Probability distribution solutions of a general linear equation of infinite order

by Tomasz Kochanek and Janusz Morawiec (Katowice)

Abstract

Let (Ω, \mathcal{A}, P) be a probability space and let $\tau: \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ be strictly increasing and continuous with respect to the first variable, and \mathcal{A}-measurable with respect to the second variable. We obtain a partial characterization and a uniqueness-type result

 for solutions of the general linear equation$$
F(x)=\int_{\Omega} F(\tau(x, \omega)) P(d \omega)
$$

in the class of probability distribution functions.

1. Introduction. In this paper we deal with the linear functional equation

$$
\begin{equation*}
F(x)=\int_{\Omega} F(\tau(x, \omega)) P(d \omega) \tag{1}
\end{equation*}
$$

Several particular cases of (1) appear in various areas of applications. For instance, in the case where $\tau(x, \omega)=x+\omega$ the corresponding equation, called the Integrated Cauchy Functional Equation, is of importance in probability theory (see [27], [28]). G. Choquet and J. Deny were the first to consider that version of (1) (see [3], [9]). The case $\tau(x, \omega)=\alpha x+\omega$ is closely connected with refinement equations (see [8], [15], [26]), which generate wavelets bases (see [4], [7], [20]) and splines (see [6], [19]). They are also fundamental to subdivision schemes (see [5], [10]). Equation (1) also appears in such areas of mathematics as iterated function systems (see [12], [14]), Markov chains (see [11], [21]) and perpetuities (see [13], [16], [29]).

For more information about results concerning equation (1) the reader is referred to the survey paper [1], and to [17], [18] for a complete theory of iterative functional equations.

[^0]In the present paper we deal with the following problem: what can be said about uniqueness and properties of probability distribution (p.d.) solutions of (1) assuming only reasonable conditions on the given mapping τ ? We establish a uniqueness-type result which allows us to determine all p.d. solutions, provided we know all continuous p.d. solutions satisfying some special boundary conditions.
2. Preliminaries. Throughout the paper, (Ω, \mathcal{A}, P) is a probability space and $\tau: \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ is a mapping such that for every $x \in \mathbb{R}$ the function $\tau(x, \cdot)$ is \mathcal{A}-measurable, and for every $\omega \in \Omega$ the function $\tau(\cdot, \omega)$ is strictly increasing and continuous.

We are interested in the following two classes of solutions of (1):
$\mathcal{I}:=\{F: \mathbb{R} \rightarrow[0,1] \mid F$ is a weakly increasing solution of (1) such that

$$
\left.F(-\infty):=\lim _{x \rightarrow-\infty} F(x)=0 \text { and } F(+\infty):=\lim _{x \rightarrow+\infty} F(x)=1\right\}
$$

$\mathcal{C}:=\{F \in \mathcal{I}: F$ is continuous $\}$.
It will be convenient to consider equation (1) in a more general situation. If $I \subset \mathbb{R}$ is an interval and $\sigma: I \times \Omega \rightarrow I$ is a mapping which is weakly increasing and continuous with respect to the first variable, and \mathcal{A}-measurable with respect to the second variable, then we rewrite (1) as

$$
\begin{equation*}
F(x)=\int_{\Omega} F(\sigma(x, \omega)) P(d \omega) \tag{2}
\end{equation*}
$$

We denote by $\mathcal{C}_{\sigma}(I)$ the class of all continuous and weakly increasing solutions $F: I \rightarrow \mathbb{R}$ of (2), and put

$$
\mathcal{C}_{\sigma}^{0}(I)=\left\{F \in \mathcal{C}_{\sigma}(I): \lim _{x \rightarrow \inf I} F(x)=0 \text { and } \lim _{x \rightarrow \sup I} F(x)=1\right\}
$$

We say that a subset S of I is σ-invariant if $S \neq \emptyset$ and for every $x \in S$ we have $\sigma(x, \omega) \in S$ for almost all $\omega \in \Omega$.

Given a σ-invariant subinterval J of I define a mapping $\sigma_{J}: J \times \Omega \rightarrow J$ by putting $\sigma_{J}(x, \omega)=\sigma(x, \omega)$ if $\sigma(x, \omega) \in J$, and $\sigma_{J}(x, \omega)=0$ otherwise. It is evident that for every function $F: I \rightarrow[0,1]$ we have $\left.F\right|_{J} \in \mathcal{C}_{\sigma_{J}}^{0}(J)$ if and only if $F \in \mathcal{C}_{\sigma}^{0}(I), \lim _{x \rightarrow \inf J} F(x)=0$ and $\lim _{x \rightarrow \sup J} F(x)=1$. Therefore, for every σ-invariant subinterval J of I we will use the symbol $\mathcal{C}_{\sigma}^{0}(J)$ instead of $\mathcal{C}_{\sigma_{J}}^{0}(J)$.

Define

$$
\mathbf{E}_{\sigma}=\{x \in I: \sigma(x, \omega)=x \text { for almost all } \omega \in \Omega\}
$$

Clearly, \mathbf{E}_{σ} is closed. Let \mathcal{U}_{σ} be the family of all open components of $I \backslash \mathbf{E}_{\sigma}$. Note that each such component is a σ-invariant interval disjoint from \mathbf{E}_{σ}.

We now quote the main result from [24] which is the first step in determining the class \mathcal{I} (cf. also [23] where a result of similar type was established in a very particular case of (1)).

Theorem 1 (see [24, Theorem 2]).
(i) If $\mathbf{E}_{\tau}=\emptyset$, then $\mathcal{C}=\mathcal{I}$.
(ii) If $\mathbf{E}_{\tau} \neq \emptyset$, then $\mathcal{C} \subsetneq \mathcal{I}$. Moreover, a function $F: \mathbb{R} \rightarrow[0,1]$ belongs to \mathcal{I} if and only if it is weakly increasing, $F(-\infty)=0, F(+\infty)=1$ and on every component $J \in \mathcal{U}_{\tau}$, either F is constant or the function given by

$$
\begin{equation*}
F_{J}(x)=\frac{F(x)-F(\inf J)}{F(\sup J)-F(\inf J)} \tag{3}
\end{equation*}
$$

belongs to $\mathcal{C}_{\tau}^{0}(J)$.
We see that p.d. solutions of (1) may be defined arbitrarily on \mathbf{E}_{τ} (they just have to meet the requirements in Theorem 1(ii)), whereas their behaviour on every component $J \in \mathcal{U}_{\tau}$ is determined by functions from $\mathcal{C}_{\tau}^{0}(J)$. It turns out that all functions belonging to that class may be described by functions from $\mathcal{C}_{\sigma}^{0}(\mathbb{R})$ with a suitable $\sigma: \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ satisfying $\mathbf{E}_{\sigma}=\emptyset$. To see this, fix $J \in \mathcal{U}_{\tau}$, any increasing homeomorphism $\phi_{J}: \mathbb{R} \rightarrow J$ and define

$$
\begin{equation*}
\sigma(\cdot, \omega)=\phi_{J}^{-1} \circ \tau(\cdot, \omega) \circ \phi_{J} \tag{4}
\end{equation*}
$$

Plainly, σ is strictly increasing and continuous with respect to the first variable, and \mathcal{A}-measurable with respect to the second. A simple calculation shows that $F_{J} \in \mathcal{C}_{\tau}^{0}(J)$ if and only if $F_{J} \circ \phi_{J} \in \mathcal{C}_{\sigma}^{0}(\mathbb{R})$. Moreover, τ-invariant subsets $S \subset J$ are in one-to-one correspondence with σ-invariant sets $\phi_{J}^{-1}(S)$. In particular, since $J \cap \mathbf{E}_{\tau}=\emptyset$, we have $\mathbf{E}_{\sigma}=\emptyset$.

The above argument, jointly with Theorem 1, justifies the assumption $\mathbf{E}_{\tau}=\emptyset$, which we will adopt from now on.

In Section 3 we prove the main result of this paper. In Section 4 we show how it can be used to describe solutions from the class \mathcal{I} in terms of solutions from a very special subclass (see Corollary 2). We finish the paper with an example, included in Section 5, which demonstrates an application of our results.

3. Uniqueness-type theorem. Let

$$
\mathcal{S}_{\sigma}=\{S \subset I: S \text { is a minimal compact } \sigma \text {-invariant interval }\} .
$$

The main result of this paper reads as follows.
Theorem 2. Assume $\mathbf{E}_{\tau}=\emptyset$. Every $F \in \mathcal{I}$ is constant on each interval from \mathcal{S}_{τ}. Moreover, for every $f: \mathcal{S}_{\tau} \rightarrow[0,1]$ there is at most one $F \in \mathcal{I}$ such that $\left.F\right|_{I}=f(I)$ for all $I \in \mathcal{S}_{\tau}$.

Let us stress that $\mathcal{S}_{\tau}=\emptyset$ may happen. In such a case (1) has at most one solution in the class of all p.d. functions. Of course, the "monotonicity" of the function f is essential to produce a p.d. solution F.

Proof. For transparency we divide the proof into several parts.
Claim 1. It is enough to prove the assertion of Theorem 2 under the assumption that F is a continuous p.d. function.

This follows immediately from assertion (i) of Theorem 1.
In Claims 2-5 we constantly assume the following: $-\infty \leq \alpha<\beta \leq+\infty$, $I=\operatorname{cl}(\alpha, \beta)$ (here and below, cl stands for closure in \mathbb{R}), and $\sigma: I \times \Omega \rightarrow I$ is a mapping which is weakly increasing and continuous with respect to the first variable, \mathcal{A}-measurable with respect to the second variable, and such that $\mathbf{E}_{\sigma}=\emptyset$. We recall that $F(\pm \infty)$ always stands for $\lim _{x \rightarrow \pm \infty} F(x)$.

Claim 2. If there are distinct $F, G \in \mathcal{C}_{\sigma}(I)$ such that $F(\alpha)=G(\alpha)$ and $F(\beta)=G(\beta)$, then \mathcal{S}_{σ} is non-void.

Put

$$
\begin{aligned}
M & =\sup \{|F(x)-G(x)|: x \in I\}>0, \\
S & =\{x \in I:|F(x)-G(x)|=M\}, \\
S_{n} & =\{x \in I:|F(x)-G(x)| \leq M-1 / n\} \quad \text { for } n \in \mathbb{N} .
\end{aligned}
$$

Evidently, S is a non-void and compact subset of I, and $I \backslash S=\bigcup_{n \in \mathbb{N}} S_{n}$. Let

$$
N=\{x \in I: P(\sigma(x, \omega) \in S)=1\} .
$$

Assume that there exists $x_{0} \in I \backslash N$. This means that $P\left(\sigma\left(x_{0}, \omega\right) \notin S\right)>0$, and thus

$$
\alpha_{0}:=P\left(\sigma\left(x_{0}, \omega\right) \in S_{n_{0}}\right)>0
$$

for sufficiently large $n_{0} \in \mathbb{N}$. Set

$$
\Omega_{0}=\left\{\omega \in \Omega: \sigma\left(x_{0}, \omega\right) \in S_{n_{0}}\right\} .
$$

Then equation (2) implies

$$
\begin{aligned}
\left|F\left(x_{0}\right)-G\left(x_{0}\right)\right| & \leq \int_{\Omega}\left|F\left(\sigma\left(x_{0}, \omega\right)\right)-G\left(\sigma\left(x_{0}, \omega\right)\right)\right| P(d \omega) \\
& =\int_{\Omega_{0}}+\int_{\Omega \backslash \Omega_{0}} \leq \alpha_{0}\left(M-\frac{1}{n_{0}}\right)+\left(1-\alpha_{0}\right) M<M
\end{aligned}
$$

which shows that $x_{0} \notin S$. We infer that $S \subset N$, hence S is σ-invariant.
If $s_{1}:=\inf S$ and $s_{2}:=\sup S$, then $\sigma\left(s_{1}, \omega\right) \geq s_{1}$ and $\sigma\left(s_{2}, \omega\right) \leq s_{2}$ for almost all $\omega \in \Omega$, which, jointly with monotonicity of σ, implies that the interval $\left[s_{1}, s_{2}\right]$ is σ-invariant.

It remains to apply the Zorn-Kuratowski lemma to the family
$\{S \subset I: S$ is a compact and σ-invariant interval $\}$.
From now on \widetilde{I} stands for an element of \mathcal{S}_{σ}.

Claim 3. Define $\phi: \widetilde{I} \rightarrow \widetilde{I}$ by

$$
\phi(x)=\sup \{y \in \widetilde{I}: P(\sigma(x, \omega) \geq y)>0\} .
$$

Then:
(i) ϕ is weakly increasing and left-continuous;
(ii) for every $x \in[\inf \widetilde{I}, \sup \widetilde{I})$ we have $x<\phi(x)$.

The fact that ϕ is weakly increasing is an easy consequence of the fact that σ weakly increases as a function of the first variable.

For the left-continuity suppose, on the contrary, that $x_{0} \in \widetilde{I}$ and there exists a strictly increasing sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \widetilde{I} such that

$$
\lim _{n \rightarrow \infty} x_{n}=x_{0} \quad \text { and } \quad \gamma:=\lim _{n \rightarrow \infty} \phi\left(x_{n}\right)<\phi\left(x_{0}\right) .
$$

Choose any numbers ν, ξ such that $\gamma<\nu<\xi<\phi\left(x_{0}\right)$. By the definition of ϕ, the set

$$
C:=\left\{\omega \in \Omega: \sigma\left(x_{0}, \omega\right) \geq \xi\right\}
$$

has a positive measure. Let

$$
C_{n}=\left\{\omega \in C: \sigma\left(x_{n}, \omega\right) \geq \nu\right\} \quad \text { for } n \in \mathbb{N} .
$$

The continuity of σ as a function of the first variable yields

$$
\bigcup_{n \in \mathbb{N}} C_{n}=C .
$$

Since $\phi\left(x_{n}\right)<\nu$, we have $P\left(C_{n}\right)=0$ for $n \in \mathbb{N}$, hence $P(C)=0$; a contradiction.

Finally, suppose that $\phi(x) \leq x$ for some $x \in[\inf \widetilde{I}, \sup \widetilde{I})$. Then by the definition of ϕ, no $y \in \widetilde{I}$ with $P(\sigma(x, \omega) \geq y)>0$ exceeds x. Hence

$$
P(\sigma(x, \omega)>x) \leq \sum_{n \in \mathbb{N}} P(\sigma(x, \omega) \geq x+1 / n)=0,
$$

which means that $\sigma(x, \omega) \leq x$ for almost all $\omega \in \Omega$. However, the monotonicity of σ with respect to the first variable would then imply that the interval $[\inf \widetilde{I}, x]$ is σ-invariant and $[\inf \widetilde{I}, x] \subsetneq \widetilde{I}$, which contradicts the fact that \widetilde{I} is minimal.

Claim 4. Define $\psi: \widetilde{I} \rightarrow \widetilde{I}$ by

$$
\psi(x)=\frac{1}{2}(x+\phi(x)) .
$$

Let ψ^{n} stand for the nth iterate of ψ. Then:
(i) $\psi^{n}(\inf \widetilde{I})<\sup \widetilde{I}$ for $n \geq 0$;
(ii) the sequence $\left(\psi^{n}(\inf \widetilde{I})\right)_{n \geq 0}$ is strictly increasing;
(iii) $\lim _{n \rightarrow \infty} \psi^{n}(\inf \widetilde{I})=\sup \widetilde{I}$.

Inequality (i) follows directly from the formula of ψ and the fact that the interval \widetilde{I} is non-degenerate (which is a consequence of the assumption $\mathbf{E}_{\sigma}=\emptyset$).

With the aid of assertion (i) and Claim 3(i) we easily obtain (ii).
For the proof of (iii) set $\gamma=\lim _{n \rightarrow \infty} \psi^{n}(\inf \widetilde{I})$ and suppose that $\gamma<$ $\sup \widetilde{I}$. From the equality

$$
\psi^{n+1}(\inf \widetilde{I})=\frac{1}{2}\left(\psi^{n}(\inf \widetilde{I})+\phi\left(\psi^{n}(\inf \widetilde{I})\right)\right) \quad \text { for } n \in \mathbb{N}
$$

we get $\lim _{n \rightarrow \infty} \phi\left(\psi^{n}(\inf \widetilde{I})\right)=\gamma$. However, by (ii) and Claim 3(i), the last limit equals $\phi(\gamma)$ and we obtain $\phi(\gamma)=\gamma$, which contradicts Claim 3(ii).

Claim 5. If $F \in \mathcal{C}_{\sigma}(I)$, then F is constant on \widetilde{I}.
For $n \geq 0$ let $J_{n}=\left[\psi^{n}(\inf \widetilde{I}), \psi^{n+1}(\inf \widetilde{I})\right]$. In the light of Claim 4, it suffices to prove that $\left.F\right|_{J_{n}}$ is constant for every $n \geq 0$. Put $\xi_{n}=\psi^{n}(\inf \widetilde{I})$. Assume inductively that $F\left(\xi_{n}\right)=F(\inf \widetilde{I})$ (which is trivial for $n=0$) and fix $x \in J_{n}=\left[\xi_{n}, \psi\left(\xi_{n}\right)\right]$. By Claims 3(ii) and 4(i), we infer that $\psi\left(\xi_{n}\right)<\phi\left(\xi_{n}\right)$, hence the set

$$
\Omega_{0}:=\left\{\omega \in \Omega: \sigma\left(\xi_{n}, \omega\right) \geq x\right\}
$$

is of a positive probability α_{0}. Since $F \in \mathcal{C}_{\sigma}(I)$ and $\sigma\left(\xi_{n}, \omega\right) \geq \inf \widetilde{I}$ for almost all $\omega \in \Omega$, we have

$$
\begin{aligned}
F(\inf \widetilde{I}) & =F\left(\xi_{n}\right)=\int_{\Omega} F\left(\sigma\left(\xi_{n}, \omega\right)\right) P(d \omega)=\int_{\Omega_{0}}+\int_{\Omega \backslash \Omega_{0}} \\
& \geq \alpha_{0} F(x)+\left(1-\alpha_{0}\right) F(\inf \widetilde{I})
\end{aligned}
$$

This implies that $F(x) \leq F(\inf \widetilde{I})$, thus $F(x)=F(\inf \widetilde{I})$.
Before we proceed with the proof, let us introduce some notation. If $S \subset \mathbb{R}$ is a τ-invariant interval such that every $F \in \mathcal{C}_{\tau}(\mathbb{R})$ is constant on S, let $\kappa(S)$ denote a maximal τ-invariant interval such that $S \subset \kappa(S)$ and every $F \in \mathcal{C}_{\tau}(\mathbb{R})$ is constant on $\kappa(S)$. Obviously, such an interval exists, and the continuity of functions from $\mathcal{C}_{\tau}(\mathbb{R})$ and of $\tau(\cdot, \omega)$ for $\omega \in \Omega$ implies that it is a closed interval. By Claim 5 (applied for $I=\mathbb{R}$ and $\sigma=\tau$), the symbol $\kappa(S)$ makes sense for every $S \in \mathcal{S}_{\tau}$. Define
$\mathcal{M}=\{J \subset \mathbb{R}: J$ is a maximal τ-invariant interval such that every $F \in \mathcal{C}_{\tau}(\mathbb{R})$ is constant on $\left.J\right\}$.
The families $\mathcal{S}_{\tau}, \kappa\left(\mathcal{S}_{\tau}\right), \mathcal{M}$ each consist of pairwise disjoint non-degenerate closed intervals.

Claim 6. We have:
(i) $\kappa\left(\mathcal{S}_{\tau}\right) \subset \mathcal{M}$;
(ii) $\{J \in \mathcal{M}: J$ is compact $\} \subset \kappa\left(\mathcal{S}_{\tau}\right)$.

The first assertion is clear. For the second, observe that if $J \in \mathcal{M}$ is compact, then there is $S \in \mathcal{S}_{\tau}$ with $S \subset J$. Plainly, $\kappa(S)=J$, so $J \in \kappa\left(\mathcal{S}_{\tau}\right)$.

Claim 7. The set $\bigcup \mathcal{M}$ is closed.

Suppose that there is $x_{0} \in(\operatorname{cl} \bigcup \mathcal{M}) \backslash \bigcup \mathcal{M}$. Then there exists either an increasing sequence of right end-points of intervals from \mathcal{M} which converges to x_{0}, or a decreasing sequence of left end-points of intervals from \mathcal{M} which converges to x_{0}. Without loss of generality, assume that the latter case holds true and let $\left(I_{n}\right)_{n \in \mathbb{N}}$ be a sequence of intervals from \mathcal{M} such that $\inf I_{n+1}<\sup I_{n+1}<\inf I_{n}$ for $n \in \mathbb{N}$ and

$$
\lim _{n \rightarrow \infty} \inf I_{n}=x_{0}=\lim _{n \rightarrow \infty} \sup I_{n}
$$

Since all the intervals I_{n} are τ-invariant, we infer that

$$
P\left(\tau\left(\inf I_{n}, \omega\right) \geq \inf I_{n}\right)=1 \quad \text { and } \quad P\left(\tau\left(\sup I_{n}, \omega\right) \leq \sup I_{n}\right)=1
$$

hence $\tau\left(x_{0}, \omega\right)=x_{0}$ for almost all $\omega \in \Omega$, contrary to the fact that $\mathbf{E}_{\tau}=\emptyset$.
Claim 8. For every $g: \mathcal{M} \rightarrow[0,1]$ there exists at most one $F \in \mathcal{C}$ such that $\left.F\right|_{I}=g(I)$ for all $I \in \mathcal{M}$.

Suppose $F, G \in \mathcal{C}, F \neq G$ and $\left.F\right|_{I}=g(I)=\left.G\right|_{I}$ for all $I \in \mathcal{M}$. By Claim 7 , the set $\mathbb{R} \backslash \bigcup \mathcal{M}$ is open. Choose any of its components, (α, β), on which F and G do not coincide.

Let $I=\operatorname{cl}(\alpha, \beta)$ and $\widetilde{F}=\left.F\right|_{I}, \widetilde{G}=\left.G\right|_{I}$. It is obvious that \widetilde{F} and \widetilde{G} are continuous, weakly increasing and $\widetilde{F}(\alpha)=\widetilde{G}(\alpha), \widetilde{F}(\beta)=\widetilde{G}(\beta)$. Define a mapping $\sigma: I \times \Omega \rightarrow I$ as follows. For every $x \in I$ and $\omega \in \Omega$ put

$$
\sigma(x, \omega)= \begin{cases}\tau(x, \omega) & \text { if } \tau(x, \omega) \in I \\ \alpha & \text { if } \tau(x, \omega)<\alpha \\ \beta & \text { if } \tau(x, \omega)>\beta\end{cases}
$$

It is easily seen that σ is weakly increasing and continuous with respect to the first variable, and \mathcal{A}-measurable with respect to the second. Moreover, $\mathbf{E}_{\sigma}=\emptyset$. Now, we are going to verify that \widetilde{F} and \widetilde{G} satisfy (2).

Fix $x \in I$. Assume that $\beta<+\infty$; then $\beta \in \bigcup \mathcal{M}$, so it is a lower bound of one of the intervals from \mathcal{M}, say $I_{t_{0}}=\operatorname{cl}\left[\beta\right.$, $\left.\sup I_{t_{0}}\right)$. This implies that

$$
P\left(\tau(\beta, \omega) \leq \sup I_{t_{0}}\right)=1
$$

and therefore

$$
\begin{equation*}
P\left(\tau(x, \omega) \leq \sup I_{t_{0}}\right)=1 \tag{5}
\end{equation*}
$$

Directly from the definition of σ we infer that

$$
\int_{\{\tau(x, \omega)>\beta\}} \widetilde{F}(\sigma(x, \omega)) P(d \omega)=P(\tau(x, \omega)>\beta) \cdot F(\beta) .
$$

Condition (5) implies that $\tau(x, \omega) \in I_{t_{0}}$ for almost all $\omega \in\{\tau(x, \omega)>\beta\}$. Since F is constant on the interval $I_{t_{0}}$, we have

$$
\int_{\{\tau(x, \omega)>\beta\}} F(\tau(x, \omega)) P(d \omega)=P(\tau(x, \omega)>\beta) \cdot F(\beta) .
$$

Hence

$$
\begin{equation*}
\int_{\{\tau(x, \omega)>\beta\}} \widetilde{F}(\sigma(x, \omega)) P(d \omega)=\int_{\{\tau(x, \omega)>\beta\}} F(\tau(x, \omega)) P(d \omega) . \tag{6}
\end{equation*}
$$

In the case where $\beta=+\infty$ the above equality is trivial. Analogously we show that

$$
\begin{equation*}
\int_{\{\tau(x, \omega)<\alpha\}} \widetilde{F}(\sigma(x, \omega)) P(d \omega)=\int_{\{\tau(x, \omega)<\alpha\}} F(\tau(x, \omega)) P(d \omega) . \tag{7}
\end{equation*}
$$

Plainly,

$$
\begin{equation*}
\int_{\{\tau(x, \omega) \in I\}} \widetilde{F}(\sigma(x, \omega)) P(d \omega)=\int_{\{\tau(x, \omega) \in I\}} F(\tau(x, \omega)) P(d \omega) . \tag{8}
\end{equation*}
$$

Summing up equations (6)-(8) we obtain

$$
\int_{\Omega} \widetilde{F}(\sigma(x, \omega)) P(d \omega)=\int_{\Omega} F(\tau(x, \omega)) P(d \omega),
$$

which shows that \widetilde{F} (and \widetilde{G} as well) satisfies (2). Consequently, $\widetilde{F}, \widetilde{G} \in \mathcal{C}_{\sigma}(I)$.
By Claim 2, there exists $\widetilde{I} \subset I$ such that $\widetilde{I} \in \mathcal{S}_{\sigma}$. We have just proved that for every $F \in \mathcal{C}$ its restriction $\widetilde{F}=\left.F\right|_{I}$ belongs to $\mathcal{C}_{\sigma}(I)$, thus Claim 5 shows that \widetilde{F}, and so F itself, is constant on \widetilde{I}. Consequently, the symbol $\kappa(\widetilde{I})$ makes sense.

Fix $x \in \widetilde{I}$. Since \widetilde{I} is σ-invariant, we have

$$
\begin{aligned}
& P(\sigma(x, \omega) \leq \beta) \geq P(\sigma(\sup \widetilde{I}, \omega) \leq \beta) \geq P(\sigma(\sup \widetilde{I}, \omega) \leq \sup \widetilde{I})=1, \\
& P(\sigma(x, \omega) \geq \alpha) \geq P(\sigma(\inf \widetilde{I}, \omega) \geq \alpha) \geq P(\sigma(\inf \widetilde{I}, \omega) \geq \inf \widetilde{I})=1 .
\end{aligned}
$$

Hence for all $x \in \widetilde{I}$ and almost all $\omega \in \Omega$ we have $\sigma(x, \omega)=\tau(x, \omega)$, which implies that \widetilde{I} is τ-invariant, so $\kappa(\widetilde{I}) \in \mathcal{M}$, a contradiction.

Claim 9. For every $f: \mathcal{S}_{\tau} \rightarrow[0,1]$ there exists at most one $F \in \mathcal{C}$ such that $\left.F\right|_{I}=f(I)$ for all $I \in \mathcal{S}_{\tau}$.

Suppose that there is $F \in \mathcal{C}$ satisfying $\left.F\right|_{I}=f(I)$ for all $I \in \mathcal{S}_{\tau}$. Define $g: \mathcal{M} \rightarrow[0,1]$ by

$$
g(J)= \begin{cases}f(I) & \text { if } J=\kappa(I) \text { for some } I \in \mathcal{S}_{\tau} \\ 0 & \text { if } J=(-\infty, a] \text { for some } a \in \mathbb{R} \\ 1 & \text { if } J=[b,+\infty) \text { for some } b \in \mathbb{R}\end{cases}
$$

In view of Claim 6 and the fact that at least one solution of (1) exists, the definition is correct. Of course, $\left.F\right|_{J}=g(J)$ for all $J \in \mathcal{M}$ and Claim 8 implies that F is uniquely determined.

This completes the proof of Theorem 2.
4. Concluding remarks. The following is an immediate consequence of Theorem 2.

Corollary 1. If $\mathbf{E}_{\tau}=\emptyset$ and there exists a strictly increasing function $F \in \mathcal{I}$, then $\mathcal{I}=\{F\}$.

Observe that a proof similar to that of Claim 7 shows that $\bigcup \mathcal{S}_{\tau}$ is closed. Consider any component J of the open set $\mathbb{R} \backslash \bigcup \mathcal{S}_{\tau}$. Let \widetilde{F}_{J} stand for a function from \mathcal{C} such that

$$
\begin{equation*}
\lim _{x \rightarrow \inf J} \widetilde{F}_{J}(x)=0 \quad \text { and } \quad \lim _{x \rightarrow \sup J} \widetilde{F}_{J}(x)=1 \tag{9}
\end{equation*}
$$

provided it exists. By Theorem 2, such a function is then unique. The following corollary is the next step in reducing the investigation of the class \mathcal{I} to some special situations. In fact, now we may focus on solutions \widetilde{F}_{J} such that $\widetilde{F}_{J}(x)=0$ for $x \in(-\infty, \inf J]$ and $\widetilde{F}_{J}(x)=1$ for $x \in[\sup J,+\infty)$.

Corollary 2. Assume $\mathbf{E}_{\tau}=\emptyset$. A function $F: \mathbb{R} \rightarrow[0,1]$ belongs to \mathcal{I} if and only if it is weakly increasing, continuous, $F(-\infty)=0, F(+\infty)=1$, $\left.F\right|_{I}$ is constant for all $I \in \mathcal{S}_{\tau}$, and on every component J of $\mathbb{R} \backslash \bigcup \mathcal{S}_{\tau}$ it is either constant or expressed by (3), where $\widetilde{F}_{J} \in \mathcal{C}$ satisfies (9) and is uniquely determined.

In the case where the component J is bounded one can try to apply known results in order to get the existence of \widetilde{F}_{J}. One of such tools could be Corollary 1 from [22], where [0,1] plays the role of $\mathrm{cl} J$; see also [2].

REmARK 1. Assume $\mathbf{E}_{\tau}=\emptyset$. Then $\mathcal{I} \neq \emptyset$ if and only if there exists at least one function $\widetilde{F}_{J} \in \mathcal{C}$ satisfying (9) for some component J of $\mathbb{R} \backslash \bigcup \mathcal{S}_{\tau}$.

Proof. Sufficiency is clear. Now suppose that $F \in \mathcal{I}$, but no \widetilde{F}_{J} exists. Then, since F is continuous, we have

$$
(0,1)=F(\mathbb{R}) \backslash\{0,1\} \subset F\left(\bigcup \mathcal{S}_{\tau}\right)
$$

However, the last set is countable, a contradiction.
Remark 2. Assume $\mathbf{E}_{\tau}=\emptyset$. If S is a τ-invariant half-line disjoint from $\bigcup \mathcal{S}_{\tau}$, then every $F \in \mathcal{C}$ is constant on S.

Proof. If $S=[b,+\infty)$ for some $b \in \mathbb{R}$, one can verify that all arguments in Claims 3-5 work with \widetilde{I} replaced by S. If $S=(-\infty, a]$ for some $a \in \mathbb{R}$, the proof runs analogously. One has to change sup to inf in the formula defining ϕ.
5. Example. We now demonstrate how Corollary 2, jointly with already known results, works in the specific case where
$\tau_{1}(x):=\left\{\begin{array}{ll}x & \text { if } x \in(-\infty, 0), \\ 3 x & \text { if } x \in\left[0, \frac{1}{3}\right), \\ \frac{3}{5} x+\frac{4}{5} & \text { if } x \in\left[\frac{1}{3}, 2\right), \\ 2 x-2 & \text { if } x \in[2, \infty),\end{array} \quad \tau_{2}(x):= \begin{cases}\frac{3}{5} x-\frac{2}{5} & \text { if } x \in\left(-\infty, \frac{2}{3}\right), \\ 3 x-2 & \text { if } x \in\left[\frac{2}{3}, 1\right), \\ \frac{2}{3} x+\frac{1}{3} & \text { if } x \in\left[1, \frac{5}{2}\right), \\ 2 x-3 & \text { if } x \in\left[\frac{5}{2}, \infty\right),\end{cases}\right.$
and the indices 1,2 are chosen with probability $1 / 2$.

Fig. 1
In this case $\mathbf{E}_{\tau}=\{-1\}$ (see Figure 1) and, by Theorem 1(ii), $\mathcal{I} \neq \emptyset$ and we have to consider equation (1) separately on $(-\infty,-1)$ and on $(-1,+\infty)$. Fix $F \in \mathcal{I}$. The value $F(-1)$ may be an arbitrary number $a \in[0,1]$, and -1 is the only possible point of discontinuity, by Theorem 1(ii). The next remark shows that $\left.F\right|_{(-\infty,-1)}=0$.

Remark 3. Assume $\mathbf{E}_{\tau}=\emptyset$. If either $\tau(x, \omega) \leq x$ for all $x \in \mathbb{R}$ and almost all $\omega \in \Omega$, or $\tau(x, \omega) \geq x$ for all $x \in \mathbb{R}$ and almost all $\omega \in \Omega$, then $\mathcal{I}=\emptyset$.

Proof. This follows from Remark 2. Indeed, in the first case every halfline $(-\infty, a]$ with $a \in \mathbb{R}$ is τ-invariant, whereas in the second case every half-line $[b,+\infty)$ with $b \in \mathbb{R}$ is τ-invariant. Plainly, $\mathcal{S}_{\tau}=\emptyset$.

Observe that $\mathcal{S}_{\tau}=\{[1,2]\}$, so Corollary 2 implies that $\left.F\right|_{[1,2]}$ is constant, say c with $a \leq c \leq 1$. Since both $(-1,0]$ and $[3,+\infty)$ are τ-invariant, Remark 3 yields $\left.F\right|_{[3,+\infty)}=1$ and $\left.F\right|_{(-1,0]}=b$ with $a \leq b \leq c$. Finally, according to [25] we infer that F is the classical Cantor function on $[0,1]$ and an affine function on $[2,3]$.

Consequently, any solution $F \in \mathcal{I}$ depends on three parameters $0 \leq a \leq$ $b \leq c \leq 1$ and its graph looks like the one in Figure 2.

Fig. 2
Acknowledgements. This research was supported by the Silesian University Mathematics Department (Functional Equations on Abstract Structures program - the first author, and Functional Equations program-the second author).

References

[1] K. Baron and W. Jarczyk, Recent results on functional equations in a single variable, perspectives and open problems, Aequationes Math. 61 (2001), 1-48.
[2] —, 一, Random-valued functions and iterative functional equations, ibid. 67 (2004), 140-153.
[3] G. Choquet et J. Deny, Sur l'équation de convolution $\mu=\mu * \sigma$, C. R. Acad. Sci. Paris 250 (1960), 799-801.
[4] C. K. Chui and X. Shi, Continuous two-scale equations and dyadic wavelets, Adv. Comput. Math. 2 (1994), 185-213.
[5] W. Dahmen and C. A. Micchelli, Continuous refinement equations and subdivision, ibid. 1 (1993), 1-37.
[6] X. R. Dai, D. J. Feng and Y. Wang, Classification of refinable splines, Constr. Approx. 24 (2006), 187-200.
[7] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Reg. Conf. Ser. Appl. Math. 61, SIAM, Philadelphia, 1992.
[8] A. Deliu and M. C. Spruill, Existence results for refinement equations, Aequationes Math. 59 (2000), 20-37.
[9] J. Deny, Sur l'équation de convolution, in: Séminaire de Théorie du Potentiel: 4e Année 1959/60, Secrétariat Math., Paris, 1961.
[10] G. Derfel, N. Dyn and D. Levin, Generalized refinement equations and subdivision processes, J. Approx. Theory 80 (1995), 272-297.
[11] L. E. Dubins and D. A. Freedman, Invariant properties for certain Markov processes, Ann. Math. Statist. 37 (1966), 837-848.
[12] K. J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, Chichester, 1990.
[13] A. K. Grincevičjus, On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines, Teor. Veroyatnost. i Primenen. 19 (1974), 163-168 (in Russian); English transl.: Theory Probab. Appl. 19 (1974), 163-168.
[14] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
[15] R. Kapica and J. Morawiec, Probability distribution functions of the Grincevičjus series, J. Math. Anal. Appl. 342 (2008), 1380-1387.
[16] H. Kesten, Random difference equations and renewal theory for products of random matrices, Acta Math. 131 (1973), 207-248.
[17] M. Kuczma, Functional Equations in a Single Variable, Monografie Mat. 32, Polish Sci. Publ., Warszawa, 1968.
[18] M. Kuczma, B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia Math. Appl. 32, Cambridge Univ. Press, Cambridge, 1990.
[19] W. Lawton, S. L. Lee and Z. Shen, Characterization of compactly supported refinable splines, Adv. Comput. Math. 3 (1995), 137-145.
[20] D. M. Lee, J. G. Lee and S. H. Yoon, A construction of multiresolution analysis by integral equations, Proc. Amer. Math. Soc. 130 (2002), 3555-3563.
[21] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer, London, 1993.
[22] J. Morawiec, On a linear functional equation, Bull. Polish Acad. Sci. Math. 43 (1995), 131-142.
[23] J. Morawiec and L. Reich, On probability distribution solutions of a functional equation, ibid. 53 (2005), 389-399.
[24] —, 一, The set of probability distribution solutions of a linear functional equation, Ann. Polon. Math. 93 (2008), 253-261.
[25] S. Paganoni Marzegalli, One-parameter system of functional equations, Aequationes Math. 47 (1994), 50-59.
[26] V. Protasov, Refinement equations with nonnegative coefficients, J. Fourier Anal. Appl. 6 (2000), 55-78.
[27] B. Ramachandran and K.-S. Lau, Functional Equations in Probability Theory, Academic Press, Boston, 1991.
[28] C. R. Rao and D. N. Shanbhag, Choquet-Deny Type Functional Equations with Applications to Stochastic Models, Wiley, Chichester, 1994.
[29] W. Vervaat, On a stochastic difference equation and a representation of non-negative infinitely divisible random variables, Adv. Appl. Probab. 11 (1979), 750-783.

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice, Poland
E-mail: t_kochanek@wp.pl morawiec@ux2.math.us.edu.pl

Received 22.4.2008
and in final form 21.11.2008

[^0]: 2000 Mathematics Subject Classification: Primary 60E05, 39B12; Secondary 39B22, 45A05. Key words and phrases: linear functional equations, iterative functional equations, probability distribution solutions, extension of solutions, uniqueness of solutions.

