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On solutions of a fourth-order Lidstone
boundary value problem at resonance

by Mariusz Jurkiewicz (Łódź)

Abstract. We consider a Lidstone boundary value problem in Rk at resonance.
We prove the existence of a solution under the assumption that the nonlinear part is
a Carathéodory map and conditions similar to those of Landesman–Lazer are satisfied.

1. Introduction. In this article we deal with the existence of solutions
for fourth-order boundary value problems (BVP). We consider the system

(x1)(4) − λ1(x1)′′ − µ1x1 = f1(t, x1, . . . xk, (x1)′′, . . . , (xk)′′),
...

(xk)(4) − λk(xk)′′ − µkxk = fk(t, x1, . . . xk, (x1)′′, . . . , (xk)′′),
(1)

x1(0) = x1(1) = (x1)′′(0) = (x1)′′(1) = 0,
...

xk(0) = xk(1) = (xk)′′(0) = (xk)′′(1) = 0,

where f : [0, 1]× Rk × Rk → Rk is a Carathéodory map.
In recent years much attention has been given to the above problem for

k = 1 and λ = µ = 0 by many authors (see [2, 3] and references therein).
In [4], Youngxiang Li has proved some results for the problem

x(4) − λx′′ − µx = g(t, x),
x(0) = x(1) = x′′(0) = x′′(1) = 0,

where g : [0, 1] × R → R is continuous and λ > −2π2, µ ≥ −λ2/4,
µ/π4−λ/π2 < 1. The differential operator which corresponds to the left-hand
side of the above equation is always invertible. Here we shall consider the
case of a noninvertible operator. In [9] Jolanta Przybycin has obtained the
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existence of solutions to a problem similar to the one considered in [4] where
g : R → R does not depend on t and λ ≥ 0, µ 6= −π2n2, n = 1, 2, . . . . It
is easy to see that for some µ, λ the corresponding differential operator is
non-invertible. Her result is a particular case of ours.

Existence of a solution to (1) depends on the vectors λ = [λ1, . . . , λk] and
µ = [µ1, . . . , µk]; the corresponding differential operator may be invertible or
not. Our principal purpose is to examine the latter, so-called resonance case.
The first important paper on BVP at resonance appeared in the 70s [7], and
this problem has been under examination since then (see [8]).

We start with a crucial definition.
Definition 1.1. A pair (λ, µ) ∈ R2 will be called a two-dimensional

eigenvalue if the homogeneous problem

(2)
x(4) − λx′′ − µx = 0,

x(0) = x(1) = x′′(0) = x′′(1) = 0,

has a nontrivial solution. The set of all those pairs will be denoted by σ2.

One can prove that σ2 is the union of the straight lines ln given by
ln : µ = n2π2λ+ n4π4, n ∈ N,

that is,

(3) σ2 =
⋃
n∈N
{(λ, µ) | µ = n2π2λ+ n4π4}.

The line ln is tangent to the parabola µ = −(λ/2)2 at (−2n2π2,−n4π4).
Moreover, ln1 and ln2 , n1 6= n2, intersect at (−(n2

1 +n2
2)π

2,−n2
1n

2
2π

4). Define

σ2
1 := σ2 \

⋃
n1,n2∈N
n1 6=n2

{(−(n2
1 + n2

2)π
2,−n2

1n
2
2π

4)}.

Remark 1.1. It is easy to check that for each point from σ2
1 (resp. σ2\σ2

1)
the corresponding eigenspace of the problem (2) is one-dimensional (resp.
two-dimensional).

In the next section we consider the simpler case when (λ, µ) /∈ σ2 and
f is sublinear. We find a Green map for our problem, and we prove the
existence of a solution by using the Schauder fixed point theorem. The case
when (λ, µ) ∈ σ2 is much more complicated. We examine it for (λ, µ) ∈ σ2

1

in Section 3. If some conditions of Landesman–Lazer type are satisfied and
f is bounded then the problem has a solution.

2. Preliminaries. Assume that (λ, µ) /∈ σ2. Consider the homogeneous
equation
(4) x(4) − λx′′ − µx = 0.
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The set of solutions to (4) is a four-dimensional vector space, denoted by
D(λ, µ). The sets of solutions to the initial value problems{

x(4) − λx′′ − µx = 0,
x(0) = x′′(0) = 0,

and
{
x(4) − λx′′ − µx = 0,
x(1) = x′′(1) = 0,

are subspaces of D(λ, µ), denoted by D0(λ, µ) and D1(λ, µ) respectively.

Lemma 2.1. The linear spaces D0(λ, µ) and D1(λ, µ) are two-dimen-
sional. Furthermore, D(λ, µ) = D0(λ, µ)⊕D1(λ, µ).

Let f̂ : [0, 1] → R be a bounded continuous function and (λ, µ) /∈ σ2.
Consider the problem

x(4)(t)− λx′′(t)− µx(t) = f̂(t),(5)
x(0) = x(1) = x′′(0) = x′′(1) = 0.(6)

By Lemma 2.1, there exist linearly independent solutions α1, α2, α3, α4 to
the homogeneous equation corresponding to (5) such that α1(0) = α′′1(0)
= 0, α2(1) = α′′2(1) = 0, α3(0) = α′′3(0) = 0, α4(1) = α′′4(1) = 0. Thus, the
fundamental matrix has the form

A(t) :=


α1(t) α2(t) α3(t) α4(t)
α′1(t) α′2(t) α′3(t) α′4(t)
α′′1(t) α′′2(t) α′′3(t) α′′4(t)

α
(3)
1 (t) α

(3)
2 (t) α

(3)
3 (t) α

(3)
4 (t)

 .
The matrix A with the ith column and fourth row deleted will be denoted
by Ai. We check at once that if there exists a solution x to (5)–(6) then

x′′(t) = α′′1(t)
1�

t

1
W (s)

detA1(s)f̂(s) ds+ α′′2(t)
t�

0

1
W (s)

detA2(s)f̂(s) ds(7)

+α′′3(t)
1�

t

1
W (s)

detA3(s)f̂(s) ds+α′′4(t)
t�

0

1
W (s)

detA4(s)f̂(s) ds.

Define H : [0, 1]× [0, 1]→ R by the formula

H(t, s) :=


1

W (s)
(α′′1(t) detA1(s) + α′′3(t) detA3(s)), 0 ≤ t ≤ s ≤ 1,

1
W (s)

(α′′2(t) detA2(s) + α′′4(t) detA4(s)), 0 ≤ s ≤ t ≤ 1.

It is easily seen that H is continuous. Moreover, we can rewrite (7) as

(8) x′′(t) =
1�

0

H(t, s)f̂(s) ds.
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We equip Rk with the maximum norm ‖α‖ = max(|α1|, . . . , |αk|).
Furthermore, ‖ · ‖1 is the supremum norm in C([0, 1],R), and ‖x‖k =
max(‖x1‖1, . . . , ‖xk‖1) is the norm in C([0, 1],Rk).

Suppose that f : [0, 1]× Rk × Rk → Rk is a Carathéodory map, i.e.

(i) the map [0, 1] 3 t 7→ f(t, x, y) is measurable for every x, y ∈ Rk;
(ii) the map Rk × Rk 3 (x, y) 7→ f(t, x, y) is equicontinuous for almost

all t ∈ [0, 1].

If we define the operation • : Rk ×Rk → Rk by [α1, . . . , αk] • [β1, . . . , βk] :=
[α1β1, . . . , αkβk] then the problem (1) can be rewritten as

x(4) − λ • x′′ − µ • x = f(t, x, x′′),
x(0) = x(1) = x′′(0) = x′′(1) = 0,

where x = [x1, . . . , xk] etc. It is easily seen that Rk with the • operation is
a Banach algebra.

We shall show that (1) has a solution if the linear differential operator
which corresponds to the right hand side of our problem is invertible.

Theorem 2.1. Let λ, µ ∈ Rk with (λj , µj) /∈ σ2 for j = 1, . . . , k. Fur-
thermore, assume that for each M > 0, there exists CM ∈ L∞([0, 1],R+)
such that ‖x‖+ ‖y‖ ≤M implies

(9) ‖f(t, x, y)‖ ≤ CM (t)

for almost all t ∈ [0, 1], and

(10) lim
M→∞

‖CM‖L∞
M

= 0.

Then the problem (1) has a solution.

Proof. From (8) it follows that if x is a solution of (1) then it satisfies
the equation

x′′(t) =
1�

0

H(t, s) • f(s, x(s), x′′(s)) ds,

where H = [H1, . . . ,Hk] and Hj corresponds to the pair (λj , µj) for j =
1, . . . , k. It is obvious that the converse is true as well. Putting y = x′′ one
can observe that (1) is equivalent to the system

x(t) =
1�

0

G(t, s)y(s) ds,

y(t) =
1�

0

H(t, s) • f
(
s,

1�

0

G(s, p)y(p) dp, y(s)
)
ds,
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where G : [0, 1]× [0, 1]→ R has the form

G(t, p) =
{
p(t− 1) for 0 ≤ p ≤ t ≤ 1,
t(p− 1) for 0 ≤ t ≤ p ≤ 1.

This implies that it is sufficient to prove that the operator T : C([0, 1],Rk)→
C([0, 1],Rk) defined by the formula

(Ty)(t) :=
1�

0

H(t, s) • f
(
s,

1�

0

G(s, p)y(p) dp, y(s)
)
ds

has a fixed point.
It is clear that the above definition of T is correct. We may assume that

the functions {CM}M>0 satisfying (9) have the property, that

(11) ‖CM1‖L∞ ≤ ‖CM2‖L∞ for M1 < M2.

By (10) and (11) there exists R1 > 0 such that

‖CM‖L∞ ≤ ‖CR1‖L∞ <
1

(1 +N)N
R1 for every M ≤ R1,

where N is a common bound of G and H. Therefore, if ‖x‖+ ‖y‖ ≤ R1 then

(12) ‖f(t, x, y)‖ ≤ CR1(t) <
1

(1 +N)N
R1

for almost all t ∈ [0, 1]. Set R := R1/(1 +N). Taking any y ∈ C([0, 1],Rk)
such that ‖y‖k ≤ R, we obtain

‖y‖k +
∥∥∥1�

0

G(·, p)y(p) dp
∥∥∥
k
≤ R1

1 +N
+

R1N

1 +N
= R1.

Therefore, by (12),∥∥∥f(s, 1�
0

G(s, p)y(p) dp, y(s)
)∥∥∥ < 1

(1 +N)N
R1.

Finally, we obtain ‖Ty‖k ≤ R.
To sum up, we have shown the existence of R > 0 such that T maps the

ball BC(0, R) into itself. From now on, we consider T on this ball only.
We shall show that T is a continuous operator. Choose a sequence

{yn}n∈N ⊂BC(0, R) such that yn→y0. Then the sequence {G(t, s)yn(s)}n∈N
is bounded by RN and uniformly convergent to G(t, s)y0(s). The Lebesgue
dominated convergence theorem shows that {

	1
0G(t, s)yn(s) ds}n∈N is con-
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vergent. As f is continuous in the second and third variables, we have

(13) lim
n→∞

∥∥∥f(s, 1�
0

G(s, p)yn(p) dp, yn(s)
)

− f
(
s,

1�

0

G(s, p)y0(p) dp, y0(s)
)∥∥∥ = 0

for almost all s∈ [0, 1]. It is evident that f(s,
	1
0G(s, p)yn(p) dp, yn(s)), n∈N,

and f(s,
	1
0G(s, p)y0(p) dp, y0(s)) are bounded by CR+NR(s). Thus∥∥∥f(s, 1�
0

G(s, p)yn(p) dp, yn(s)
)
− f

(
s,

1�

0

G(s, p)y0(p) dp, y0(s)
)∥∥∥

< 2CR+NR(s),

for almost all s ∈ [0, 1]. This estimate, (13) and the boundedness of H yield
‖Tyn − Ty0‖k → 0 as n→∞. This proves the continuity of T .

Pick t0 ∈ [0, 1] and ε > 0. By (9) there exists µ > 0 such that

‖f(t, x, y)‖ ≤ µ for almost all t ∈ [0, 1].

By the continuity of H there exists δ > 0 such that

‖H(t, s)−H(t0, s)‖ < ε/µ

for |t− t0| < δ and all s. Therefore,

‖(Ty)(t)− (Ty)(t0)‖ ≤ µ
�
‖H(t, s)−H(t0, s)‖ ds ≤ ε.

It is evident that the family {Ty}y∈B(0,R) is uniformly bounded by R.
Concluding, the continuous operator T satisfies the assumptions of the

Arzelà–Ascoli theorem. Therefore, it is compact, and hence, by the Schauder
theorem, it has a fixed point. This completes the proof.

3. Main results. In the previous section we have proved the existence
of solutions to (1) in a simpler case without resonance. Now, we deal with
the resonance case, which is fundamentally different. We show two results,
Theorem 3.1 and Theorem 3.2. The first will be proved only in the case of
a scalar equation. The second is a generalization of the second part of The-
orem 3.1 and gives the existence of solutions to (1) under some additional
assumptions on (λi, µi), i = 1, . . . , k. In fact, we have also obtained a vector
version of the first part of Theorem 3.1 in Rk, but we refrain from present-
ing it, as it is complicated and we have not found any nonscalar application
of it.

We start with some notation. Let

[0, 1] 3 t 7→ sinn0πt
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be a basis vector of the eigenspace which corresponds to (λ, µ) ∈ σ2
1 (recall

that µ = n2
0π

2λ+ n4
0π

4). Let

Γ+
n0

: = {t ∈ [0, 1] | sinn0πt > 0}, Γ−n0
:= {t ∈ [0, 1] | sinn0πt < 0}.

Remark 3.1. To simplify the notation, we will write Γ+ and Γ− instead
of Γ+

n0
and Γ−n0

, respectively. However, it should be remembered that they
both depend on n0.

Theorem 3.1. Let (λ, µ) ∈ σ2
1, and let f : [0, 1] × R × R → R be a

bounded Carathéodory function with

lim
x→+∞
y→−∞

f(t, x, y) = f+(t), lim
x→−∞
y→+∞

f(t, x, y) = f−(t)

for almost all t ∈ [0, 1].

(i) If the numbers
�

Γ+

f+(t) sinn0πt dt+
�

Γ−

f−(t) sinn0πt dt,

�

Γ+

f−(t) sinn0πt dt+
�

Γ−

f+(t) sinn0πt dt,

have opposite signs, then the problem (1) with k = 1 has a solution.
(ii) If f+ = f− =: f0 almost everywhere and

1�

0

f0(t) sinn0πt dt 6= 0,

then the problem (1) with k = 1 has a solution.

Proof. Set

εn :=
{

1/n if n is even,
−1/n if n is odd.

Consider the sequence of boundary value problems

x(4) − (λ+ εn)x′′ − (µ+ εn)x = f(t, x(t), x′′(t)),
x(0) = x(1) = x′′(0) = x′′(1) = 0.

Theorem 2.1 implies existence of a solution un to the above problem for each
n ∈ N. We shall show that the sequence {un}n∈N converges to a solution
of (1). The proof will be divided into two steps. First, assume that {u′′n}n∈N
is bounded, i.e. there exists M2 > 0 such that

sup
n∈N
‖u′′n‖1 < M2.
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Notice that the sequences {un}n∈N, {u′n}n∈N, {u
(3)
n }n∈N, {u

(4)
n }n∈N are also

bounded. Indeed, for t ∈ [0, 1/2] the Taylor formula yields

un(1)− un(t) = u′n(t)(1− t) + u′′n(θt,n)(1− t)2/2, where θt,n ∈ (t, 1),

As un(1) = 0, for n = 1, 2 . . . we have

(14) |u′n(t)| ≤
|un(t)|
1− t

+
|u′′n(θt,n)|(1− t)

2
.

Since |u′′n(θt,n)|(1− t) ≤M2 and 1/(1− t) ≤ 2,

|u′n(t)| ≤ |un(t)| · 2 +
1
2
M2.

The above inequality and the fact that un(t) =
	t
0 u
′
n(s) ds show that

|un(t)| ≤
t�

0

|u′(s)| ds ≤ 1
4
M2 + 2

t�

0

|un(s)| ds.

This and the Gronwall inequality imply that

|un(t)| ≤
1
4
M2 exp

(
2
t�

0

ds
)
≤ 1

4
M2e for t ∈ [0, 1/2].

Similar arguments for t ∈ [1/2, 1] give

|un(t)| ≤M0 :=
1
4
M2e.

Now, inequality (14) and

|u′n(t)| ≤
|un(t)|
t

+
|u′′n(θt,n)|t

2
for t ∈ [1/2, 1] imply the boundedness of {u′n}n∈N by some M1.

The estimate for {u(4)
n }n∈N is a consequence of the boundedness of f on

compact sets.
To prove the boundedness of {u(3)

n }n∈N we apply the analogous procedure
to the one used for {u′n}n∈N. Let M3 be the resulting bound of {u(3)

n }n∈N.
Thus

M := max(M0,M1,M2,M3,M4)

is a common bound for all the sequences considered.
Fix r ∈ {0, 1, 2, 3} and t0 ∈ [0, 1]. For any ε > 0 let δ := ε/M. Then the

mean value theorem implies that

|u(r)
n (t)− u(r)

n (t0)| = |u(r+1)
n (ξn,t)| |t− t0| ≤M |t− t0| < ε

for n = 1, 2, . . . and |t− t0| < δ. Therefore, the sequences {un}n∈N, {u′n}n∈N,

{u′′n}n∈N, {u
(3)
n }n∈N are equicontinuous. From the Arzelà–Ascoli theorem and
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the convergence theorem for derivatives, it now follows that u(r)
n ⇒ u(r) for

r = 0, 1, 2, 3 (considering a subsequence if necessary).
From the equality

u(4)
n (t) = (λ+ εn)u′′n(t) + (µ+ εn)un(t) + f(t, un(t), u′′n(t)),

the above condition and the continuity of the function f(t, ·, ·) for almost
all t ∈ [0, 1] we see that the sequence {u(4)

n }n∈N converges uniformly to the
function λu′′(t) + µu(t) + f(t, u, u′′) for almost all t ∈ [0, 1]. This together
with u

(3)
n ⇒ u(3) and the convergence theorem for derivatives shows that

u
(4)
n ⇒ u(4) almost everywhere.
Thus, we have shown that

u(r)
n ⇒ u(r) for r = 0, 1, 2, 3, 4

almost everywhere. This condition enables us to let n→∞ to obtain

u(4) − λu′′ − µu = f(t, u, u′′).

The above equality means that u is the desired solution.
Now, suppose that {u′′n}n∈N is not bounded. Dividing the relevant se-

quence of equations by ‖u′′n‖1, we get

u
(4)
n

‖u′′n‖1
− (λ+ εn)

u′′n
‖u′′n‖1

− (µ+ εn)
un
‖u′′n‖1

=
1

‖u′′n‖1
f(t, un, u′′n).

We may assume that ‖u′′n‖ → ∞ as n → ∞. Let vn := un/‖u′′n‖. Then
v

(r)
n = u

(r)
n /‖u′′n‖ for r = 0, . . . , 4. Thus, our sequence of equations has the

form

(15) v(4)
n − (λ+ εn)v′′n − (µ+ εn)vn = fn(t),

where fn := 1
‖u′′n‖1

f(·, un, u′′n). It is obvious that

(16) fn ⇒ 0 as n→∞.
It is easily seen that ‖v′′n‖1 = 1, so {v′′n}n∈N is bounded. The boundedness
of {v(r)

n }n∈N for r = 0, 1, 3, 4 and the equicontinuity of {v(r)
n }n∈N for r =

0, 1, 2, 3 follow by the same method as in the first step. Therefore, there
exists a function v such that v(r)

n ⇒ v(r) for r = 0, 1, 2, 3. We shall show
that v(4)

n ⇒ v(4) as well. After passing to the limit in v
(4)
n = (λ + εn)v′′n +

(µ + εn)vn + fn(t), we have v(4)
n ⇒ λv′′ + µv (1)). Therefore, by applying

the same arguments as above we finally have v(r)
n ⇒ v(r), where r = 1, . . . , 4

(considering a subsequence if necessary). Furthermore, the equality ‖v′′‖1
= 1 implies ‖v‖1 6= 0.

(1) Note that in the first step we have shown that u
(4)
n ⇒ u(4) almost everywhere; now

because of (16) we have v
(4)
n ⇒ v(4) everywhere.
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Altogether, we can let n→∞ in (15) to obtain

(17) v(4) − λv′′ − µv = 0.

This means that v is the element of the eigenspace corresponding to (λ, µ)
∈ σ2

1.
By multiplying (15) by v, we get

v(4)
n v − (λ+ εn)v′′nv − (µ+ εn)vnv = fn(t)v.

If we integrate this over [0, 1], we obtain
1�

0

v(4)
n v dt− (λ+ εn)

1�

0

v′′nv dt− (µ+ εn)
1�

0

vnv dt =
1�

0

fn(t)v dt.

Integration by parts yields
1�

0

vnv
(4) dt− (λ+ εn)

1�

0

vnv
′′ dt− (µ+ εn)

1�

0

vnv dt =
1�

0

fn(t)v dt.

Therefore
1�

0

vn(v(4) − λv′′ − µv) dt− εn
1�

0

vnv
′′ dt− εn

1�

0

vnv dt =
1�

0

fn(t)v dt.

By (17), the above equality takes the form

−εn
1�

0

vn(v′′ + v)dt =
1�

0

fn(t)v dt.

Analogously, multiplying (15) by v′′ leads to

−εn
1�

0

v′′n(v
′′ + v) dt =

1�

0

fn(t)v′′ dt.

Adding the above conditions, we obtain

(18) −εn
1�

0

(vn + v′′n)(v + v′′) dt =
1�

0

fn(t)(v + v′′) dt.

Lebesgue’s dominated convergence theorem implies that

lim
n→∞

1�

0

(vn + v′′n)(v + v′′) dt =
1�

0

(v + v′′)2 dt.

We have noticed that v is not equal to 0 and satisfies (17). Therefore v =
C sinn0πt, where C 6= 0. Furthermore, v′′ + v = (1 − n2

0π
2)C sinn0πt 6= 0,

so v′′ + v 6= 0. Hence the last equality gives
1�

0

(v + v′′)2 dt > 0.
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This implies the existence of a natural number N such that

(19)
1�

0

(vn + v′′n)(v + v′′) dt > 0 for n > N.

On the one hand,

vn =
un
‖u′′n‖

, v′′n =
u′′n
‖u′′n‖

,

and on the other

lim
n→∞

vn = C sinn0πt, lim
n→∞

v′′n = −Cn2
0π

2 sinn0πt.

Consequently,

lim
m→∞

un
‖u′′n‖

= C sinn0πt, lim
m→∞

u′′n
‖u′′n‖

= −Cn2
0π

2 sinn0πt.(20)

Let us consider two cases:

(a) If t ∈ Γ+ we conclude from (20) that

lim
n→∞

un =
{

+∞ if C > 0,
−∞ if C < 0,

lim
n→∞

u′′n =
{
−∞ if C > 0,
+∞ if C < 0.

Therefore

(21) lim
n→∞

f(t, un, u′′n) =
{
f+(t) if C > 0,
f−(t) if C < 0,

for almost all t ∈ Γ+.

(b) If t ∈ Γ− we conclude from (20) that

lim
n→∞

un =
{
−∞ if C > 0,
+∞ if C < 0,

lim
n→∞

u′′n =
{

+∞ if C > 0,
−∞ if C < 0.

In this case

(22) lim
n→∞

f(t, un, u′′n) =
{
f−(t) if C > 0,
f+(t) if C < 0,

for almost all t ∈ Γ−.

Consider the subsequences {εnm}m∈N and {εnk
} of {εn}n∈N, where εnm =

1/(2m) and εnk
= −1/(2k − 1). Condition (19) implies that

−εnm

1�

0

(vnm + v′′nm
)(v + v′′) dt < 0 for m > N,

−εnk

1�

0

(vnk
+ v′′nk

)(v + v′′) dt > 0 for k > N.
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These inequalities together with (18) give
1�

0

f(t, unm , u
′′
nm

)(v + v′′) dt < 0 for m > N,(23)

1�

0

f(t, unk
, u′′nk

)(v + v′′) dt > 0 for k > N.(24)

Let C > 0. Formula (23) yields

0 >
1�

0

f(t, unm , u
′′
nm

)(v′′ + v) dt

=
1�

0

f(t, unm , u
′′
nm

)C(1− n2
0π

2) sinn0πt dt

= C
( �

Γ+

f(t, unm , u
′′
nm

)(1− n2
0π

2) sinn0πt dt

+
�

Γ−

f(t, unm , u
′′
nm

)(1− n2
0π

2) sinn0πt dt
)
.

It follows that�

Γ+

f(t, unm , u
′′
nm

) sinn0πt dt+
�

Γ−

f(t, unm , u
′′
nm

) sinn0πt dt > 0.

Letting m→∞ we get, by (21) and (22),

(25)
�

Γ+

f+(t) sinn0πt dt+
�

Γ−

f−(t) sinn0πt dt ≥ 0.

If we proceed in the same way as above, but with respect to {εnk
}, we get

from (24), (21) and (22)

(26)
�

Γ+

f+(t) sinn0πt dt+
�

Γ−

f−(t) sinn0πt dt ≤ 0.

The inequalities (25) and (26) lead to

(27)
�

Γ+

f+(t) sinn0πt dt+
�

Γ−

f−(t) sinn0πt dt = 0.

Let C < 0. As in the previous case, we obtain

(28)
�

Γ+

f−(t) sinn0πt dt+
�

Γ−

f+(t) sinn0πt dt = 0.

The equalities (27) and (28) contradict our assumptions. This proves (i).
If we substitute f0 = f+ = f− in (27) and (28), we obtain�

Γ+∪Γ−
f0(t) sinn0πt dt = 0,
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regardless of the sign of C. This contradicts the assumption and proves (ii).
This completes the proof.

Example 3.1. Let φ : [0, 1] → R be continuous and positive. Consider
the equation

u(4) +
1
π2

u′′ + (1− π4)u = φ(t) arctan(u2u′′ − t)

with the boundary conditions

u(0) = u(1) = u′′(0) = u′′(1) = 0.

This is a problem at resonance, with n0 = 1. We have

lim
x→+∞
y→−∞

φ(t) arctan(x2y − t) = −π
2
φ(t),

lim
x→−∞
y→+∞

φ(t) arctan(x2y − t) =
π

2
φ(t).

It is evident that in this case Γ+ = [0, 1] and Γ− = ∅ and the Landesman–
Lazer conditions are satisfied. Theorem 3.1 implies that the above problem
has a nontrivial solution.

Now, assume that λ, µ ∈ Rk with (λj , µj) ∈ σ2
1, and there exists a positive

integer n0 such that µj = n2
0π

2λj + n4
0π

4 for all j = 1, . . . , k. This means
that the points (λj , µj) lie on the same line in the set σ2.

Let
Γn0 := {t ∈ [0, 1] | sinn0πt 6= 0}.

We will write Γ instead of Γn0 (see Remark 3.1). It is apparent that the func-
tion [0, 1] 3 t 7→ sinn0πt is the basis vector of the eigenspace corresponding
to each (λj , µj) ∈ σ2

1. This space will be denoted by V0.

Theorem 3.2. Let f : [0, 1]×Rk ×Rk → Rk be a bounded Carathéodory
map and suppose that

lim
〈x,y〉→−∞

f j(t, x, y) = f j0 (t), j = 1, . . . , k,

for almost all t ∈ [0, 1]. If for each j = 1, . . . , k,
1�

0

f j0 (t) sinn0πt dt 6= 0,

then the problem (1) has a solution.

Proof. Set

εjn :=
{

1/n if n is even,
−1/n if n is odd,
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for j = 1, . . . , k. Put εn := [ε1n, . . . , ε
k
n] and consider the sequence of boundary

value problems

x(4) − (λ+ εn) • x′′ − (µ+ εn) • x = f(t, x(t), x′′(t)),
x(0) = x(1) = x′′(0) = x′′(1) = 0.

Theorem 2.1 implies that for every n ∈ N there exists a solution un to
the above problem. In the same way as above we show that if the sequence
{un}n∈N is bounded then it has a subsequence convergent to a solution of (1).

Now, suppose that {u′′n}n∈N is not bounded. By using the same method
as in Theorem 2.1 we obtain a sequence {vn}n∈N such that vjn = ujn/‖u′′n‖k,
‖v′′n‖k = 1 and

(29) v(4)
n − (λ+ εn) • v′′n − (µ+ εn) • vn = fn(t),

where fn := 1
‖u′′n‖k

f(·, un, u′′n). Furthermore, v(s)
n ⇒ v(s), where s = 0, . . . , 4,

v 6= 0 and

(30) v(4) − λ • v′′ − µ • v = 0.

This means that vj , j = 1, . . . , k, , is an element of the space V0. It is obvious
that v = [v1, . . . , vk] is not equal to 0 and satisfies (30). Therefore, there
exists at least one j such that vj = Cj sinn0πt, where Cj 6= 0. Define
V := {j ∈ {1, . . . , k} | Cj 6= 0}. Then for j ∈ V we have (vj)′′ + vj =
(1− n2

0π
2)Cj sinn0πt 6= 0, thus v′′ + v 6= 0.

On the one hand, we have

〈vn, v′′n〉 =
1

‖u′′n‖2k
〈un, u′′n〉,

and on the other,

lim
n→∞

vn = sinn0πt · C, lim
n→∞

v′′n = −n2
0π

2 sinn0πt · C,

where C = [C1, . . . , Ck]. Therefore

lim
n→∞

〈vn, v′′n〉 = −n2
0π

2 sin2 n0πt‖C‖2.

We have ‖C‖ 6= 0, so for t ∈ Γ ,

lim
n→∞

〈un, u′′n〉 = −∞.

This implies that for t ∈ Γ ,

(31) lim
n→∞

f j(t, un, u′′n) = f j0 (t).

Let j ∈ V. Consider the subsequences {εjnm}m∈N and {εjnk}k∈N of {εjn}n∈N,

where εjnm = 1/(2m) and εjnk = −1/(2k − 1). As in the proof of the previous
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theorem, we can show that there exists N such that

Cj
�

Γ

f j(t, unm , u
′′
nm

) sinn0πt dt > 0 for m > N,

Cj
�

Γ

f j(t, unk
, u′′nk

) sinn0πt dt < 0 for k > N.

If we reason as in the proof of Theorem 3.1, we obtain�

Γ

f j0 (t) sinn0πt dt = 0,

regardless of the sign of Cj , j ∈ V. This contradiction implies that there
exists a solution to problem (1). This completes the proof.

Remark 3.2. It has to be emphasized that, in particular for k = 1, the
limit condition in the last theorem has the form

(32) lim
x·y→−∞

f(t, x, y) = f0(t) for almost all t ∈ [0, 1].

It is easily seen that this condition is stronger than the corresponding one
from Theorem 3.1(b).

Example 3.2. Let ψ : R4 → R be a continuous function satisfying the
condition ψ(x, y) ≤ 〈x, y〉 (x = [x1, x2], y = [y1, y2]) and let ϕ : R → R be
given by the formula

(33) ϕ(t) :=


ϕ1(t) for t ∈ [0, 1/3],
−ϕ2(t) for t ∈ (1/3, 2/3),
ϕ3(t) for t ∈ [2/3, 1],

where ϕ1, ϕ2, ϕ3 are continuous and positive. Consider the system of BVP

x
(4)
1 (t)− 1

9π2
x′′1(t)− x1(t)− 81π4x1(t)

= ϕ(t)
(

ψ(x1(t), x2(t), x′′1(t), x
′′
2(t))

1 + [ψ(x1(t), x2(t), x′′1(t), x
′′
2(t))]2

+ 1
)
,

x
(4)
1 (t) + π2x′′1(t)− 72π4x1(t) = t arctan(x1(t)x′′1(t) + x2(t)x′′2(t)),

with the boundary conditions

x1(0) = x1(1) = x′′1(0) = x′′1(1) = 0,
x2(0) = x2(1) = x′′2(0) = x′′2(1) = 0.

This is a resonance problem because (1/(9π2), 1 + 81π4), (−π2, 72π4) ∈ σ2
1.

Furthermore, it is apparent that these points lie on the line µ = 9π2λ+81π4.
We have

lim
〈x,y〉→−∞

t arctan(〈x, y〉) = −π
2
t.
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The inequality ψ(x, y) ≤ 〈x, y〉 implies that

lim
〈x,y〉→−∞

ϕ(t)
(

ψ(x1, x2, y1, y2)
1 + [ψ(x1, x2, y1, y2)]2

+ 1
)

= ϕ(t).

Therefore

−
1�

0

π

2
t sin 3πt dt = −1

6
6= 0,

and
1�

0

ϕ(t) sin 3πt dt 6= 0,

because of (33). The above conditions and Theorem 3.2 lead to the conclusion
that the above problem has a solution.
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