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Markov operators and n-copulas

by P. Mikusiński and M. D. Taylor (Orlando, FL)

Abstract. We extend the definition of Markov operator in the sense of J. R. Brown
and of earlier work of the authors to a setting appropriate to the study of n-copulas. Basic
properties of this extension are studied.

1. Introduction. In [3], J. R. Brown introduced Markov operators as
positive operators T : L∞(X)→ L∞(X) satisfying T1 = 1 and

	
X Tf dν =	

X f dν where (X,A, ν) was a given probability space. One of his main in-
terests was the role played by the particular operators Tφf = f ◦ φ in-
duced by invertible measure-preserving φ : X → X. Another was in the
fact that under the constraints he imposed, there was a one-to-one cor-
respondence between the set of Markov operators T on X and the set
of doubly stochastic measures µ on X × X. (To say that µ was doubly
stochastic in this setting meant that for measurable sets A of X, one had
µ(A×X) = µ(X ×A) = ν(A).)

It would appear that an inspiration for Brown’s definition of Markov op-
erator was the theory of Markov processes. One might think of T : L∞(X)→
L∞(X) as describing the “evolution”, f 7→ Tf , of a function over a fixed
time interval. However, we found Brown’s work interesting because of its
applicability to a different mathematical scenario.

Brown required his probability measure ν to be nonatomic, which im-
plied, by results on Borel equivalences (see, for example, [14]), that one
could take X to be the unit interval, I = [0, 1], ν could be taken to be λ,
1-dimensional Lebesgue measure on I, and µ would be a doubly stochastic
measure on I2. A 2-copula is a function C : I2 → I which is related to a
doubly stochastic measure µ on I2 by C(x1, x2) = µ([0, x1]×[0, x2]). (C may
be regarded as the joint distribution function of two random variables that
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are uniformly distributed over I.) Then one has the following:

2-copulas 1-1←→
{

doubly stochastic
measures on I2

}
1-1←→

{
Markov operators

on L∞(I)

}
.

In [8]–[10], advantage is taken of the correspondence between 2-copulas and
Markov operators to introduce and study a type of sequential convergence of
2-copulas. There is also a noteworthy connection between Markov operators
and a certain product of 2-copulas that is introduced in [5] and that is of
interest in the study of Markov processes: If A and B are 2-copulas, the
2-copula A ∗ B is their product, and TA, TB, and TA∗B are the associated
Markov operators, then

TA∗B = TBTA.

Most work on copulas has been with 2-copulas. However, n-copulas for
n ≥ 2 are also of interest. They can be used in modelling systems involv-
ing random variables and in studying dependence relations for n-tuples of
random variables. (See [13] and [15] for an overview.) Some instances of a
desire to push the use of copulas into higher dimensions are [2], [6], [12], and
[16] where copulas are used to investigate measures of concordance.

It is the goal of this paper to generalize the concept of a Markov oper-
ator in a way that will be useful for the study of n-copulas. An important
difference from the previously considered 2-dimensional case is that since we
have many different factorizations In = Ip × Iq of the n-dimensional cube,
we have many different Markov operators T : L∞(Ip)→ L∞(Iq) associated
with a given n-copula C. Some particular topics that we examine are these:

1. The association of Markov operators with integral kernels and partial
derivatives of copulas.

2. “Joining” or “composing” copulas to obtain new copulas.
3. Convergence of copulas. The papers [7]–[10] use Markov operators to

study this topic for 2-copulas. For this topic we draw on [11] which
investigates approximations of n-copulas.

2. Markov operators. First, a few words about the general setting:
If (X,X), and (Y,Y) are measurable spaces, then X×Y is automatically

considered to be the measurable space with the product σ-algebra X×Y. We
shall rarely bother to mention X or Y and shall just assume their existence.

We shall usually denote probability measures on X and Y as µX and µY
respectively. If µ is a probability measure on X × Y , we say that µX and
µY are the marginals of µ provided

µX(R) = µ(R× Y ) and µY (S) = µ(X × S)

whenever R ∈ X and S ∈ Y.
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Assume that µX and µY are the marginals of µ. If f : X → R is a mea-
surable function, then, in a trivial way, we may consider that f : X × Y → R
by identifying f with f ′ such that f ′(x, y) = f(x) where x ∈ X and y ∈ Y .
Further, we may consider that Lp(X) “⊆” Lp(X × Y ) for 1 ≤ p ≤ ∞. In
the case where 1 ≤ p <∞, this follows from the fact that for f ∈ Lp(X) it
can easily be seen that

	
X f dµX =

	
X×Y f dµ. Indeed, for such f we have

equality of Lp-norms, ‖f‖X = ‖f‖X×Y , so we are justified in simply writing
‖f‖. Similarly we have Lp(Y ) “⊆” Lp(X × Y ).

Now we are ready for Markov operators.

Definition 1. A linear operator T : L∞(X) → L∞(Y ) is called a
Markov operator if

(a) T1 = 1,
(b) for every f ∈ L∞(X), f ≥ 0 implies Tf ≥ 0,
(c)

	
Y Tf dµY =

	
X f dµX for every f ∈ L∞(X).

Note that (a) and (b) imply that Markov operators are bounded. Another
basic property of Markov operators is that we can just as well take them as
being defined on all the Lp-spaces for 1 ≤ p ≤ ∞.

Theorem 1. Let T : L∞(X)→ L∞(Y ) be a Markov operator. For every
p ≥ 1, T has an extension to a bounded operator T : Lp(X)→ Lp(Y ).

Proof. Let f ∈ L∞(X). Since
�

Y

|Tf | dµY ≤
�

Y

T |f | dµY =
�

X

|f | dµX

and L∞(X) is dense in L1(X), T has a unique extension to a bounded
operator T : L1(X) → L1(Y ). Hence, by the Riesz–Thorin theorem, T has
a unique extension to a bounded operator T : Lp(X) → Lp(Y ) for every
1 < p <∞.

Example 1. Here is perhaps the simplest example of a Markov operator:
Let φ : Y → X be a measurable map where the probability measure µY on Y
is given and the probability measure µX on X is defined by

µX(S) = µY (φ−1(S)).

Then the map T : L∞(X)→ L∞(Y ) defined by Tf = f ◦φ is easily verified
to be a Markov operator.

Example 2. A doubly stochastic measure is a probability measure ν on
the unit square, I2 = [0, 1]2, having the property that ν(A×I) = ν(I×A) =
the one-dimensional Lebesgue measure of A whenever A is a Borel subset of
I = [0, 1]. In this example we construct a Markov operator that induces an
analogue to a checkerboard approximation of a doubly stochastic measure.



78 P. Mikusiński and M. D. Taylor

(See, for example, [4] and [8] for checkerboard approximations of doubly
stochastic measures. We also later define the checkerboard approximation
to an n-copula.)

Consider the probability spaces (X,µX) and (Y, µY ). Let R1, . . . , Rk⊆X
and S1, . . . , Sm ⊆ Y be partitions of X and Y into subsets of positive mea-
sure. Define r0 = s0 = 0 and

ri =
i∑

n=1

µX(Rn) and sj =
j∑

n=1

µY (Sn)

for i = 1, . . . , k and j = 1, . . . ,m. Then 0 = r0 < r1 < · · · < rk = 1 and
0 = s0 < s1 < · · · < sm = 1. Let ν be a doubly stochastic measure on I2.
For i = 1, . . . , k and j = 1, . . . ,m define

Aij =
ν([ri−1, ri]× [sj−1, sj ])

µX(Ri)µY (Sj)
.

It is straightforward to verify that the operator T : L∞(X) → L∞(Y )
defined by

Tf =
k∑
i=1

m∑
j=1

Aij

( �

Ri

f dµX

)
χSj

is a Markov operator.
Note that the restriction to Ri0×Sj0 of the measure µ induced by T (see

Theorem 2 below) on X×Y is a product measure, for any i0 = 1, . . . , k and
j0 = 1, . . . ,m. Indeed, if A ⊆ Ri0 and B ⊆ Sj0 are Borel sets, then

µ(A×B) = Ai0j0µX(A)µY (B).

This is analogous to the way checkerboard approximations of doubly stochas-
tic measures are constructed.

The next theorem exhibits the most important property of a Markov
operator, its relation to a probability measure on X × Y .

Theorem 2. Assume µX and µY are probability measures on X and Y
respectively. Let T : L∞(X)→ L∞(Y ) be a Markov operator. For measurable
sets R ⊆ X and S ⊆ Y define

(1) µ(R× S) =
�

Y

(TχR)χS dµY .

Then µ can be extended to a probability measure on X × Y having µX and
µY as its marginals.

If , on the other hand , µ is a probability measure on X × Y having µX
and µY as marginals, then there is a unique Markov operator T : L∞(X)→
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L∞(Y ) such that

(2)
�

Y

(Tf)g dµY =
�

X×Y
fg dµ

for all f ∈ L∞(X) and g ∈ L∞(Y ). Furthermore, this T is related to µ
by (1).

Proof. By Theorem 1.2.8 of [1], µ can be extended to a measure if we
can show that it is “continuous” on an increasing sequence of rectangles.
Let R1 × S1 ⊆ R2 × S2 ⊆ · · · ⊆ X × Y be a sequence of measurable sets
and let R× S =

⋃∞
j=1Rj × Sj . The definition of a Markov operator implies

TχRn → TχR µY -a.e. Hence (TχRn)χSn → (TχR)χS µY -a.e. and, since the
sequence is increasing,

µ(Rn × Sn) =
�

Y

(TχRn)χSn dµY →
�

Y

(TχR)χS dµY = µ(R× S).

Thus µ extends to a (σ-additive) measure.
It is easily seen that the marginals of µ are µX and µY .
Now suppose we are given a probability measure µ on X × Y with

marginals µX and µY .
Let f ∈ L2(X) and g ∈ L2(Y ). By the Cauchy–Schwarz inequality, we

have

(3)
∣∣∣ �

X×Y
fg dµ

∣∣∣ ≤ ( �

X×Y
f2 dµ

)1/2( �

X×Y
g2 dµ

)1/2
= ‖f‖X‖g‖Y .

Thus lf : L2(Y ) → R given by lf (g) =
	
X×Y fg dµ defines a bounded

linear functional. By the Riesz representation theorem, there is a unique
Tf ∈ L2(Y ) such that

(4)
�

X×Y
fg dµ =

�

Y

(Tf)g dµY for all g ∈ L2(Y ).

This defines a map T : L2(X) → L2(Y ). We need to check that T is a
Markov operator.

Linearity of T follows from (4) and boundedness from (3). It is straight-
forward to show, by (4), that f ≥ 0 implies Tf ≥ 0 for all f ∈ L2(X).
Moreover, for arbitrary g ∈ L2(Y ), we see from (4) that�

Y

(T1)g dµY =
�

X×Y
g dµ =

�

Y

g dµY .

Thus T1 = 1. It follows from the positivity of T that T : L∞(X)→ L∞(Y ).
Finally, by taking g = 1 in (4), we have�

Y

Tf dµY =
�

X×Y
f dµ =

�

X

f dµX .
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The relationship µ(A×B) =
	
Y (TχA)χB dµY follows from (4) by setting

f = χA and g = χB.

Corollary 1. There is a unique Markov operator T ∗ : L∞(Y ) →
L∞(X) such that

(5)
�

X

f(T ∗g) dµX =
�

Y

(Tf)g dµY

for all f ∈ L∞(X) and g ∈ L∞(Y ).

The next most striking property of a Markov operator after its con-
nection with µ is that Tf is a conditional expectation. To see this, it is
convenient to introduce the projection map π : X × Y → Y .

Corollary 2. If we regard f ∈ L∞(X,µX) as being a random variable
on (X × Y, µ), where µX and µY are the marginals of µ, then

(Tf)(y) = E(f |π = y) µY -a.e.

Proof. For every measurable B ⊆ Y , by equation (2) with g = χB in
L∞(Y ) and g = χ{π∈B} in L∞(X × Y ), we have

�

{π∈B}

f dµ =
�

B

Tf dµY .

By the definition of conditional expectation, we get

(6)
�

{π∈B}

f dµ =
�

B

E(f |π = y) dµY (y).

The result is established.

We now develop a few other simple properties of Markov operators.

Theorem 3. Suppose that we are given a measurable map φ : Y →
X and a probability measure µY on Y . Define a probability measure µX
on X by µX(A) = µY (φ−1(A)) for measurable A and a Markov operator
T : L∞(X)→ L∞(Y ) by Tf = f ◦ φ. Then:

1. The mass of the probability measure µ induced on X × Y by T is
concentrated on the graph of φ.

2. µ is an extremal element of the convex set

M = {ν : ν is a probability measure on X × Y with Y -marginal µY }.
Proof. Let Φ be the graph of φ and let π : X × Y → Y be the natural

projection. For measurable S ⊆ X × Y , define

ν(S) = µY (π(S ∩ Φ)).

It is straightforward to show that ν is a measure on X×Y . (It may be helpful
to consider Figure 1.) Further, since ν(X × Y ) = ν(Φ) = µY (Y ) = 1, we see
that ν is a probability measure whose mass is concentrated on Φ. Next, for
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Φ

X

Y
S

Fig. 1. S and the graph of φ

measurable A ⊆ X and B ⊆ Y , it is easily checked that π((A × B) ∩ Φ) =
φ−1(A) ∩B. It follows that

ν(A×B) = µY (π((A×B) ∩ Φ)) = µY (φ−1(A) ∩B)

=
�

Y

χφ−1(A)χB dµY =
�

Y

(χA ◦ φ)χB dµY

=
�

Y

(TχA)χB dµY = µ(A×B)

where the last step is justified by Theorem 2. Since this holds for measur-
able sets of the form A × B, we have µ = ν. Therefore the mass of µ is
concentrated on Φ.

To show extremality of µ in M, it suffices to suppose that we can write
µ = 1

2 ξ + 1
2 η where ξ, η ∈M and show that we must have µ = ξ = η. Since

the mass of µ is concentrated on Φ, the same must be true for ξ and η. For
measurable S ⊆ X × Y , it is easily shown that

S ∩ Φ = (X × π(S ∩ Φ)) ∩ Φ.
Using this and the fact that ξ has Y -marginal µY , we see that

ξ(S) = ξ(S ∩ Φ) = ξ((X × π(S ∩ Φ)) ∩ Φ) = ξ(X × π(S ∩ Φ))
= µY (π(S ∩ Φ)) = µ(S)

where the last step follows from the earlier part of this proof. Similarly,
η = µ. Thus µ is extremal in M.

Next we consider another particularly simple Markov operator.

Theorem 4. Suppose T : L∞(X) → L∞(Y ) is a Markov operator and
µ is the associated probability measure on X × Y . Then T has the form

Tf = cf , a constant associated with f,

if and only if µ = µX × µY . Further , cf =
	
X f dµX = E(f), the expected

value of f .
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Proof. Suppose that Tf = cf . First notice that

cf =
�

Y

cf dµY =
�

Y

Tf dµY =
�

X

f dµX = E(f).

Now let A ⊆ X and B ⊆ Y be measurable sets. Appealing to Theorem 2,
we see that

µ(A×B) =
�

X×Y
χA(x)χB(y) dµ(x, y) =

�

B

TχA dµY

= cχA µY (B) = µX(A)µY (B).

Hence µ = µX × µY .
Now let us suppose that µ = µX × µY . Let f ∈ L∞(X) be a simple

function, f =
∑n

k=1 ckχAk
, where each Ak is a measurable subset of X, and

let B be a measurable subset of Y . Appealing to Theorem 2, we have�

B

Tf dµY =
�

X×Y
f(x)χB(y) dµ(x, y) =

∑
k

ck
�

X×Y
χAk×B dµ

=
∑
k

ckµ(Ak ×B) =
∑
k

ckµX(Ak)µY (B) =
�

B

E(f) dµY .

Thus Tf = E(f).
Now let f be an arbitrary element of L∞(X). There exists a sequence

of simple functions {fn} such that fn → f in L∞(X). Since T is bounded,
Tfn → Tf in L∞(Y ), and since each Tfn is a constant, the same must be
true for Tf .

We now describe a method, mentioned in [7], of constructing a Markov
operator. The proof is easy and is essentially that of [7].

Theorem 5 (Kulpa). Let (X,µX) and (Y, µY ) be probability spaces and
K be a nonnegative, real-valued , measurable function on X × Y such that�

X

K(x, y) dµX(x) = 1 µY -a.e., and
�

Y

K(x, y) dµY (y) = 1 µX-a.e.

Then:

1. The equation
Tf(y) =

�

X

K(x, y)f(x) dµX(x)

defines a Markov operator from L∞(X) to L∞(Y ).
2. The probability measure µ associated with T satisfies

µ(S) =
�

S

K d(µX × µY )

for measurable S ⊆ X × Y .
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3. The adjoint operator T ∗ : L∞(Y )→ L∞(X) is given by

T ∗g(x) =
�

Y

K(x, y)g(y) dµY (y).

Remark 1. We call K the kernel of the Markov operator T or of µ with
respect to the marginals µX and µY .

Corollary 3. Let µ be a probability measure on X ×Y with marginals
µX and µY . Then the Markov operator T : L∞(X) → L∞(Y ) has a kernel
K : X × Y → R if and only if µ is absolutely continuous with respect to
µX × µY . In this case,

K =
dµ

d(µX × µY )
.

Proof. We only consider the direction in which we start with µ �
µX × µY . Then by the Radon–Nikodym theorem, µ has a Radon–Nikodym
derivative with respect to µX × µY . Let us set K equal to this Radon–
Nikodym derivative. From this and µ(A×B) =

	
B TχA dµY one can deduce�

B

Tf dµY =
�

B

�

X

K(x, y)f(x) dµX(x) dµY (y)

whenever f ∈ L∞(X,µX) and B is a measurable subset of Y . It is then
easily seen that�

X

K(x, y) dµY (y) = 1 and
�

Y

K(x, y) dµX(x) = 1.

3. Copulas and Markov operators. Let us recall that an n-copula,
n ≥ 2, is a function C : In → R satisfying the following:

1. C(x1, . . . , xn) = 0 if any xk = 0;
2. C(x1, . . . , xn) = xk if xj = 1 for all j 6= k;
3. C is n-increasing. (This condition is defined in [13] and [15] in terms

of certain inequalities. It is more convenient for our purposes to use
the equivalent condition that there is a measure µ on In such that

C(x1, . . . , xn) = µ([0, x1]× · · · × [0, xn])

for all (x1, . . . , xn) ∈ In.)

We call the first two conditions the boundary conditions on a copula. We
refer to µ as the probability measure associated with C. Notice that if we
factor In into one-dimensional and (n−1)-factors, say, In = I(n−1)×I, then
the marginal measures on I must always be λ, one-dimensional Lebesgue
measure.

Another way to define an n-copula C is to say that it is a joint distri-
bution function for an n-tuple of random variables (X1, . . . , Xn) such that
each Xk is uniformly distributed over I.
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Every n-copula C with its associated probability measure µ and every
factorization In = Ip×Iq, where p, q ≥ 1, gives rise to an associated Markov
operator T : L∞(Ip)→ L∞(Iq).

Example 3. One important n-copula is

Πn(x1, . . . , xn) = x1 · · ·xn.
The associated probability measure is λn, n-dimensional Lebesgue measure.
The Markov operator T : L∞(Ip)→ L∞(Iq) associated with Πn is

Tf(y) =
�

Ip

f(x) dx λq-a.e.

where x ∈ Ip and y ∈ Iq.
Example 4. Another important n-copula is

Mn(x1, . . . , xn) = min(x1, . . . , xn).

The mass of the associated probability measure µ is distributed uniformly
along the “diagonal” x1 = · · · = xn in In. Similarly, the mass of each
marginal measure µp and µq is uniformly distributed along the “diagonal”
x1 = · · · = xp and xp+1 = · · · = xn of Ip and Iq respectively. It follows
that f ∈ L∞(Ip, µp) is fully determined by considering f(tp) where tp is
the p-tuple (t, . . . , t) ∈ Ip for every t ∈ I. Then the Markov operator T :
L∞(Ip)→ L∞(Iq) is defined by

Tf(tq) = f(tp) µq-a.e.

3.1. Differentiable n-copulas. In what follows, we will find it convenient
to refer to densities of copulas: For any n-copula C, we use the notation

C(n) =
∂nC

∂x1 · · · ∂xn
,

assuming the mixed partial exists. We say that C(n) is a density for C
provided

1. C(n) exists λn-a.e. on In.
2. For all Borel subsets S of In, we have

µ(S) =
�

S

C(n) dλn

where µ is the probability measure associated with C.

Let In = Ip× Iq, p, q ≥ 1, and let η and ξ be the marginal measures of µ
on Ip and Iq respectively. Set 1p = (1, . . . , 1) ∈ Ip and 1q = (1, . . . , 1) ∈ Iq.
Assuming C has a density C(n), it will also be useful for us to set

C(p)(x, y) =
∂pC

∂x1 · · · ∂xp
(x, y), C(q)(x, y) =

∂qC

∂xp+1 · · · ∂xn
(x, y)
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where x = (x1, . . . , xp) ∈ Ip and y = (xp+1, . . . , xn) ∈ Iq. From the fact that
η([0, x]) = µ([0, x]× Iq) = C(x, 1q), we deduce

η(A) =
�

A

C(p)(x, 1q) dx.

Similarly,

ξ(B) =
�

B

C(q)(1p, y) dy.

Thus
(η × ξ)(S) =

�

S

C(p)(x, 1q)C(q)(1p, y) dx dy

for S a Borel subset of In. Using this notation, we then have the following:

Theorem 6. Let C be an n-copula with continuous density C(n). If T
is the Markov operator T : L∞(Ip, η)→ L∞(Iq, ξ), then T has the kernel

K(x, y) =
C(n)(x, y)

C(p)(x, 1q)C(q)(1p, y)
η × ξ-a.e.

Further ,

Tf(y) =
�

Ip

C(n)(x, y)
C(q)(1p, y)

f(x) dx ξ-a.e.

for f ∈ L∞(Ip, η) where it may be assumed , without loss of generality , that
f(x) = 0 whenever C(p)(x, 1q) = 0.

Proof. If the kernel of T exists, it has the form

K =
dµ

d(η × ξ)
,

so showing the existence of K requires us to show that µ� η × ξ. Once we
have done that, it is trivial to check the forms of K(x, y) and Tf(y) using
the integral formulas for µ, η, ξ, and η × ξ.

Choose (x, y) ∈ Ip × Iq such that C(n)(x, y) > 0. There exist ε > 0 and
open sets Jp and Jq in Ip and Iq respectively such that x ∈ Jp, y ∈ Jq, and
C(n)(u, v) ≥ ε for all u ∈ Jp and v ∈ Jq. Then

C(q)(1p, y) =
�

Ip

C(n)(u, y) du ≥ ελp(Jp) > 0.

Similarly, C(p)(x, 1p) > 0. Thus C(p)(x, 1q) C(q)(1p, y) > 0.
Choose a Borel subset S ⊆ In such that (η × ξ)(S) = 0. Set

S0 = {(x, y) ∈ S : C(p)(x, 1q)C(q)(1p, y) = 0}
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and S1 = S−S0. We know that if C(p)(x, 1q)C(q)(1p, y) = 0, then C(n)(x, y)
= 0. So

µ(S) = µ(S1) +
�

S0

C(n) dλn = µ(S1)

=
�

S1

C(n)(x, y)
C(p)(x, 1q)C(q)(1p, y)

C(p)(x, 1q)C(q)(1p, y) dx dy

=
�

S1

K d(η × ξ) = 0.

Thus µ� η × ξ.
Remark 2. If p = n − 1 and q = 1, then C(1n−1, y) = y so that

C(1)(1n−1, y) = 1. Then T takes on the particularly simple form of

Tf(y) =
�

In−1

∂nC

∂x1 · · · ∂xn
(x, y) f(x) dx ξ-a.e.

where x ∈ In−1 and y ∈ I.

3.2. First partials of copulas. Higher order partial derivatives of copulas
may fail to exist or fail to provide useful information about the copula. For
example, if M2(x, y) = min(x, y), then the mixed second order partial of M2

is zero everywhere except along the diagonal x = y where it is undefined.
However, first partials exist almost everywhere and the copula can be

reconstructed from them.
If we factor In thus: In = Ip × I × Iq, where the indicated I is the kth

factor of In, then we designate

I(n,k) = Ip × Iq = {(x1, . . . , xk−1, xk+1, . . . , xn) : (x1, . . . , xn) ∈ In}.
This may merely seem a way to write In−1, but we are to think that the xj ’s
in I(n,k) “remember” their positions in In. By a slight abuse of notation, we
also feel free to interpret I(n,k) × I as Ip × I × Iq rather than Ip × Iq × I.

Let µ be the probability measure associated with the n-copula C, n ≥ 2.
We denote the marginal measure on I(n,k) as µ(n,k). So µ(n,k)(S) = µ(S× I)
when S is a Borel subset of I(n,k). For k = 1, . . . , n, we have a Markov
operator

T k : L∞(I(n,k))→ L∞(I, λ)

associated with µ.
It can also be useful to keep in mind that if Xk : In → I is the projection

map Xk(t1, . . . , tn) = tk, then

T kf(xk) = E(f |Xk = xk).

Here is the connection between first partials of copulas and Markov op-
erators:
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Theorem 7. Let C be an n-copula with associated probability measure µ.
Then for i = 1, . . . , n and (x1, . . . , t, . . . , xn) ∈ In we have

∂C

∂xi
(x1, . . . , t, . . . , xn) = µ([0, x1]× · · · I · · · × [0, xn] |Xi = t)

= T iχR(t) λ(t)-a.e.

where t and I occur in the ith position and

R = [0, x1]× [0, xi−1]× [0, xi+1]× · · · × [0, xn].

Proof. We consider only the case i = 1, that is, differentiation with re-
spect to the first variable. Fix (x2, . . . , xn) and consider 0 < t < 1. Since
copulas are monotonic in each variable, we see that ∂C

∂x1
(t, x2, . . . , xn) exists

λ(t)-a.e. Copulas satisfy a Lipschitz condition, hence are absolutely contin-
uous when considered as a function of t. It follows that

x1�

0

∂C

∂x1
(t, x2, . . . , xn) dt = C(x1, x2, . . . , xn) = µ([0, x1]× · · · × [0, xn]).

We see from this that
∂C

∂x1
(t, x2, . . . , xn) = µ(I × [0, x2]× · · · × [0, xn] |X1 = t)

= T 1χ[0,x2]×···×[0,xn](t) λ(t)-a.e.

3.3. Products of copulas

3.3.1. Composition of Markov operators. A product of copulas, chiefly
2-copulas, is introduced and studied in [5]. It is shown there that this prod-
uct has an interesting connection with Markov processes. We use the notion
of Markov operators to extend that definition. We show that one can “multi-
ply” a (p+q)-copula and (q+r)-copula to produce a (p+r)-copula provided
the q-marginals of the factors are the same.

Suppose that A and B are (p + q)- and (q + r)-copulas respectively
where p, q, r ≥ 1. Let µ and ν be the probability measures on Ip+q and Iq+r

associated with A and B respectively, and let µp, µq be the marginals of µ on
Ip and Iq and νq, νr be the marginals of ν on Iq and Ir. It is also convenient
at this point to introduce the notation 1p for the p-tuple (1, . . . , 1).

Theorem 8. Let TA : L∞(Ip, µp)→ L∞(Iq, µq) and TB : L∞(Iq, νq)→
L∞(Ir, νr) be the Markov operators associated with µ and ν respectively. If
µq = νq, let T = TBTA : L∞(Ip, µp) → L∞(Ir, νr) be the Markov operator
with associated probability measure ξ on Ip+r. Then ξ is generated by a
(p+ r)-copula which we designate AB and which satisfies

AB(x1, . . . , xp, 1r) = A(x1, . . . , xp, 1q),
AB(1p, xp+1, . . . , xp+r) = B(1q, xp+1, . . . , xp+r).
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Further , if q = 1, then µq = νq = λ and

(7) AB(x1, . . . , xp+r) =
1�

0

∂A

∂xp+1
(x1, . . . , xp, t)

∂B

∂x1
(t, xp+1, . . . , xp+r) dt.

Proof. The measure ξ is associated with T by the requirement that

ξ(R× S) =
�

S

TχR dµp

when R and S are Borel sets of Ip and Ir respectively. Then AB is defined by

AB(x) = ξ([0, x])

where x = (x1, . . . , xp+r) ∈ Ip+r and [0, x] = [0, x1]× · · · × [0, xp+r].
The only condition we need to check to show that AB is a copula is

AB(1, . . . , 1, xk, 1, . . . , 1) = xk,

that is, we need to show that ξ has uniform 1-marginals. Consider the case
where K is a Borel set of I, R = K × Ip−1, and S = Ir. Applying the
definition of Markov operator, we have

ξ(K × Ip−1 × Ir) =
�

Ir

TBTAχR dνr =
�

Iq

TAχR dνq =
�

Ip

χR dµp = λ(K).

If, on the other hand, we have R = Ip and S = Ir−1 ×K, then

ξ(Ip × Ir−1 ×K) =
�

Ir−1×K

TBTA1 dνr = νr(Ir−1 ×K) = λ(K).

Thus AB is a copula.
Next let (x1, . . . , xp) ∈ Ip and set K = [0, x1]× · · · × [0, xp]. Then

AB(x1, . . . , xp, 1r) = ξ(K × Ir) =
�

Ir

TχK dνr =
�

Ip

χK dµp

= µ(K × Iq) = A(x1, . . . , xp, 1q).

The proof that AB(1p, xp+1, . . . , xp+r) = B(1q, xp+1, . . . , xp+r) is similar.

Remark 3. The notation AB is deficient in the following sense: We may
think of A as a function of (x1, . . . , xp) ∈ Ip and (y1, . . . , yq) ∈ Iq and write

A(x1, . . . , xp, y1, . . . , yq).

In a similar fashion, we may write

B(y1, . . . , yq, z1, . . . , zr)

where (z1, . . . , zr) ∈ Ir. It is then natural to write

AB(x1, . . . , xp, z1, . . . , zr).

The variables y1, . . . , yq have been eliminated in forming AB. The deficiency
lies in the fact that there are many ways to choose y1, . . . , yq; there are many
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possibilities for q and there is no necessity to choose them all from the “front
end” or “rear end” of the domains. Hence there are many products that can
be formed. In this particular discussion, for example, it might be more useful
to use a symbol such as

A ∗
y1,...,yq

B

for AB.

3.3.2. A minimal “join” of two copulas. The “product” that we define in
equation (8) below is clearly one suggested by our considerations of Markov
operators though not directly defined by them. This construction was origi-
nally introduced in [5] and used to study Markov processes. Here, however,
we investigate a different question.

When given p- and q-copulas A and B respectively, we may wish to find
an n-copula C having A and B as marginals. A simple and easy way to do
this is to set C(x, y) = A(x)B(y) where x ∈ Ip and y ∈ Iq. Is there any less
obvious way to do this? Is there some way to do this that “crowds A and B
as close together” as possible?

We offer one answer to this question. In what follows, it is intended that

x = (x2, . . . , xp) ∈ Ip−1, y = (y2, . . . , yq) ∈ Iq−1, t, u ∈ I.

Theorem 9. Let A and B be p- and q-copulas respectively. Define C :
Ip+q−1 → R by

(8) C(u, x, y) =
u�

0

∂A

∂t
(t, x)

∂B

∂t
(t, y) dt.

Then C is a (p+q−1)-copula having A and B as marginals. Further , p+q−1
is the minimal dimension for which one can, in general , construct a copula
C having given p- and q-copulas A and B as marginals.

Proof. The fact that C is a copula is noted in [5]. It is easily checked
that A and B are marginals of C.

To prove the minimality of p+ q−1, set A(x1, . . . , xp) = min(x1, . . . , xp)
and B(y1, . . . , yq) = y1 · · · yq. We may suppose that C is an n-copula having
A and B as marginals and such that n ≤ p + q − 1. It will suffice to show
that we must have n = p+q−1. We may, without loss of generality, suppose
that

C(x1, . . . , xp, 1n−p) = A(x1, . . . , xp).

Because A is the copula min, we see that the support of µ, the probability
measure associated with C, must lie in

P = {(t, . . . , t, u1, u2, . . . , un−p) : t, uk ∈ I for k = 1, . . . , n− p} ⊆ In.
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Now let us suppose that n < p+q−1. Choose nondegenerate intervals J1, J2

in I such that J1 ∩ J2 = ∅. Set

K = Ip−2 × J1 × J2 × In−p.

We may, again without loss of generality, assume that B occurs as a marginal
of C in such a way that

µ(K) = µB(J1 × J2 × Iq−2) = λ2(J1 × J2) > 0.

However, we also have K ∩ P = ∅, so µ(K) = 0. From this contradiction,
we conclude that n = p+ q − 1.

3.4. Sequential convergence. In the next two definitions, let C,C1, C2, . . .
be n-copulas and µ, µ1, µ2, . . . the respective associated probability measures
on In. Recall the definition of I(n,i) from Subsection 3.2, and let νi be the
marginal measure of µ on I(n,i) and νki be the marginal measure of µk on
I(n,i).

Definition 2. We write

Ck
M−→ C

provided that for all i ∈ {1, . . . , n} and for all bounded, measurable f :
In−1 → R we have

lim
k→∞

�

I

|T ikf(t)− T if(t)| dt = 0

where T i : L∞(I(n,i), νi) → L∞(I, λ) and T ik : L∞(I(n,i), νki) → L∞(I, λ)
are the Markov operators associated with µ and µk respectively.

Notice in this last definition that although a Markov operator is applied
to an equivalence class of functions, we choose f to be an actual function. If
we were, for example, to denote the equivalence class of f in L∞(I(n,i), νi)
as [f ]νi , then for a given bounded, measurable f , we might more carefully
write T ikf − T if as T ik([f ]νki

)− T i([f ]νi).

Definition 3. We write

Ck
∂−→ C

provided that for all i ∈ {1, . . . , n} we have

lim
k→∞

�

I

∣∣∣∣∂Ck∂xi
(x1, . . . , t, . . . , xn)− ∂C

∂xi
(x1, . . . , t, . . . , xn)

∣∣∣∣ dt = 0

where t is the ith coordinate of the n-tuple.

Theorem 10. Let C,C1, C2, . . . be n-copulas and consider the following
conditions:
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(1) Ck
M−→ C.

(2) Ck
∂−→ C.

(3) Ck → C uniformly.
Then (1)⇒(2)⇒(3).

Proof. (1)⇒(2). If we set f = χ[0,x2]×···×[0,xn] in

lim
k→∞

�

I

|T 1
k f − T 1f | dλ = 0,

the desired result follows immediately.
(2)⇒(3). Since

|Ck(x1, x2, . . . , xn)− C(x1, x2, . . . , xn)|

=
∣∣∣∣x1�

0

(
∂Ck
∂x1

(t, x2, . . . , xn)− ∂C

∂x1
(t, x2, . . . , xn)

)
dt

∣∣∣∣
≤

1�

0

∣∣∣∣∂Ck∂x1
(t, x2, . . . , xn)− ∂C

∂x1
(t, x2, . . . , xn)

∣∣∣∣ dt,
the result follows.

We want to give examples or establish conditions under which these
convergences might occur. We begin with some “natural” approximations
of copulas that are again copulas.

It is useful to first describe a partition of In into cells: Let m be a “large”
natural number and define

Inm,i =
[
i1
m
,
i1 + 1
m

]
× · · · ×

[
in
m
,
in + 1
m

]
where i is the multi-index (i1, . . . , in) with each ik in {0, 1, . . . ,m− 1}.

Now here are two approximations of copulas that are investigated in [8],
[9], and [11]:

Example 5 (Checkerboard approximation). Let C be a given n-copula
and µ the associated probability measure. For i = (i1, . . . , in), let χi be the
characteristic function of Inm,i. Then the m×· · ·×m checkerboard approxima-
tion Cm of C is constructed by replacing µ with a probability measure µm on
In in such a way that µm has constant density µ(Inm,i)/λ

n(Inm,i) = mnµ(Inm,i)
on each cell Inm,i. Of course, Cm is the n-copula associated with µm. If we
permit i/m to stand for the point (i1/m, . . . , in/m) ∈ In, then we have
Cm(i/m) = C(i/m) for all i, and the density of Cm is given by

(9) C(n)
m =

∂nCm
∂x1 · · · ∂xn

= mn
∑
i

µ(Inm,i)χi.
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Example 6 (Bernstein approximation). It turns out that the standard
Bernstein approximation of a copula is again a copula. (See [11] for more
detail on this example.) Let C and µ be as before.

We describe the Bernstein approximation process for C: The mth degree
Bernstein polynomial bi,m : I → R is given by

bi,m(t) =
(
m

i

)
ti(1− t)m−i, i = 0, 1, . . . ,m.

We extend this to Bn
i,m : In → R by taking i to be a multi-index, i =

(i1, . . . , in), with each ik in {0, 1, . . . ,m}, and setting

Bn
i,m(x) = bi1,m(x1)bi2,m(x2) · · · bin,m(xn)

where x = (x1, . . . , xn) ∈ In. Then by the m × · · · ×m Bernstein approxi-
mation to C we mean

Am(x) =
∑
i

C(i/m)Bn
i,m(x)

where x ∈ In and i is a multi-index.
We accept that Am is an n-copula, and since C is continuous, it is a

standard result of analysis that Am converges uniformly to C on In. If we
extend our definition of bi,m by setting

b−1,m = bm+1,m = 0,

then we can show that

b′i,m = m (bi−1,m−1 − bi,m−1), i = 0, 1, . . . ,m.

It is then possible to prove that the density of Am is given by

(10) A(n)
m =

∂nAm
∂x1 · · · ∂xn

(x1, . . . , xn) = mn
∑
i

µ(Inm,i)B
n
i,m−1.

Coming back to the theme of convergence, we have the following result
from [11]:

Theorem 11. Let Cm and Am be, respectively , the m×· · ·×m checker-
board and Bernstein approximations to a given n-copula C. Then Cm, Am
∂−→ C as m→∞, however we do not , in general , have either Cm

M−→ C or
Am

M−→ C.

M-convergence seems to require much stronger conditions than ∂-con-
vergence or uniform convergence. We do, however, establish some conditions
under which it does occur.

Theorem 12. Let C,C1, C2, . . . be n-copulas with associated probability
measures µ, µ1, µ2, . . . respectively. Assume that

1. C and each Ck has a density C(n) and C(n)
k respectively ,
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2. C(n)
k → C(n) in L1(In, λn).

Then Ck
M−→ C.

Proof. It suffices to consider the factorization In = I × In−1 of the unit
cube and the Markov operators T, Tk : L∞(In−1)→ L∞(I) associated with
µ and µk respectively. We know by Remark 2 that

Tf(x) =
�

In−1

C(n)(x, y)f(y) dy and Tkf(x) =
�

In−1

C
(n)
k (x, y)f(y) dy

where x ∈ I and y ∈ In−1. Then for bounded, measurable f : In−1 → R, we
have

0 ≤
�

I

|Tkf − Tf | dλ =
�

I

∣∣∣ �

In−1

(C(n)
k − C(n))(x, y)f(y) dy

∣∣∣ dx
≤

�

In

|(C(n)
k − C(n))(x, y)|‖f‖∞ dy dx→ 0 as k →∞.

Hence Ck
M−→ C.

An obvious next step is to ask for C,C1, C2, . . . that satisfy the hypothe-
ses of Theorem 12. Toward that end, we assume in the next two lemmas
that C is a given n-copula with associated probability measure µ and den-
sity C(n).

Lemma 1. If C(n) is continuous on In and Cm is the m × · · · × m

checkerboard approximation of C, then C
(n)
m → C(n) uniformly λn-a.e. on

In as m→∞.

Proof. Choose ε > 0. By the uniform continuity of C(n) on In, we can
choose m so large that if y, z ∈ Inm,i, then |C(n)(y) − C(n)(z)| < ε. Notice
that for every multi-index i = (i1, . . . , in) there exists yi ∈ Inm,i such that

µ(Inm,i) =
�

In
m,i

C(n) dλn = C(n)(yi)
1
mn

.

Let us choose x ∈ In such that x lies in the interior of some cell Inm,j ; the
set of such x has λn-measure 1. Recalling the formula (9) and the fact that
χi is the characteristic function of Inm,i, we have

|C(n)
m (x)− C(n)(x)| =

∣∣∣mn
∑
i

µ(Inm,i)χi(x)− C(n)(x)
∣∣∣

= |C(n)(yj)− C(n)(x)| < ε.

Lemma 2. If C(n) is continuous on In and Am is the m × · · · × m

Bernstein approximation of C, then A(n)
m →C(n) uniformly on In as m→∞.
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Proof. Choose ε > 0. By the uniform continuity of C(n), we can choose
m so large that if |y − z| < n/(m − 1), then |C(n)(y) − C(n)(z)| < ε. As in
the last lemma, for every multi-index i = (i1, . . . , in), there exists yi ∈ Inm,i
such that µ(Inm,i) = C(n)(yi)/mn. Recalling that i/m stands for a point in
Inm,i, we see that |yi − i/m| < n/m so that |C(n)(yi) − C(n)(i/m)| < ε. We
shall also make use of the fact that |i/m− i/(m− 1)| < n/(m− 1) so that∣∣∣∣C(n)(yi)− C(n)

(
i

m− 1

)∣∣∣∣ < 2ε.

In what follows, we use the notation of Example 6. We know that
{bi,m}mi=0 is a partition of unity for I, so it follows that {Bn

i,m}i is a partition
of unity for In where i is now a multi-index. Recalling the expression in (10)
for A(n)

m , we see that

|A(n)
m − C(n)| =

∣∣∣mn
∑
i

µ(Inm,i)B
n
i,m − C(n)

∣∣∣ =
∣∣∣∑
i

C(n)(yi)Bn
i,m − C(n)

∣∣∣
≤
∣∣∣∣∑
i

C(n)

(
i

m− 1

)
Bn
i,m − C(n)

∣∣∣∣
+
∣∣∣∣∑
i

(
C(n)(yi)− C(n)

(
i

m− 1

))
Bn
i,m

∣∣∣∣
≤
∣∣∣∣∑
i

C(n)

(
i

m− 1

)
Bn
i,m − C(n)

∣∣∣∣+ 2ε.

Now
∑

iC
(n)(i/(m−1))Bn

i,m is the (m−1)×· · ·×(m−1) Bernstein approxi-
mation to C(n) and must converge uniformly to C(n) since C(n) is continuous.
This establishes the result.

Uniform convergence λn-a.e. implies L1-convergence, so by Theorem 12,
we have the following:

Theorem 13. If C is an n-copula such that C(n) is continuous and
if Cm and Am are the checkerboard and Bernstein approximations of C
respectively , then Cm, Am

M−→ C.
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[6] A. Dolati and M. Úbeda-Flores, On measures of multivariate concordance, J. Probab.
Statist. Sci. 4 (2006), 147–163.

[7] T. Kulpa, On approximation of copulas, Int. J. Math. Math. Sci. 22 (1999), 259–269.
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