ANNALES
POLONICI MATHEMATICI
96.1 (2009)

Symmetry problems 2

by N. S. Hoang and A. G. Ramm (Manhattan, KS)

Abstract

Some symmetry problems are formulated and solved. New simple proofs are given for some symmetry problems studied earlier. One of the results is as follows: if a single-layer potential of a surface, homeomorphic to a sphere, with a constant charge density, is equal to $c /|x|$ for all sufficiently large $|x|$, where $c>0$ is a constant, then the surface is a sphere.

1. Introduction. Symmetry problems are of interest both theoretically and in applications.

A well-known, and still unsolved, symmetry problem is the Pompeiu problem (see [3], [4]). It consists in proving the following:

If $D \subset \mathbb{R}^{n}, n \geq 2$, is homeomorphic to a ball, and the boundary S of D is sufficiently smooth $\left(S \in C^{1, \lambda}, \lambda>0\right.$, is sufficient), and if the problem

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) u=0 \quad \text { in } D,\left.\quad u\right|_{S}=c,\left.\quad u_{N}\right|_{S}=0, \quad k^{2}=\mathrm{const}>0 \tag{1}
\end{equation*}
$$

has a solution, then S is a sphere.
A similar problem (Schiffer's conjecture) is also unsolved:
If the problem
(2) $\left(\nabla^{2}+k^{2}\right) u=0 \quad$ in $D,\left.\quad u\right|_{S}=0,\left.\quad u_{N}\right|_{S}=c \neq 0, \quad k^{2}=$ const >0, has a solution, then S is a sphere.

In [5] it is proved that if
(3) $\int_{D} \frac{d y}{4 \pi|x-y|}=\frac{c}{|x|}, \quad \forall x \in B_{R}^{\prime}=\left\{x \in \mathbb{R}^{3}:|x|>R\right\}, c=$ const >0,
then D is a ball.
Here and below we assume that $D \subset \mathbb{R}^{3}$ is a bounded domain homeomorphic to a ball, with a sufficiently smooth boundary S (S being Lipschitz suffices), $B_{R}=\{x:|x| \leq R\}$, and $B_{R} \supset D$. By \mathcal{H} we denote the set of all

[^0]harmonic functions in a domain which contains D. By $|D|$ and $|S|$ we denote the volume of D and the surface area of S, respectively.

Our goal is to give a simple proof of the three symmetry-type results formulated in Theorem 1 in Section 2.

In [7] the following result is obtained:
If

$$
\begin{equation*}
\Delta u=1 \quad \text { in } D,\left.\quad u\right|_{S}=0,\left.\quad u_{N}\right|_{S}=\mu=\text { const }>0 \tag{4}
\end{equation*}
$$

then S is a sphere.
This result is obtained by A. D. Aleksandrov's "moving plane" argument, and is equivalent to the following:

If

$$
\begin{equation*}
\frac{1}{|D|} \int_{D} h(x) d x=\frac{1}{|S|} \int_{S} h(s) d s, \quad \forall h \in \mathcal{H} \tag{5}
\end{equation*}
$$

then S is a sphere.
The equivalence of (4) and (5) can be proved as follows.
Suppose (4) holds. Multiply (4) by an arbitrary $h \in \mathcal{H}$, integrate by parts and get

$$
\begin{equation*}
\int_{D} h(x) d x=\mu \int_{S} h(s) d s \tag{6}
\end{equation*}
$$

If $h=1$ in (6), then one gets $\mu=|D| /|S|$, so (6) is identical to (5).
Suppose (5) holds. Then (6) holds. Let v solve the problem $\Delta v=1$ in D, $\left.v\right|_{S}=0$. This v exists and is unique. Using (6), the equation $\Delta h=0$ in D, and the Green's formula, one gets

$$
\begin{equation*}
\mu \int_{S} h(s) d s=\int_{D} h(x) d x=\int_{D} h(x) \Delta v d x=\int_{S} h(s) v_{N} d s \tag{7}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\int_{S} h(s)\left[v_{N}-\mu\right] d s=0, \quad \forall h \in \mathcal{H} \tag{8}
\end{equation*}
$$

The set of restrictions to S of all harmonic functions in D is dense in $L^{2}(S)$ (see, e.g., [5]). Thus, (8) implies $\left.v_{N}\right|_{S}=\mu$. Therefore, (4) holds.
2. Results and proofs. Our main results are formulated in the following theorem:

TheOrem 1. Let $D \subset \mathbb{R}^{3}$ be a bounded domain homeomorphic to a ball, S be its Lipschitz boundary, $D^{\prime}:=\mathbb{R}^{3} \backslash D$. If any one of the following assumptions holds, then S is a sphere:

1. We have

$$
\begin{equation*}
u(x):=\int_{S} \frac{d s}{4 \pi|x-s|}=\frac{c}{|x|}, \quad \forall x \in B_{R}^{\prime}, \quad c=\mathrm{const}, \tag{9}
\end{equation*}
$$

where $B_{R}^{\prime}:=\{x:|x|>R\}, D \subset B_{R}, B_{R}:=\mathbb{R}^{3} \backslash B_{R}^{\prime}$.
2. We have

$$
\begin{equation*}
\frac{1}{|S|} \int_{S} h(s) d s=h(0), \quad \forall h \in \mathcal{H} \tag{10}
\end{equation*}
$$

3. There exists a solution to the problem

$$
\begin{equation*}
\Delta_{y} u=\delta(y) \quad \text { in } D,\left.\quad u\right|_{S}=0,\left.\quad u_{N}\right|_{S}=c_{1}=\mathrm{const}, \tag{11}
\end{equation*}
$$

where $\delta(y)$ is the delta-function.
In (10), 0 is the origin, $0 \in D,|S|$ is the surface area of S, and \mathcal{H} is the set of all harmonic functions in a domain containing D.

Proof. 1. Assume (9). Then $c=|S| /(4 \pi)$ as one can see by letting $|x| \rightarrow \infty$. If (9) holds for all $x \in B_{R}^{\prime}$ then, by the unique continuation property for harmonic functions, (9) holds for all $x \in D^{\prime}$. Let N_{s} be the unit normal to S at the point $s \in S$, pointing into D^{\prime}. The known jump formula for the normal derivative of a single-layer potential ([2, p. 14]) yields

$$
\begin{equation*}
u_{N_{s_{0}}}^{+}=u_{N_{s_{0}}}^{-}+1, \quad u_{N_{s_{0}}}^{-}=-\frac{|S|}{4 \pi} \frac{N_{s_{0}} \cdot s_{0}}{\left|s_{0}\right|^{3}}, \quad s_{0} \in S \tag{12}
\end{equation*}
$$

If S is not a sphere, then there exists an $s_{0} \in S$ with $\left|s_{0}\right| \leq|s|$ for $s \in S$. The ball $B_{\left|s_{0}\right|}$ of radius $\left|s_{0}\right|$, centered at the origin, is contained in D. At the point s_{0} the normal $N_{s_{0}}$ to S is directed along the vector s_{0}, so

$$
\begin{equation*}
u_{N_{s_{0}}}^{-}=-\frac{|S|}{4 \pi\left|s_{0}\right|^{2}}<-1 \tag{13}
\end{equation*}
$$

because $|S|>4 \pi\left|s_{0}\right|^{2}$ by the isoperimetric inequality ([1]). This and formula (12) imply

$$
\begin{equation*}
u_{N_{s_{0}}}^{+}<0 \tag{14}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
u(s)=\frac{1}{4 \pi|s|} \leq \frac{1}{4 \pi\left|s_{0}\right|} \tag{15}
\end{equation*}
$$

So the function $u(x)$, harmonic and continuous in D, attains its maximum on S at the point s_{0}, because $\left.u\right|_{S}=\left.\frac{1}{4 \pi|s|}\right|_{S}$. Therefore, by the maximum principle,

$$
u(x) \leq u\left(s_{0}\right), \quad \forall x \in D
$$

In particular, $u\left(s_{0}\right)-u\left(s_{0}-\epsilon N_{s_{0}}\right) \geq 0$ for all sufficiently small $\epsilon>0$. Consequently, $u_{N_{s_{0}}} \geq 0$. This contradicts (14), and the contradiction proves that S is a sphere.
2. Assume (10). Let $h(y)=\frac{1}{4 \pi|x-y|}, x \in D^{\prime}, y \in D$. This function is harmonic in D. Thus, (10) yields (9):

$$
\begin{equation*}
\int_{S} \frac{d s}{4 \pi|x-s|}=\frac{|S|}{4 \pi|x|}=\frac{c}{|x|}, \quad \forall x \in D^{\prime}, \quad c:=\frac{|S|}{4 \pi} \tag{16}
\end{equation*}
$$

We have already proved that (16) implies that S is a sphere.
3. Assume (11). Multiply (11) by $1 /(4 \pi|x-y|), x \in D^{\prime}$, integrate over D, and then integrate by parts to get

$$
\begin{equation*}
c_{1} \int_{S} \frac{d s}{4 \pi|x-s|}=\frac{1}{4 \pi|x|}, \quad \forall x \in D^{\prime} \tag{17}
\end{equation*}
$$

By the result proved in assertion 1 , this implies that S is a sphere.

References

[1] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.
[2] A. G. Ramm, Scattering by Obstacles, Reidel, Dordrecht, 1986.
[3] —, The Pompeiu problem, Appl. Anal. 64 (1997), 19-26.
[4] -, Necessary and sufficient condition for a domain, which fails to have Pompeiu property, to be a ball, J. Inverse Ill-Posed Probl. 6 (1998), 165-171.
[5] -, A symmetry problem, Ann. Polon. Math. 92 (2007), 49-54.
[6] A. G. Ramm and E. Shifrin, Symmetry problems in the elasticity theory problem for plane cracks of normal rapture, Prikl. Mat. Mekh. 69 (2005), 135-143 (in Russian); English. transl.: J. Appl. Math. Mech. 69 (2005), 127-134.
[7] J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 (1971), 304-318.

Mathematics Department
Kansas State University
Manhattan, KS 66506-2602, U.S.A.
E-mail: nguyenhs@math.ksu.edu
ramm@math.ksu.edu

Received 31.10.2008
and in final form 28.1.2009

[^0]: 2000 Mathematics Subject Classification: 35J05, 31B20.
 Key words and phrases: symmetry problems, potential theory.

