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Dynamical systems method for
solving linear finite-rank operator equations

by N. S. Hoang and A. G. Ramm (Manhattan, KS)

Abstract. A version of the dynamical systems method (DSM) for solving ill-condi-
tioned linear algebraic systems is studied. An a priori and an a posteriori stopping rules
are justified. An iterative scheme is constructed for solving ill-conditioned linear algebraic
systems.

1. Introduction. We want to solve stably the equation

(1) Au = f,

where A is a bounded linear operator in a real Hilbert space H. We assume
that (1) has a solution, possibly nonunique, and denote by y the unique
minimal-norm solution to (1), y ⊥ N := N (A) := {u : Au = 0}, Ay = f .
We assume that the range of A, written R(A), is not closed, so problem
(1) is ill-posed. Let fδ, ‖f − fδ‖ ≤ δ, be the noisy data. We want to con-
struct a stable approximation of y, given {δ, fδ, A}. There are many methods
for doing this: see, e.g., [9]–[12], [20], [21], to mention some (of the many)
books, where variational regularization, quasisolutions, quasiinversion, and
iterative regularization are studied, and [12]–[17], where the dynamical sys-
tems method (DSM) is studied systematically (see also [1], [20], [19], and
references therein for related results). Recent papers on DSM are [18] and
[4]–[8].

The basic new results of this paper are: 1) a new version of the DSM
for solving equation (1) is justified; 2) a stable method for solving equation
(1) with noisy data by the DSM is given; a priori and a posteriori stopping
rules are proposed and justified; 3) an iterative method for solving linear
ill-conditioned algebraic systems, based on the proposed version of DSM, is
formulated; its convergence is proved; 4) numerical results are given; these
results show that the proposed method yields a good alternative to some of
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the standard methods (e.g., to variational regularization, Landweber itera-
tions, and some other methods).

The DSM version we study in this paper consists of solving the Cauchy
problem

(2) u̇(t) = −P (Au(t)− f), u(0) = u0, u0 ⊥ N , u̇ :=
du

dt
,

and proving the existence of the limit limt→∞ u(t) = u(∞), and the relation
u(∞) = y, i.e.,

(3) lim
t→∞
‖u(t)− y‖ = 0.

Here P is a bounded operator such that T := PA ≥ 0 is selfadjoint and
N (T ) = N (A).

For any linear (not necessarily bounded) operator A there exists a
bounded operator P such that T = PA ≥ 0. For example, if A = U |A|
is the polar decomposition of A, then |A| := (A∗A)1/2 is a selfadjoint oper-
ator, T := |A| ≥ 0, U is a partial isometry, ‖U‖ = 1, and if P := U∗, then
‖P‖ = 1 and PA = T . Another choice of P , namely, P = (A∗A+ aI)−1A∗,
a = const > 0, is used in Section 3. For this choice Q := AP ≥ 0.

If the noisy data fδ are given, ‖fδ − f‖ ≤ δ, then we solve the problem

(4) u̇δ(t) = −P (Auδ(t)− fδ), uδ(0) = u0,

and prove that, for a suitable stopping time tδ, and uδ := uδ(tδ), one has

(5) lim
δ→0
‖uδ − y‖ = 0.

An a priori and an a posteriori methods for choosing tδ are given.
In Section 2 these results are formulated and recipes for choosing tδ are

proposed. In Section 3 a numerical example is presented.

2. Formulation of results. Suppose A : H → H is a bounded linear
operator in a real Hilbert space H. Assume that equation (1) has a solution,
not necessarily unique. Denote by y the unique minimal-norm solution, i.e.,
y ⊥ N := N (A). Consider the DSM (2) where u0 ⊥ N is arbitrary. Define

(6) T := PA, Q := AP.

The unique solution to (2) is

(7) u(t) = e−tTu0 + e−tT
t�

0

esT dsPf.

Let us first show that any ill-posed linear equation (1) with exact data can
be solved by the DSM. We assume below that P = (A∗A+ aI)−1A∗, where
a = const > 0. With this choice of P one has N (T ) = N (A) and ‖T‖ ≤ 1.
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2.1. Exact data. The following result is known (see [12]) but a short
proof is included for completeness.

Theorem 1. Suppose u0 ⊥ N and T ∗ = T ≥ 0. Then problem (2)
has a unique solution defined on [0,∞), and u(∞) = y, where u(∞) =
limt→∞ u(t).

Proof. Set w := u(t) − y and w0 := w(0) = u0 − y. Note that w0 ⊥ N .
One has

(8) ẇ = −Tw, T := PA, w(0) = u0 − y.

The unique solution to (8) is w = e−tTw0. Thus,

‖w‖2 =
‖T‖�

0

e−2tλ d〈Eλw0, w0〉,

where 〈u, v〉 is the inner product in H, and Eλ is the resolution of the identity
of T . Thus,

‖w(∞)‖2 = lim
t→∞

‖T‖�

0

e−2tλ d〈Eλw0, w0〉 = ‖PNw0‖2 = 0,

where PN = E0 − E−0 is the orthogonal projector onto N . Theorem 1 is
proved.

2.2. Noisy data fδ. Let us solve stably equation (1) assuming that f is
not known, but fδ, the noisy data, are known, where ‖fδ−f‖ ≤ δ. Consider
the following DSM:

(9) u̇δ = −P (Auδ − fδ), uδ(0) = u0.

Define

wδ := uδ − y, T := PA, wδ(0) = w0 := u0 − y ∈ N⊥.

We prove the following result:

Theorem 2. If T = T ∗ ≥ 0, limδ→0 tδ = ∞, limδ→0 tδδ = 0, and
w0 ∈ N⊥, then

lim
δ→0
‖wδ(tδ)‖ = 0.

Proof. One has

(10) ẇδ = −Twδ + ζδ, ζδ = P (fδ − f), ‖ζδ‖ ≤ ‖P‖δ.

The unique solution of (10) is

wδ(t) = e−tTwδ(0) +
t�

0

e−(t−s)T ζδ ds.



80 N. S. Hoang and A. G. Ramm

Let us show that limδ→0 ‖wδ(tδ)‖ = 0. One has

(11) lim
t→∞
‖wδ(t)‖ ≤ lim

t→∞
‖e−tTwδ(0)‖+ lim

t→∞

∥∥∥t�
0

e−(t−s)T ζδ ds
∥∥∥.

Let Eλ be the resolution of the identity corresponding to T . One uses the
spectral theorem to get

t�

0

e−(t−s)T ds ζδ =
t�

0

‖T‖�

0

dEλ ζδe
−(t−s)λ ds =

‖T‖�

0

e−tλ
etλ − 1
λ

dEλ ζδ(12)

=
‖T‖�

0

1− e−tλ

λ
dEλ ζδ.

Note that

(13) 0 ≤ 1− e−tλ

λ
≤ t, ∀λ > 0, t ≥ 0,

since 1− x ≤ e−x for x ≥ 0. From (12) and (13), one obtains∥∥∥t�
0

e−(t−s)T ds ζδ

∥∥∥2
=
‖T‖�

0

∣∣∣∣1− e−tλλ

∣∣∣∣2d〈Eλζδ, ζδ〉(14)

≤ t2
‖T‖�

0

d〈Eλζδ, ζδ〉 = t2‖ζδ‖2.

This estimate also follows from the inequality ‖e−(t−s)T ‖ ≤ 1, which holds
for T ∗ = T ≥ 0 and t ≥ s. Indeed, one has ‖

	t
0 e
−(t−s)T ds‖ ≤ t, and estimate

(14) follows.
Since ‖ζδ‖ ≤ ‖P‖δ, from (11) and (14), one gets

lim
δ→0
‖wδ(tδ)‖ ≤ lim

δ→0
(‖e−tδTwδ(0)‖+ tδδ‖P‖) = 0.

Here we have used the relation

lim
δ→0
‖e−tδTwδ(0)‖ = ‖PNw0‖ = 0,

where the last equality holds because w0 ∈ N⊥. Theorem 2 is proved.

From Theorem 2, it follows that the relation

tδ =
C

δγ
, γ = const, γ ∈ (0, 1),

where C > 0 is a constant, can be used as an a priori stopping rule, i.e., for
such tδ one has

(15) lim
δ→0
‖uδ(tδ)− y‖ = 0.
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2.3. Discrepancy principle. In this section we assume that A is a linear
finite-rank operator. Thus, it is a bounded linear operator. Let us consider
equation (1) with noisy data fδ, and a DSM of the form

(16) u̇δ = −PAuδ + Pfδ, uδ(0) = u0,

for solving this equation. Equation (16) has been used in Section 2.2. Recall
that y denotes the minimal-norm solution of (1), and that N (T ) = N (A)
with our choice of P .

Theorem 3. Let T := PA and Q := AP . Assume that ‖Au0−fδ‖ > Cδ
and Q = Q∗ ≥ 0, T ∗ = T ≥ 0, and T is a finite-rank operator. Then the
solution tδ to the equation

(17) h(t) := ‖Auδ(t)− fδ‖ = Cδ, C = const, C ∈ (1, 2),

does exist , is unique, limδ→0 tδ =∞, and

(18) lim
δ→0
‖uδ(tδ)− y‖ = 0,

where y is the unique minimal-norm solution to (1).

Proof. Define

vδ(t) := Auδ(t)− fδ, w(t) := u(t)− y, w0 := u0 − y.

One has

d

dt
‖vδ(t)‖2 = 2〈Au̇δ(t), Auδ(t)− fδ〉(19)

= 2〈A[−P (Auδ(t)− fδ)], Auδ(t)− fδ〉
= −2〈AP (Auδ − fδ), Auδ − fδ〉 ≤ 0,

where the last inequality holds because AP = Q ≥ 0. Thus, ‖vδ(t)‖ is a
nonincreasing function.

Let us prove that equation (17) has a solution for C ∈ (1, 2). One has
the following commutation formulas:

e−sTP = Pe−sQ, Ae−sT = e−sQA.

Using these formulas and the representation

uδ(t) = e−tTu0 +
t�

0

e−(t−s)TPfδ ds,
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one gets

vδ(t) = Auδ(t)− fδ = Ae−tTu0 +A

t�

0

e−(t−s)TPfδ ds− fδ(20)

= e−tQAu0 + e−tQ
t�

0

esQ dsQfδ − fδ

= e−tQA(u0 − y) + e−tQf + e−tQ(etQ − I)fδ − fδ
= e−tQAw0 − e−tQfδ + e−tQf = e−tQAu0 − e−tQfδ.

Note that
lim
t→∞

e−tQAw0 = lim
t→∞

Ae−tTw0 = APNw0 = 0.

Here the continuity of A and the relation

lim
t→∞

e−tTw0 = lim
t→∞

‖T‖�

0

e−st dEsw0 = (E0 − E−0)w0 = PNw0

were used. Therefore,

(21) lim
t→∞
‖vδ(t)‖ = lim

t→∞
‖e−tQ(f − fδ)‖ ≤ ‖f − fδ‖ ≤ δ,

where ‖e−tQ‖ ≤ 1 because Q ≥ 0. The function h(t) is continuous on [0,∞),
h(0) = ‖Au0 − fδ‖ > Cδ and h(∞) ≤ δ. Thus, equation (17) must have a
solution tδ.

Let us prove the uniqueness of tδ. If tδ is nonunique, then without loss of
generality we can assume that there exists t1 > tδ such that ‖Auδ(t1)−fδ‖ =
Cδ. Since ‖vδ(t)‖ is nonincreasing and ‖vδ(tδ)‖ = ‖vδ(t1)‖, one has

‖vδ(t)‖ = ‖vδ(tδ)‖, ∀t ∈ [tδ, t1].

Thus,

(22)
d

dt
‖vδ(t)‖2 = 0, ∀t ∈ (tδ, t1).

Using (19) and (22) one obtains

‖
√
AP (Auδ(t)− fδ)‖2 = 〈AP (Auδ(t)− fδ), Auδ(t)− fδ〉 = 0, ∀t ∈ [tδ, t1],

where
√
AP = Q1/2 ≥ 0 is well defined since Q = Q∗ ≥ 0. This implies that

Q1/2(Auδ − fδ) = 0. Thus

(23) Q(Auδ(t)− fδ) = 0, ∀t ∈ [tδ, t1].

From (20) one gets

(24) vδ(t) = Auδ(t)− fδ = e−tQAu0 − e−tQfδ.



Dynamical systems method 83

Since Qe−tQ = e−tQQ and e−tQ is an isomorphism, equalities (23) and (24)
imply

Q(Au0 − fδ) = 0.

This and (24) imply

AP (Auδ(t)− fδ) = e−tQ(QAu0 −Qfδ) = 0, t ≥ 0.

Hence (19) yields

(25)
d

dt
‖vδ‖2 = 0, t ≥ 0.

Consequently,

Cδ < ‖Auδ(0)− fδ‖ = ‖vδ(0)‖ = ‖vδ(tδ)‖ = ‖Auδ(tδ)− fδ‖ = Cδ.

This is a contradiction which proves the uniqueness of tδ.
Let us prove (18). First, we have the following estimate:

‖Au(tδ)− f‖ ≤ ‖Au(tδ)−Auδ(tδ)‖+ ‖Auδ(tδ)− fδ‖+ ‖fδ − f‖(26)

≤
∥∥∥e−tδQ tδ�

0

esQQds
∥∥∥‖fδ − f‖+ Cδ + δ,

where u(t) solves (2) and uδ(t) solves (9). One uses the inequality∥∥∥e−tδQ tδ�

0

esQQds
∥∥∥ = ‖I − e−tδQ‖ ≤ 2,

and concludes from (26) that

(27) lim
δ→0
‖Au(tδ)− f‖ = 0.

Secondly, we claim that
lim
δ→0

tδ =∞.

Suppose the contrary. Then there exist t0 > 0 and a sequence (tδn)∞n=1 with
tδn < t0 and limn→∞ δn = 0 such that

(28) lim
n→∞

‖Au(tδn)− f‖ = 0.

Analogously to (19), one proves that

d

dt
‖v‖2 ≤ 0,

where v(t) := Au(t)− f . Thus, ‖v(t)‖ is nonincreasing. This and (28) imply
the relation ‖v(t0)‖ = ‖Au(t0)− f‖ = 0. Thus,

0 = v(t0) = e−t0QA(u0 − y).
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Therefore A(u0 − y) = et0Qe−t0QA(u0 − y) = 0, so u0 − y ∈ N . Since
u0 − y ∈ N⊥, it follows that u0 = y. This is a contradiction because

Cδ ≤ ‖Au0 − fδ‖ = ‖f − fδ‖ ≤ δ, 1 < C < 2.

Thus,

(29) lim
δ→0

tδ =∞.

To continue the proof of (18), notice that, from (20) and the relation
‖Auδ(tδ)− fδ‖ = Cδ, one has

Cδtδ = ‖tδe−tδQAw0 − tδe−tδQ(fδ − f)‖(30)

≤ ‖tδe−tδQAw0‖+ ‖tδe−tδQ(fδ − f)‖ ≤ ‖tδe−tδQAw0‖+ tδδ.

We claim that

(31) lim
δ→0

tδe
−tδQAw0 = lim

δ→0
tδAe

−tδTw0 = 0.

Observe that (31) holds if T ≥ 0 has finite rank, and w0 ∈ N⊥. It also holds
if T ≥ 0 is compact and the Fourier coefficients w0j := 〈w0, φj〉, Tφj = λjφj ,
decay sufficiently fast. In this case

‖Ae−tTw0‖2 ≤ ‖T 1/2e−tTw0‖2

=
∞∑
j=1

λje
−2λjt|w0j |2 =: S = o(1/t2), t→∞,

provided that
∑∞

j=1 |w0j |λ−2
j <∞. Indeed,

S =
∑

λj≤1/t2/3

+
∑

λj>1/t2/3

=: S1 + S2.

One has

S1 ≤
1
t2

∑
λj≤t−2/3

|w0j |2

λ2
j

= o(1/t2), S2 ≤ ce−2t1/3 = o

(
1
t2

)
, t→∞,

where c > 0 is a constant.
From (31) and (30), one gets

0 ≤ lim
δ→0

(C − 1)δtδ ≤ lim
δ→0
‖tδe−tδQAw0‖ = 0.

Thus,

(32) lim
δ→0

δtδ = 0.

Now, the desired conclusion (18) follows from (29), (32) and Theorem 2.
Theorem 3 is proved.
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2.4. An iterative scheme. Let us solve stably equation (1) assuming that
f is not known, but fδ, the noisy data, are known, where ‖fδ − f‖ ≤ δ.
Consider the following discrete version of the DSM:

(33) un+1,δ = un,δ − hP (Aun,δ − fδ), uδ,0 = u0.

Define un := un,δ when δ 6= 0, and set

wn := un − y, T := PA, w0 := u0 − y ∈ N⊥.

Let n = nδ be the stopping rule for iterations (33). Let us prove the following
result:

Theorem 4. Assume that T = T ∗ ≥ 0, h‖T‖ < 2, limδ→0 nδh = ∞,
limδ→0 nδhδ = 0, and w0 ∈ N⊥. Then

(34) lim
δ→0
‖wnδ‖ = lim

δ→0
‖unδ − y‖ = 0.

Proof. One has

(35)
wn+1 = wn − hTwn + hζδ, w0 = u0 − y,
ζδ = P (fδ − f), ‖ζδ‖ ≤ ‖P‖δ.

The unique solution of (35) is

wn+1 = (I − hT )n+1w0 + h
n∑
i=0

(I − hT )iζδ.

We show that limδ→0 ‖wnδ‖ = 0. One has

(36) ‖wn‖ ≤ ‖(I − hT )nw0‖+
∥∥∥h n−1∑

i=0

(I − hT )iζδ
∥∥∥.

Let Eλ be the resolution of the identity corresponding to T . One uses the
spectral theorem to get

h

n−1∑
i=0

(I − hT )i = h

n−1∑
i=0

‖T‖�

0

(1− hλ)i dEλ = h

‖T‖�

0

1− (1− λh)n

1− (1− hλ)
dEλ(37)

=
‖T‖�

0

1− (1− λh)n

λ
dEλ.

Note that

(38) 0 ≤ 1− (1− hλ)n

λ
≤ hn, ∀λ > 0, t ≥ 0,
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since 1− (1− α)n ≤ αn for all α ∈ [0, 2]. From (37) and (38), one obtains∥∥∥h n−1∑
i=0

(I − hT )iζδ
∥∥∥2

=
‖T‖�

0

∣∣∣∣1− (1− λh)n

λ

∣∣∣∣2 d〈Eλζδ, ζδ〉(39)

≤ (hn)2
‖T‖�

0

d〈Eλζδ, ζδ〉 = (nh)2‖ζδ‖2.

Alternatively, this estimate follows from the inequality ‖(I − hT )i‖ ≤ 1,
provided that 0 ≤ hT < 2. Indeed, in this case ‖

∑n−1
i=0 (I − hT )i‖ ≤ n, and

this implies (39).
Since ‖ζδ‖ ≤ ‖P‖δ, from (36) and (39), one gets

lim
δ→0
‖wnδ‖ ≤ lim

δ→0
(‖(I − hT )nδwδ(0)‖+ hnδδ‖P‖) = 0.

Here we have used the relation

lim
δ→0
‖(I − hT )nδwδ(0)‖ = ‖PNw0‖ = 0,

and the last equality holds because w0 ∈ N⊥. Theorem 4 is proved.

From Theorem 4, it follows that the relation

nδ =
C

hδγ
, γ = const, γ ∈ (0, 1),

where C > 0 is a constant, can be used as an a priori stopping rule, i.e., for
such nδ one has

(40) lim
δ→0
‖unδ − y‖ = 0.

2.5. An iterative scheme with a stopping rule based on a discrepancy
principle. In this section we assume that A is a finite-rank linear operator.
Thus, it is a bounded linear operator. Let us consider equation (1) with
noisy data fδ, and a DSM of the form

(41) un+1 = un − hP (Aun − fδ), un|n=0 = u0,

for solving this equation. Here u0 is an arbitrary initial approximation. Equa-
tion (41) has been used in Section 2.4. Recall that y denotes the minimal-
norm solution of equation (1). An example of a choice of P is given in
Section 3.

Note that N := N (T ) = N (A).

Theorem 5. Let T := PA and Q := AP . Assume that ‖Au0−fδ‖ > Cδ,
Q = Q∗ ≥ 0, T ∗ = T ≥ 0, h‖T‖ < 2, h‖Q‖ < 2, and T is a finite-rank
operator. Then there exists a unique nδ such that

(42) ‖Aunδ − fδ‖ ≤ Cδ < ‖Aunδ−1 − fδ‖, C = const, C ∈ (1, 2).
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For this nδ one has

(43) lim
δ→0
‖unδ − y‖ = 0.

Proof. Define

vn := Aun − fδ, wn := un − y, w0 := u0 − y.

From (41), one gets

vn+1 = Aun+1 − fδ = Aun − fδ − hAP (Aun − fδ) = vn − hQvn.

This implies

‖vn+1‖2 − ‖vn‖2 = 〈vn+1 − vn, vn+1 + vn〉(44)
= 〈−hQvn, vn − hQvn + vn〉
= −〈vn, hQ(2− hQ)vn〉 ≤ 0

where the last inequality holds because AP = Q ≥ 0 and ‖hQ‖ < 2. Thus,
(‖vn‖)∞n=1 is a nonincreasing sequence.

Let us prove that equation (42) has a solution for C ∈ (1, 2). One has
the following commutation formulas:

(I − hT )nP = P (I − hQ)n, A(I − hT )n = (I − hQ)nA.

Using these formulas, the representation

un = (I − hT )nu0 + h
n−1∑
i=0

(I − hT )iPfδ,

and the identity (I −B)
∑n−1

i=0 B
i = I −Bn, with B = I −hQ, I −B = hQ,

one gets

vn = Aun − fδ = A(I − hT )nu0 +Ah

n−1∑
i=0

(I − hT )iPfδ − fδ(45)

= (I − hQ)nAu0 +
n−1∑
i=0

(I − hQ)ihQfδ − fδ

= (I − hQ)nAu0 − (I − (I − hQ)n)fδ − fδ
= (I − hQ)n(Au0 − f) + (I − hQ)n(f − fδ)
= (I − hQ)nAw0 + (I − hQ)n(f − fδ).

Let V := hQ. If V = V ∗ ≥ 0 is an operator with ‖V ‖ ≤ 2, then ‖I − V ‖ =
sup0≤s≤2 |1− s| ≤ 1. Thus, ‖I − hQ‖ ≤ 1.

Note that

lim
n→∞

(I − hQ)nAw0 = lim
n→∞

A(I − hT )nw0 = APNw0 = 0,

where PN is the orthoprojection onto the null-space N of the operator T ,
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and where the continuity of A and the relation

lim
n→∞

(I − hT )nw0 = lim
n→∞

‖T‖�

0

(1− sh)n dEsw0 = (E0 − E−0)w0 = PNw0

for 0 ≤ sh < 2 were used. Therefore,

(46) lim
n→∞

‖vδ(t)‖ = lim
n→∞

‖(I − hQ)n(f − fδ)‖ ≤ ‖f − fδ‖ ≤ δ,

where ‖I−hQ‖ ≤ 1 because Q ≥ 0 and ‖hQ‖ < 2. The sequence {‖vn‖}∞n=1

is nonincreasing with ‖v0‖ > Cδ and limn→∞ ‖vn‖ ≤ δ. Thus, there exists
nδ > 0 such that (42) holds.

Let us prove (43). Let un,0 be the sequence defined by the relations

un+1,0 = un,0 − hP (Aun,0 − f), u0,0 = u0.

First, we have the following estimate:

‖Aunδ,0 − f‖ ≤ ‖Aunδ −Aunδ,0‖+ ‖Aunδ − fδ‖+ ‖fδ − f‖(47)

≤
∥∥∥ nδ−1∑
i=0

(I − hQ)ihQ
∥∥∥‖fδ − f‖+ Cδ + δ.

Since 0 ≤ hQ < 2, one has ‖I − hQ‖ ≤ 1. This implies∥∥∥nδ−1∑
i=0

(I − hQ)ihQ
∥∥∥ = ‖I − (I − hQ)nδ‖ ≤ 2,

and one concludes from (47) that

(48) lim
δ→0
‖Aunδ,0 − f‖ = 0.

Secondly, we claim that
lim
δ→0

hnδ =∞.

Suppose the contrary. Then there exist n0 > 0 and a sequence (nδn)∞n=1 with
nδn < n0 such that

(49) lim
n→∞

‖Aunδ,0 − f‖ = 0.

Analogously to (44), one proves that

‖vn,0‖ ≤ ‖vn−1,0‖,
where vn,0 = Aun,0 − f . Thus, the sequence ‖vn,0‖ is nonincreasing. This
and (49) imply the relation ‖vn0,0‖ = ‖Aun0,0 − f‖ = 0. Thus,

0 = vn0,0 = (I − hQ)n0A(u0 − y).

This implies A(u0−y) = (I−hQ)−n0(I−hQ)n0A(u0−y) = 0, so u0−y ∈ N .
Since, by the assumption, u0 − y ∈ N⊥, it follows that u0 = y. This is a
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contradiction because

Cδ ≤ ‖Au0 − fδ‖ = ‖f − fδ‖ ≤ δ, 1 < C < 2.

Thus,

(50) lim
δ→0

hnδ =∞.

Let us continue the proof of (43). From (45) and ‖Aunδ − fδ‖ = Cδ, one
has

Cδnδh = ‖nδh(I − hQ)nδAw0 − nδh(I − hQ)nδ(fδ − f)‖(51)
≤ ‖nδh(I − hQ)nδAw0‖+ ‖nδh(I − hQ)nδ(fδ − f)‖
≤ ‖nδh(I − hQ)nδAw0‖+ nδhδ.

We note that if w0 ∈ N⊥, 0 ≤ hT < 2, and T is a finite-rank operator, then

(52) lim
δ→0

nδh(I − hQ)nδAw0 = lim
δ→0

nδhA(I − hT )nδw0 = 0.

From (51) and (52) one gets

0 ≤ lim
δ→0

(C − 1)δhnδ ≤ lim
δ→0
‖nδh(I − hQ)nδAw0‖ = 0.

Thus,

(53) lim
δ→0

δnδh = 0.

Now (43) follows from (50), (53) and Theorem 4. Theorem 5 is proved.

3. Numerical experiments

3.1. Computing uδ(tδ). In [3] the DSM (9) was investigated with P =
A∗ and the singular value decomposition (SVD) of A was assumed known.
In general, it is computationally expensive to get the SVD of large scale
matrices. In this paper, we have derived an iterative scheme for solving
ill-conditioned linear algebraic systems Au = fδ without using SVD of A.

Choose P = (A∗A + a)−1A∗ where a is a fixed positive constant. This
choice of P satisfies all the conditions in Theorem 3. In particular, Q =
AP = A(A∗A+ aI)−1A∗ = AA∗(AA∗ + aI)−1 ≥ 0 is a selfadjoint operator,
and T = PA = (A∗A+ aI)−1A∗A ≥ 0 is a selfadjoint operator. Since

‖T‖ =
∥∥∥∥ ‖A

∗A‖�

0

λ

λ+ a
dEλ

∥∥∥∥ = sup
0≤λ≤‖A∗A‖

λ

λ+ a
< 1,

where Eλ is the resolution of the identity of A∗A, the condition h‖T‖ < 2 in
Theorem 5 is satisfied for all 0 < h ≤ 1. Set h = 1 and P = (A∗A+ a)−1A∗

in (41). Then one gets the following iterative scheme:

(54) un+1 = un − (A∗A+ aI)−1(A∗Aun −A∗fδ), u0 = 0.
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We have chosen u0 = 0 for simplicity. However, one may choose u0 = v0
if v0 is known to be a better approximation to y than 0 and v0 ∈ N⊥. In
iterations (54) we use a stopping rule of discrepancy type. Indeed, we stop
the iterations if un satisfies the condition

(55) ‖Aun − fδ‖ ≤ 1.01δ.

The choice of a affects both the accuracy and the computation time of
the method. If a is too large, one needs more iterations to approach the
desired accuracy, so the computation time will be large. If a is too small,
then the results become less accurate because for a too small the inversion
of the operator A∗A+ aI is an ill-posed problem since the operator A∗A is
not boundedly invertible. Using the idea of the choice of the initial guess of
the regularization parameter from [2], we choose a to satisfy the condition

(56) δ ≤ φ(a) := ‖A(A∗A+ a)−1A∗fδ − fδ‖ ≤ 2δ.

This can be done by using the following strategy:

1. Choose a := δ‖A‖2/(3‖fδ‖) as an initial guess for a.
2. Compute φ(a). If a satisfies (56), then we are done. Otherwise, go to

Step 3.
3. If c = φ(a)/δ > 3, replace a by a/[2(c− 1)] and go back to Step 2.

If 2 < c ≤ 3, then replace a by a/[2(c− 1)] and go back to Step 2.
Otherwise, go to Step 4.

4. If c = φ(a)/δ < 1, then replace a by 3a. If the inequality c < 1 has
occurred in an earlier iteration, stop the iterations and use 3a as a in
iterations (54). Otherwise, go back to Step 2.

In our experiments, we denote by DSM the iterative scheme (54), by
VRi a Variational Regularization method (VR) with a as the regularization
parameter, and by VRn the VR in which Newton’s method is used for finding
the regularization parameter from a discrepancy principle. We compare these
methods in terms of relative error and number of iterations, denoted by niter.

All the experiments were carried out in the double arithmetics precision
environment using MATLAB.

3.2. A linear algebraic system related to an inverse problem for the heat
equation. In this section, we apply the DSM and the VR to solve a linear
algebraic system used in [2]. This linear algebraic system is a part of nu-
merical solution of an inverse problem for the heat equation. This problem
reduces to a Volterra integral equation of the first kind with [0, 1] as the
integration interval. The kernel is K(s, t) = k(s− t) with

k(t) =
t−3/2

2κ
√
π

exp
(
− 1

4κ2t

)
.
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Here, we use the value κ = 1. In [2] the integral equation was discretized
by means of simple collocation and the midpoint rule with n points. The
unique exact solution un was constructed, and then the right-hand side bn
was produced as bn = Anun (see [2]). In our test, we use n = 10, 20, . . . , 100
and bn,δ = bn+en, where en is a vector containing random entries, normally
distributed with mean 0, variance 1, and scaled so that ‖en‖ = δrel‖bn‖.
This linear system is ill-posed: the condition number of A100 obtained by
using the function cond provided by MATLAB is 1.3717 · 1037. This shows
that the corresponding linear algebraic system is severely ill-conditioned.

Table 1. Numerical results for the inverse heat equation with δrel = 0.05,
n = 10i, i = 1,10.

DSM VRi VRn

n niter ‖uδ − y‖2/‖y‖2 niter ‖uδ − y‖2/‖y‖2 niter ‖uδ − y‖2/‖y‖2
10 3 0.1971 1 0.2627 5 0.2117

20 4 0.3359 1 0.4589 5 0.3551

30 4 0.3729 1 0.4969 5 0.3843

40 4 0.3856 1 0.5071 5 0.3864

50 5 0.3158 1 0.4789 6 0.3141

60 6 0.2892 1 0.4909 6 0.3060

70 7 0.2262 1 0.4792 8 0.2156

80 6 0.2623 1 0.4809 7 0.2600

90 5 0.2856 1 0.4816 7 0.2715

100 7 0.2358 1 0.4826 7 0.3405
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Fig. 1. Plots of solutions obtained by DSM and VR for the inverse heat equation when
n = 100, δrel = 0.05 (left) and δrel = 0.01 (right)
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Table 1 shows that the results obtained by the DSM are comparable to
those by the VRn in terms of accuracy. The time of computation of the DSM
is also comparable to that of the VRn. In some situations, the results by
VRn and the DSM are the same although the VRn uses three more iterations
than does the DSM. The conclusion from this table is that DSM competes
favorably with the VRn in both accuracy and time of computation.

Figure 1 plots numerical solutions to the inverse heat equation for δrel =
0.05 and δrel = 0.01 when n = 100. From the figure one can see that the
numerical solutions obtained by the DSM are about the same as those by
the VRn. In these examples, the time of computation of the DSM is about
the same as that of the VRn.

The conclusion is that the DSM competes favorably with the VRn in
this experiment.

4. Concluding remarks. The iterative scheme (54) can be considered
as a modification of the Landweber iterations. The difference between the
two methods is in multiplication by P = (A∗A+aI)−1. Our iterative method
is much faster than the conventional Landweber iterations. The iterative
method (54) is an analog of the Gauss–Newton method. It can be considered
as a regularized Gauss–Newton method for solving ill-conditioned linear
algebraic systems. The advantage of using (54) instead of using (4.1.3) in
[2] is that one only has to compute the lower upper (LU) decomposition of
A∗A+aI once while the algorithm in [2] requires computing LU at every step.
Note that computing the LU is the main cost for solving a linear system.
Numerical experiments show that the new method competes favorably with
the VR in our experiments.
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