n, the number

of samples, mounts, reaching in limit the value zero.

2. Monotonicity result. We first establish the following.

THEOREM 1. For each a > 0, the function x — P(x,x+ «) is decreasing
on (0, 00).

Proof. Fix a > 0 arbitrarily. For each > 0, represent

Qlz,z+a)= F(lgc) xJSra t" et dt
as
Q(z,z + a) = fi(x) fa(7),
where
A $93—1/26—93
fi(z) = W’
fa(x) 2 pl/2-wer S t*~Le=t dt.
e

The result of the theorem will be established once we show that both f; and
fo are increasing.



286 W. Chojnacki

That f; is increasing is a well-known fact and a special case of more
general results (cf. [1, Theorem 2|, [7, Theorem 1|). In what follows, we give
a self-contained proof of the monotonicity property of f;. We start with
Binet’s formula [13, p. 249

1 1 /11 1 —tx
lnf(a:):(x—>lnx—x+21n(27r)+s<_+ )e n
0

2

which implies that

1 T/ 1 \e®
Now, as we shall see shortly, the function
Al 1 1
g(t)_i_EjLet—l (t>0)
tx

is positive, and, for each t > 0, the function x — e™** monotonically de-
creases. This immediately implies the desired monotonicity result for fi.
That ¢(t) is positive for each ¢ > 0 can be seen as follows. Using the

Maclaurin series expansion of ¢ — ef, we find
1 1 et —1—t 212+ o(t?) 1
- e = —— = = ast—>0’
et—1 ¢ t(et — 1) t2 + o(t?)

so lim;_,9 g(t) = 0. The proof of the assertion will be complete once we show
that g is increasing. Now
gl(t) _ l B et _ (et _ 1)2 o t2€t
2 (et —1)2 t2(et — 1)2
The numerator of the rightmost term is equal to zero when ¢ = 0 and its
derivative

£2
2(et — 1)e! — 2te! — t2et = 2¢! (et —1—-t- 2)
is positive, implying that both the numerator and ¢'(¢) are positive for ¢t > 0.
Thus g(t) is indeed increasing for ¢ > 0.

The positivity of g can alternatively be deduced from the representation
9(t) 2

— = 5 (>0

P e 0

n=1

o0

(cf. [9, p. 64]). We also mention that the positivity of g can be viewed as
part of a more general result concerning the Maclaurin series expansion of
t —t/(e! — 1) (cf. |5, Theorem 3]).
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We now pass to proving that fo is increasing. Setting ¢ = zw, we obtain

(7) OSO t* et dt = 2® OSO W' le T duw = g%e " OSO e~ zv(w) d—w,

w
4o 14a/z 1+a/z
where

v(w) £ w—Inw— 1.

It is readily verified that the function w +— v(w) is increasing on [1, c0) with
image [0,00). Let t +— w(t) be its inverse, which, of course, is an increasing
function from [0, c0) onto [1,00). For each = > 0, let

tzéa—ln<1+a).
X X

Clearly, t, is non-negative, with t, = 0 when « = 0, and, as

U<1+a> :twa
X

«

we have

In an independent step, note that differentiating the relation
w(t) —lnw(t) —1=t

leads to
(8) w'(t) =

for t > 0. Now, the change of variable w = w(t) and the subsequent change
t = s/x in the rightmost integral of (7) with use of (8) in between yield

w(t)
w(t) —1

S efxv(w) 711] _ S efxt w (t) dt — S efzt . :
14+a/z w te w( ) to w( ) -
— 1 S e_s SdS
Tty w(;) —1
Hence
T ds
fola)=a= | e —m
ac§9; w(;) —1
or, equivalently,
[o¢] s B »
0 7o) = | a0 2 )57 2 s
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where 1 denotes the characteristic function of the set £ and
£1/2

(10) h(t) = W) —1

(t>0).

We shall next show that

(i) the function h is decreasing on (0, 00);
(ii) the function z — xt, is non-increasing on (0, 00).

This will imply that, for each s > 0, the function x +— h(s/x) is increasing
on (0,00) and the function z — 1,4, +(s) is non-decreasing on (0, 00). The
increasing monotonicity of fo will then follow on account of (9).

To prove (i), it suffices to show that the function

(w(t) — 1)?
t

ha(t) £ h72(t) = (t>0)

is increasing. To this end, define
1
ha(t) = 5 (w(t) = 1)* —tw(t)  (t>0).

In view of (8),

h’(t):(w—l)w'—w—tw’:—tw':—tiw <0

2 w—1 )
so hg is decreasing. Since hy(0) = 0, it follows that ho(t) < 0 for each t > 0.
The latter result can be reformulated as
(w—1)?
tw

(11) 2 — >0

for each t > 0. Now, in view of (8),
20w — 1w (w-12 2w (w—1)>
Ry (t) = - =— - —
1) t t2 t 2

:Q:[Q_(U’_I)Z}

tw

This together with (11) yields A (¢) > 0 for each ¢ > 0, showing that hy is
increasing.
To establish (ii), note that the derivative of x +— xt, at > 0 is equal to

(12) a —ln(l + O‘>.

T+« x

By the mean-value theorem,
o

1n<1+z> =In(z+a)—Inz = E

for some ¢ with x < & < = + «. It is now obvious that expression (12) is
non-positive, yielding the desired result. m
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3. Limit result. We now prove the following.
THEOREM 2. For each o > 0, lim, 00 P(z, 2 + ) = 1/2.

Proof. Continuing with the notation from the proof of Theorem 1, we
first calculate separately lim, .o f1(z) and lim;_~ fo(x).

Using (6) and the fact that the integrand in (6) tends decreasingly to
zero as x increases to infinity, we infer from Levi’s monotone convergence
theorem that 1

lim In fi(x) = —= In(27),
r—0Q0 2

whence

(13) Jim file) = o

This latter result can also be deduced from the well-known asymptotic ex-
pansion for the logarithm of the gamma function (see e.g. |9, p. 62]).
To determine the other limit, first note that

lim zt, = o — lim xln(l + a) =0.
T—00 T—00 x

As the function x +— zt, is non-increasing on (0, 00), we see that, for each
s > 0, 144, 00) () non-decreasingly tends to 1 as x increases to infinity. Next,
note that by de ’'Hopital’s rule and (8),

() < 1)?
t—0 t

As h (defined in (10)) is decreasing on (0, 00), we deduce that, for each s > 0,
x — h(s/x) increasingly tends to 271/2 a5 x increases to infinity. Thus, for
each s > 0, the integrand in (9) non-decreasingly tends to 2-1/2571/2¢=5 as x
increases to infinity. An application of Levi’s monotone convergence theorem
now reveals that

= }E% 2(w(t) — Dw'(t) = }g% 2w(t) = 2.

o0
lim fo(z) = 271/2 S s™12e75 ds,
r—00 0
which jointly with
oo oo
2
S s ds =2 S e du=+7
0 0

yields

Jim £ =7

Finally, the last equality together with (13) leads to

1
lim P(x,z+a)=1- lim Q(z,x+«a) =1— lim fi(x)fo(z) = =,
T—00 T—00 T—00 2

establishing the theorem. =
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4. Related work. We conclude with a few comments about related
results reported in the literature.

Van der Vaart [11] established that for each x > 0 the sequence { P(z+n,
z+n)}>2, decreases and has limit 1/2. Inequality (3) is one consequence of
this result. Another, based on (2), is that the sequence {P(S% ,, < ¢%)}2,
decreases when m = 0 and m = 1; the objects involved here are the same as
in the Introduction. Note that van der Vaart’s result is insufficient to infer
that the sequence {P(S/? < 02)}°°, decreases. However, as was already
alluded to earlier, this latter result follows immediately from our Theorem 1.

Vietoris [12] proved that the sequence {P(n,n)}o° ; decreases and the
sequence {P(n,n — 1)}>°, increases, with 1/2 being the common limit of
both sequences.

Van de Lune [10] and, independently, Temme [8] proved that the function
x +— P(xz,z — 1) increases to 1/2 on [1, 00).

Merkle [6] asserted that the function z — P(x,x) is decreasing on (0, c0),
but his argument to validate the statement is incorrect. Merkle represents
P(z,z) as P(z,z) = p1(x)pe(x), where p1(z) = 2% Le */I'(z) and pa(z) =
y(x,z)zt "%, and claims that both p; and ps are decreasing. But while
the first function is decreasing [4], the second is not. Figure 1 illustrates the

0.8 45

0.6 35

(
p,(X)

Fig. 1. Contrasting behaviours of p; and p2: (a) graph of p1; (b) graph of pa.

plot (x,y); xlabel('x'); ylabel ('p_1(x)"')
plot(x,z); xlabel('x'); ylabel('p_2(x)")

graph of p1
graph of p2

x = linspace(0,10); % 100 equally

% spaced values

% between 0 and 10
y = x."(x—1).*exp(—x) ./gamma (xX) ; % definition of p1
z = gammainc(x,x)./y; % definition of p2

~e N

Fig. 2. Basic MATLAB code to generate graphs of p1 and ps.
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different behaviours of the two functions. A basic MATLAB code to generate
the relevant graphs is given in Figure 2.
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