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Some monotonicity and limit results for the
regularised incomplete gamma function

by Wojciech Chojnacki (Adelaide and Warszawa)

Abstract. Letting P (u, x) denote the regularised incomplete gamma function, it is
shown that for each α ≥ 0, P (x, x+ α) decreases as x increases on the positive real semi-
axis, and P (x, x + α) converges to 1/2 as x tends to infinity. The statistical significance
of these results is explored.

1. Introduction. Euler’s gamma function

Γ (u) ∆=
∞�

0

tu−1e−t dt (u > 0)

plays an important role in many areas of mathematics and has been widely
studied. The incomplete gamma function and its complement

γ(u, x) ∆=
x�

0

tu−1e−t dt

Γ (u, x) ∆=
∞�

x

tu−1e−t dt

(u > 0, x ≥ 0),

and the regularised incomplete gamma function and its complement

P (u, x) ∆=
γ(u, x)
Γ (u)

Q(u, x) ∆= 1− P (u, x)
(u > 0, x ≥ 0)

also appear in many different contexts and applications. An extended and
highly readable overview on the incomplete gamma function and the related
functions can be found in [2]. For a sample of more recent work, see [3].

The aim of this paper is to prove that for each α ≥ 0, (i) P (x, x + α)
decreases as x increases on the positive real semi-axis; and (ii) P (x, x + α)
tends to 1/2 as x→∞.
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The original motivation for these results comes from estimation theory.
Suppose that the outcome of a chance experiment is described by a real-
valued random variable X with mean m and variance σ2. In the event that
m and σ2 are unknown, these values can be estimated based on several
repetitions of the experiment. If the outcomes of n repetitions are represented
by a sequence X1, . . . , Xn of n independent copies of X, then a natural
estimate of m is the sample mean

Xn
∆=

1
n

n∑
k=1

Xk

and a natural estimate of σ2 is the sample variance

S2
n

∆=
1
n

n∑
k=1

(Xk −Xn)2.

Sometimes the sample variance is defined as

S′2n
∆=

1
n− 1

n∑
k=1

(Xk −Xn)2.

The advantage of adopting the latter expression is that it specifies a mean-
unbiased estimator of σ2—the expected value of S′2n is equal to σ2.

Assume henceforth that X is normally distributed. The random variable

Yn
∆= nS2

n/σ
2 = (n− 1)S′2n /σ

2 =
1
σ2

n∑
k=1

(Xk −Xn)2

then has a chi-square distribution with n− 1 degrees of freedom [14, Chap-
ter 8, §45, Theorem 1] and its cumulative distribution function is given by

P(Yn ≤ x) =
1

2(n−1)/2Γ
(

1
2(n− 1)

) x�
0

t(n−1)/2−1e−t/2 dt

= P
(

1
2(n− 1), 1

2x
)

(x ≥ 0),

with P(A) denoting the probability of the event A. Furthermore, in accor-
dance with a result of van der Vaart [11], S′2n is a negatively median-biased
estimator of σ2 in the sense that

(1) P(S′2n ≤ σ2) >
1
2

for each n. Starting from the identities

(2) P(S′2n ≤ σ2) = P((n− 1)S′2n /σ
2 ≤ n− 1) = P

(
1
2(n− 1), 1

2(n− 1)
)
,

van der Vaart derived inequality (1) from a more general inequality that he
had established, namely,

(3) P (x, x) >
1
2

for each x > 0.
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In light of the above, one may wonder whether S2
n is also negatively

median-biased. Noting, in analogy to (2), that

(4) P(S2
n ≤ σ2) = P(nS2

n/σ
2 ≤ n) = P

(
1
2(n− 1), 1

2n
)
,

one may ask, more generally, whether

(5) P

(
x, x+

1
2

)
>

1
2

holds for each x > 0. It turns out that the answer to both these questions is
in the affirmative.

Indeed, the monotonicity and limit properties of the functions x 7→
P (x, x+ α), α ≥ 0, that will be established below immediately imply that

P (x, x+ α) >
1
2

for each α ≥ 0 and each x > 0. This inequality subsumes (3) and (5) as
special cases corresponding to α = 0 and α = 1/2.

But perhaps a more significant consequence of the afore-mentioned prop-
erties of the functions x 7→ P (x, x + α), α ≥ 0, one that relies on relations
(2) and (4), is that the sequences {P(S2

n ≤ σ2)}∞n=1 and {P(S′2n ≤ σ2)}∞n=1

decrease and have the common limit 1/2. Thus, while always non-zero, the
negative median bias in S2

n and in S′2n , measured by P(S2
n ≤ σ2) − 1/2 and

P(S′2n ≤ σ2) − 1/2, respectively, systematically decreases as n, the number
of samples, mounts, reaching in limit the value zero.

2. Monotonicity result. We first establish the following.

Theorem 1. For each α ≥ 0, the function x 7→ P (x, x+α) is decreasing
on (0,∞).

Proof. Fix α ≥ 0 arbitrarily. For each x > 0, represent

Q(x, x+ α) =
1

Γ (x)

∞�

x+α

tx−1e−t dt

as
Q(x, x+ α) = f1(x)f2(x),

where

f1(x)
∆=
xx−1/2e−x

Γ (x)
,

f2(x)
∆= x1/2−xex

∞�

x+α

tx−1e−t dt.

The result of the theorem will be established once we show that both f1 and
f2 are increasing.
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That f1 is increasing is a well-known fact and a special case of more
general results (cf. [1, Theorem 2], [7, Theorem 1]). In what follows, we give
a self-contained proof of the monotonicity property of f1. We start with
Binet’s formula [13, p. 249]

lnΓ (x) =
(
x− 1

2

)
lnx− x+

1
2

ln(2π) +
∞�

0

(
1
2
− 1
t

+
1

et − 1

)
e−tx

t
dt,

which implies that

(6) ln f1(x) = −1
2

ln(2π)−
∞�

0

(
1
2
− 1
t

+
1

et − 1

)
e−tx

t
dt.

Now, as we shall see shortly, the function

g(t) ∆=
1
2
− 1
t

+
1

et − 1
(t > 0)

is positive, and, for each t > 0, the function x 7→ e−tx monotonically de-
creases. This immediately implies the desired monotonicity result for f1.

That g(t) is positive for each t > 0 can be seen as follows. Using the
Maclaurin series expansion of t 7→ et, we find

1
et − 1

− 1
t

= −e
t − 1− t
t(et − 1)

= −
1
2 t

2 + o(t2)
t2 + o(t2)

→ −1
2

as t→ 0,

so limt→0 g(t) = 0. The proof of the assertion will be complete once we show
that g is increasing. Now

g′(t) =
1
t2
− et

(et − 1)2
=

(et − 1)2 − t2et

t2(et − 1)2
.

The numerator of the rightmost term is equal to zero when t = 0 and its
derivative

2(et − 1)et − 2tet − t2et = 2et
(
et − 1− t− t2

2

)
is positive, implying that both the numerator and g′(t) are positive for t > 0.
Thus g(t) is indeed increasing for t > 0.

The positivity of g can alternatively be deduced from the representation

g(t)
t

=
∞∑
n=1

2
t2 + 4n2π2

(t > 0)

(cf. [9, p. 64]). We also mention that the positivity of g can be viewed as
part of a more general result concerning the Maclaurin series expansion of
t 7→ t/(et − 1) (cf. [5, Theorem 3]).
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We now pass to proving that f2 is increasing. Setting t = xw, we obtain

(7)
∞�

x+α

tx−1e−t dt = xx
∞�

1+α/x

wx−1e−xw dw = xxe−x
∞�

1+α/x

e−xv(w) dw

w
,

where
v(w) ∆= w − lnw − 1.

It is readily verified that the function w 7→ v(w) is increasing on [1,∞) with
image [0,∞). Let t 7→ w(t) be its inverse, which, of course, is an increasing
function from [0,∞) onto [1,∞). For each x > 0, let

tx
∆=
α

x
− ln

(
1 +

α

x

)
.

Clearly, tx is non-negative, with tx = 0 when α = 0, and, as

v

(
1 +

α

x

)
= tx,

we have
w(tx) = 1 +

α

x
.

In an independent step, note that differentiating the relation

w(t)− lnw(t)− 1 = t

leads to

(8) w′(t) =
w(t)

w(t)− 1

for t > 0. Now, the change of variable w = w(t) and the subsequent change
t = s/x in the rightmost integral of (7) with use of (8) in between yield

∞�

1+α/x

e−xv(w) dw

w
=
∞�

tx

e−xt
w′(t)
w(t)

dt =
∞�

tx

e−xt
dt

w(t)− 1

= x−1
∞�

xtx

e−s
ds

w
(
s
x

)
− 1

.

Hence

f2(x) = x−1/2
∞�

xtx

e−s
ds

w
(
s
x

)
− 1

,

or, equivalently,

(9) f2(x) =
∞�

0

1(xtx,∞)(s)h
(
s

x

)
s−1/2e−s ds,
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where 1E denotes the characteristic function of the set E and

(10) h(t) ∆=
t1/2

w(t)− 1
(t > 0).

We shall next show that

(i) the function h is decreasing on (0,∞);
(ii) the function x 7→ xtx is non-increasing on (0,∞).

This will imply that, for each s > 0, the function x 7→ h(s/x) is increasing
on (0,∞) and the function x 7→ 1(xtx,∞)(s) is non-decreasing on (0,∞). The
increasing monotonicity of f2 will then follow on account of (9).

To prove (i), it suffices to show that the function

h1(t)
∆= h−2(t) =

(w(t)− 1)2

t
(t > 0)

is increasing. To this end, define

h2(t)
∆=

1
2

(w(t)− 1)2 − tw(t) (t ≥ 0).

In view of (8),

h′2(t) = (w − 1)w′ − w − tw′ = −tw′ = − tw

w − 1
< 0,

so h2 is decreasing. Since h2(0) = 0, it follows that h2(t) < 0 for each t > 0.
The latter result can be reformulated as

(11) 2− (w − 1)2

tw
> 0

for each t > 0. Now, in view of (8),

h′1(t) =
2(w − 1)w′

t
− (w − 1)2

t2
=

2w
t
− (w − 1)2

t2

=
w

t

[
2− (w − 1)2

tw

]
.

This together with (11) yields h′1(t) > 0 for each t > 0, showing that h1 is
increasing.

To establish (ii), note that the derivative of x 7→ xtx at x > 0 is equal to

(12)
α

x+ α
− ln

(
1 +

α

x

)
.

By the mean-value theorem,

ln
(

1 +
α

x

)
= ln(x+ α)− lnx =

α

ξ

for some ξ with x ≤ ξ ≤ x + α. It is now obvious that expression (12) is
non-positive, yielding the desired result.
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3. Limit result. We now prove the following.

Theorem 2. For each α ≥ 0, limx→∞ P (x, x+ α) = 1/2.

Proof. Continuing with the notation from the proof of Theorem 1, we
first calculate separately limx→∞ f1(x) and limx→∞ f2(x).

Using (6) and the fact that the integrand in (6) tends decreasingly to
zero as x increases to infinity, we infer from Levi’s monotone convergence
theorem that

lim
x→∞

ln f1(x) = −1
2

ln(2π),

whence

(13) lim
x→∞

f1(x) =
1√
2π
.

This latter result can also be deduced from the well-known asymptotic ex-
pansion for the logarithm of the gamma function (see e.g. [9, p. 62]).

To determine the other limit, first note that

lim
x→∞

xtx = α− lim
x→∞

x ln
(

1 +
α

x

)
= 0.

As the function x 7→ xtx is non-increasing on (0,∞), we see that, for each
s > 0, 1(xtx,∞)(s) non-decreasingly tends to 1 as x increases to infinity. Next,
note that by de l’Hôpital’s rule and (8),

lim
t→0

(w(t)− 1)2

t
= lim

t→0
2(w(t)− 1)w′(t) = lim

t→0
2w(t) = 2.

As h (defined in (10)) is decreasing on (0,∞), we deduce that, for each s > 0,
x 7→ h(s/x) increasingly tends to 2−1/2 as x increases to infinity. Thus, for
each s > 0, the integrand in (9) non-decreasingly tends to 2−1/2s−1/2e−s as x
increases to infinity. An application of Levi’s monotone convergence theorem
now reveals that

lim
x→∞

f2(x) = 2−1/2
∞�

0

s−1/2e−s ds,

which jointly with
∞�

0

s−1/2e−s ds = 2
∞�

0

e−u
2
du =

√
π

yields

lim
x→∞

f2(x) =
√
π

2
.

Finally, the last equality together with (13) leads to

lim
x→∞

P (x, x+ α) = 1− lim
x→∞

Q(x, x+ α) = 1− lim
x→∞

f1(x)f2(x) =
1
2
,

establishing the theorem.
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4. Related work. We conclude with a few comments about related
results reported in the literature.

Van der Vaart [11] established that for each x > 0 the sequence {P (x+n,
x+n)}∞n=1 decreases and has limit 1/2. Inequality (3) is one consequence of
this result. Another, based on (2), is that the sequence {P(S′22n+m ≤ σ2)}∞n=1

decreases when m = 0 and m = 1; the objects involved here are the same as
in the Introduction. Note that van der Vaart’s result is insufficient to infer
that the sequence {P(S′2n ≤ σ2)}∞n=1 decreases. However, as was already
alluded to earlier, this latter result follows immediately from our Theorem 1.

Vietoris [12] proved that the sequence {P (n, n)}∞n=1 decreases and the
sequence {P (n, n − 1)}∞n=1 increases, with 1/2 being the common limit of
both sequences.

Van de Lune [10] and, independently, Temme [8] proved that the function
x 7→ P (x, x− 1) increases to 1/2 on [1,∞).

Merkle [6] asserted that the function x 7→ P (x, x) is decreasing on (0,∞),
but his argument to validate the statement is incorrect. Merkle represents
P (x, x) as P (x, x) = p1(x)p2(x), where p1(x)

∆= xx−1e−x/Γ (x) and p2(x)
∆=

γ(x, x)x1−xex, and claims that both p1 and p2 are decreasing. But while
the first function is decreasing [4], the second is not. Figure 1 illustrates the

(a) (b)

Fig. 1. Contrasting behaviours of p1 and p2: (a) graph of p1; (b) graph of p2.

x = linspace(0,10); % 100 equally
% spaced values
% between 0 and 10

y = x.^(x−1).*exp(−x)./gamma(x); % definition of p1

z = gammainc(x,x)./y; % definition of p2

plot(x,y); xlabel('x'); ylabel('p_1(x)'); % graph of p1

plot(x,z); xlabel('x'); ylabel('p_2(x)'); % graph of p2

Fig. 2. Basic MATLAB code to generate graphs of p1 and p2.
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different behaviours of the two functions. A basic MATLAB code to generate
the relevant graphs is given in Figure 2.
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