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Cauchy–Poisson transform and polynomial inequalities

by Mirosław Baran (Kraków)

Abstract. We apply the Cauchy–Poisson transform to prove some multivariate poly-
nomial inequalities. In particular, we show that if the pluricomplex Green function of a
fat compact set E in RN is Hölder continuous then E admits a Szegö type inequality with
weight function dist(x, ∂E)−(1−κ) with a positive κ. This can be viewed as a (nontrivial)
generalization of the classical result for the interval E = [−1, 1] ⊂ R.

1. Introduction. Let P(CN ) denote the set of polynomials of N com-
plex variables. An important role in pluripotential theory and approximation
theory of many variables is played by the Siciak extremal function (or poly-
nomial extremal function, see [Si1, Si2])

ΦE(z) = sup{|p(z)|1/deg p : p ∈ P(CN ), deg p ≥ 1, ‖p‖E ≤ 1}, z ∈ CN ,

where E is a fixed compact subset of CN . By the Zakharyuta–Siciak theorem
(see [Si2, Si3])

logΦE(z) = VE(z), z ∈ CN ,

where

VE(z) = sup{u(z) : u ∈ PSH(CN ), u ≤ const + log(1 + ‖z‖), u|E ≤ 0}.

If V ∗E(z) = lim supw→z VE(w) is locally bounded then it is called the pluri-
complex Green function.

If E is a compact subset of CN then, by the definition of ΦE , we have
the Bernstein–Walsh–Siciak type inequality

|p(z)| ≤ ‖p‖E · ΦE(z)deg p, p ∈ P(CN ).

An important tool in the investigations of multivariate inequalities for
derivatives of polynomials is provided by the following

2000 Mathematics Subject Classification: 31C10, 32U35, 41A17.
Key words and phrases: pluricomplex Green function, Cauchy–Poisson transform, poly-
nomial inequalities, Bernstein–Szegö type inequality.

DOI: 10.4064/ap95-3-1 [199] c© Instytut Matematyczny PAN, 2009



200 M. Baran

1.1. Proposition ([B2]). If E ⊂ RN and x ∈ E then for all p ∈ P(CN )
and all v ∈ SN−1,

(1.1) |Dvp(x)| ≤ (deg p) lim inf
ε→0+

1
ε
VE(x+ iεv)‖p‖E .

Moreover , if p has only real coefficients then we have a more precise inequal-
ity :

(1.2) |Dvp(x)| ≤ (deg p) lim inf
ε→0+

1
ε
VE(x+ iεv)(‖p‖2E − p2(x))1/2.

1.2. Remark.

(1) If E = [−1, 1] then lim infε→0+ ε
−1VE(x ± iε) = (1 − x2)−1/2 and

in this case (1.1) and (1.2) are generalizations of the well-known
Bernstein and Szegö inequalities, respectively. (The Szegö inequality
is also known as the van der Corput–Schaake inequality.)

(2) We shall see that the limit limε→0+ ε
−1VE(x + iε) always exists if

N = 1, x ∈ int(E) 6= ∅, and is equal to half the density ϕ(x) of the
equilibrium measure λE .

A general version of inequalities of type (1.1) and (1.2) for a compact
E ⊂ RN was proved in [B2, B3]. Similar inequalities were rediscovered later
by Totik [T1, T2] but only for N = 1.

2. Cauchy–Poisson transform and extremal function. Let us re-
call the definition of the Cauchy–Poisson transform (see e.g. [St, StW]).

2.1. Definition. Let H+ and H− be the upper half-plane and the lower
half-plane in C, respectively. We shall denote by Pu the Cauchy–Poisson
transform of a Borel function u : R→ R, u(t) = O(|t|κ), κ ∈ (0, 1), in H+:

Pu(ζ) = (=ζ) 1
π

∞�

−∞
|ζ − t|−2u(t) dt(2.1)

=
1
π

∞�

−∞
u(ty + x)

dt

1 + t2
,(2.2)

where ζ = x+ iy ∈ H+.

In particular, Pu is well defined if u(t) has logarithmic growth:

u(t) = O(log(1 + |t|)),

or if u is globally Hölder continuous, i.e.

|u(t)− u(τ)| ≤ const · |t− τ |κ

with κ ∈ [0, 1) (briefly, u ∈ HCκ(R)).
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We also define Pu in the whole plane C by

Pu(ζ) =
{Pu(−ζ), ζ ∈ H−,
u(ζ), ζ ∈ R.

We have

2.2. Proposition. If u ∈ HCκ(R) then Pu ∈ H(H+∪H−)∩C(C). (Here
H(Ω) is the space of harmonic functions on an open set Ω ⊂ C.)

Proof. Harmonicity of Pu is a consequence of the equality =ζ|ζ− t|−2 =
=(1/(ζ − t)) and the mean value criterion.

To prove its continuity fix an x0 ∈ R. We can write, for ζ = x+ iy,

|Pu(ζ)− u(x0)| =
∣∣∣∣ 1π

∞�

−∞
(u(ty + x)− u(x0))

dt

1 + t2

∣∣∣∣
≤ 1
π

∞�

−∞
|u(ty + x)− u(x0)|

dt

1 + t2

≤ C|x− x0|κ + C
1
π

∞�

−∞
|t|κ dt

1 + t2
|y|κ

≤ C1(|x− x0|κ + |y|κ).
2.3. Remark. Pu is also continuous on C if u ∈ C(R), since we can

then apply the Lebesgue bounded convergence theorem. We can also use the
Lebesgue theorem if |u| is bounded by C(1 + |t|)κ, κ < 1, in particular, if u
has the logarithmic growth |u(t)| ≤ C log(1 + |t|).)

To get our main result we need a theorem that establishes relations be-
tween the Zakharyuta–Siciak extremal function VE in CN and its restriction
to RN . Here a central role is played by the Cauchy–Poisson transform.

2.4. Theorem. If E is a compact set in RN then for all x, v ∈ RN and
ζ ∈ C,

(2.3) VE(x+ ζv) ≤ Pu(ζ) =
1
π

∞�

−∞
VE(x+ (<ζ + t=ζ)v) dt

1 + t2
,

where u(t) = VE(x+ tv), with equality if N = 1. In particular , if v ∈ SN−1,
ε > 0 then

(2.4) VE(x+ iεv) ≤ 1
π

∞�

−∞
VE(tεv + x)

dt

1 + t2

and

(2.5) lim inf
ε→0+

1
ε
VE(x+ iεv) ≤ 1

π

∞�

−∞
t−2VE(x+ tv) dt.
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As an immediate consequence we get

2.5. Corollary. If E is a compact set in RN and x ∈ int(E) then for
any v ∈ SN−1,

(2.6) lim inf
ε→0+

1
ε
VE(x+ iεv) ≤ 1

π

�

|t|≥distv(x,∂E)

t−2VE(x+ tv) dt.

Here distv(x, ∂E) is the distance from x to ∂E in direction v defined in
the next section.

Proof of Theorem 2.4. Let us recall that if E is a compact subset of RN

then

VE(z) = sup
{

1
deg p

log |h(p(z))| : p ∈ R[x], deg p ≥ 1, ‖p‖E ≤ 1
}
,

where h(ζ) = ζ +
√
ζ2 − 1 and |h(ζ)| = h(1

2 |ζ + 1| + 1
2 |ζ − 1|), h(t) =

t+ (t2 − 1)1/2, t ≥ 1 (see [B2]).
Put

u(ζ) =
1

deg p
log |h(p(x+ ζv))|, ζ ∈ C.

Then
u ∈ SH(C) ∩H(H+ ∪H−) ∩ C(C).

Moreover, u ≥ 0 and u(z)− 1
2 log(1 + |ζ|2) = O(1). This implies that Pu ∈

C(C) and the function v defined by

v(ζ) = u(ζ)− Pu(ζ), ζ ∈ C,

is a bounded continuous function on C that equals 0 on R. Therefore, apply-
ing the maximum principle separately to H+ and H− we get the inequality
v ≤ 0 in C, whence

1
deg p

log |h(p(x+ ζv))| ≤ 1
π

∞�

−∞

1
deg p

log |h(p(x+ tv))| dt

1 + t2
,

and taking the supremum over p gives (2.3).
The proof of equality in case N = 1 is similar to that in [B4]: it suffices

to consider the case x = 0 and y = 1.
Let E ⊂ R ⊂ C be a compact set that satisfies the HCP condition, i.e.

there exist constants M > 0 and κ ∈ (0, 1] such that

VE(z) ≤M [dist(z, E)]κ dist(z, E) ≤ 1.

Then in particular VE ∈ C(C)∩H(C \E) and VE(ζ)− log(1+ |ζ|) = O(1) as
ζ →∞. Hence, by the argument of the proof of Theorem 2.4, the function

v(ζ) = PVE |R(ζ)− VE(ζ), ζ ∈ C,
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is nonnegative, whence for ζ = x+ iy we get

VE(ζ) =
1
π

∞�

−∞
VE(ty + x)

dt

1 + t2
.

Now, if E is an arbitrary compact subset of R, there exists a sequence of
compact sets Ek such that Ek+1 ⊂ Ek, Ek ∈ HCP and E =

⋂∞
k=1Ek. Hence

VEk ↗ VE , and so, by the Lebesgue monotone convergence theorem,

VE(ζ)↖ VEk(ζ) = PVEk |R(ζ)

=
1
π

∞�

−∞
VEk(ty + x)

dt

1 + t2
↗ 1

π

∞�

−∞
VE(ty + x)

dt

1 + t2
.

Let us recall that E is said to be L-regular at x0 ∈ E if

lim sup
z→x0

VE(z) = 0,

that is, VE is continuous at x0. From Theorem 2.4 we easily derive

2.6. Corollary. If E is not a pluripolar subset of RN (that is, V ∗E is
bounded by const + log(1 + |z|) in CN ) then E is L-regular at x0 ∈ E if
VE |RN is continuous at x0.

To show another application of Theorem 2.4 we need the following simple
lemma.

2.7. Lemma. Put

Λx(v) =
|v|
π

�

R\E

(x− t)−2VE(t) dt, x ∈ int(E), v ∈ R,

and let 0 < ε < 1. Then, for |v| ≤ (1/
√
ε(1− ε))dist(x,R \ E), one has

(1− ε)Λx(v) ≤
1
ε
VE(x+ iεv) ≤ Λx(v).

Proof. If |v| ≤ (1/
√
ε(1− ε))dist(x,R \ E) then, for an arbitrary t ∈

R \ E, we have |v| ≤ |x− t|/
√
ε(1− ε). This inequality is equivalent to

|x+ iεv|−2 ≥ (1−ε)|x− t|−2 and, by the obvious inequality |x+ iεv− t|−2 ≤
|x− t|2 and by (2.1), we have

(1− ε)Λx(v) ≤
1
ε
VE(x+ iεv) =

|v|
π

�

R\E

|x+ iεv − t|−2u(t) dt ≤ Λx(v).

Now, by pluripotential methods developed in [B3] (see Comparison Lem-
ma 1.12 and Corollary 3.2) one easily obtains the following

2.8. Proposition. Let E be a compact subset of R with nonempty in-
terior and let E0 = int(E) be the “fat” part of E. Then for the equilibrium
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measure λE (see e.g. [Kl] for the definition of this notion in CN ) the following
formula holds:

λE |E0 = ϕ(x) dx,

where

ϕ(x) =
2
π

�

R\E

|x− t|−2VE(t) dt.

3. Szegö type inequality for compact sets in RN . Let v ∈ SN−1

and let E be a subset of RN . If x0 ∈ E then the distance from x0 to ∂E in
direction v is defined by

distv(x0, ∂E) = sup{r > 0 : x0 + [−r, r]v ⊂ E}.

If dist(x0, ∂E) denotes the usual distance from x0 ∈ E to the boundary of E,
that is,

dist(x0, ∂E) = inf{|x− x0| : x ∈ ∂E} = sup{r > 0 : B(x0, r) ⊂ E}

then we have
dist(x0, ∂E) = inf

v∈SN−1
distv(x0, ∂E).

If E = [−1, 1]× {0} ∪ {0} × [−1, 1] ⊂ R2 and x0 = (0, 0), then for v = (1, 0)
and v = (0, 1) we have distv(x0, ∂E) = 1 and dist(x0, ∂E) = 0, so the usual
distance is in general not comparable with directional distances for n linearly
independent vectors.

3.1. Theorem. Let E be a compact subset of RN . Let v ∈ SN−1 and let

Ev := {x ∈ E : distv(x, ∂E) > 0}.

Assume that there exist positive constants C1, C2 and κ ∈ (0, 1) such that

(3.1) VE(x+ tv) ≤ C1 log(1 + |t|), t ∈ R, x ∈ Ev,

and

(3.2) VE(x+ tv) ≤ C2|t|κ as t ∈ [−1, 1], x ∈ Ev.

Then there exists a positive constant M such that for any p ∈ R[x] and any
x ∈ Ev,

(3.3) |Dvp(x)| ≤M(deg p)(distv(x, ∂E))−(1−κ)(‖p‖2E − p2(x))1/2.

Proof. Without loss of generality we can assume that

sup
x∈Ev

distv(x, ∂E) ≤ 1.

To prove (3.3) we need to find an upper bound of lim infε→0+ ε
−1VE(x+iεv).
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By (2.6) we have

lim inf
ε→0+

1
ε
VE(x+ iεv) ≤ 1

π

�

|t|≥distv(x,∂E)

t−2VE(x+ tv) dt

=
1
π

[ �

1≥|t|≥distv(x,∂E)

+
�

|t|≥1

]
t−2VE(x+ tv) dt

≤ 2C2

π

1�

distv(x,∂E)

tκ−2 dt+
2C1

π

∞�

1

log(1 + t)t−2 dt

=
2C2

π

1
1− κ

((distv(x, ∂E))−(1−κ) − 1) + C3

≤M(distv(x, ∂E))−(1−κ),

where M = C3 + 2C2/(1− κ)π. Hence, by Proposition 1.1 we get inequal-
ity (3.3).

Applying Theorem 3.1 for all directions v ∈ Sn−1 gives the main result
of the paper:

3.2. Theorem. If a fat compact E in RN satisfies the HCP condition
with constants M > 0 and 0 < κ < 1, then, for all directions v ∈ Sn−1 and
all polynomials p ∈ R[x], we have the following Szegö type inequality :

|Dvp(x)| ≤ A(deg p)(dist(x, ∂E))−(1−κ)(‖p‖2E − p2(x))1/2, x ∈ int(E),

where A = A(E) is a constant.
3.3. Remark. Recall that a compact set E in RN is said to be Markov

if there exist constants M > 0,m ≥ 2 such that for all polynomials p,

(M) ‖grad p‖E ≤M(deg p)m‖p‖E .

By Cauchy’s Integral Formula, any HCP compact set in RN is Markov
and till now, no Markov set which is not an HCP set is known.

It is also known (see [Pl]) that Markov’s property is equivalent to the
following condition:

(P) ∃C1, C2 ∀p ∈ Pk(CN ) |p(z)| ≤ C2‖p‖E as dist(z, E) ≤ C1k
−m.

It was conjectured in [B2] that an inequality of type (3.3) implies Mar-
kov’s inequality with exponent 1/κ. We note that this is true in the class of
HCP sets.
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