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Pluriharmonic extension in proper image domains

by RAFAL Czyz (Krakow)

Abstract. Let D; be a bounded hyperconvex domain in C"7 and set D = Dy x - - - X
Ds,j=1,...,8 s > 3. Also let {2 be the image of D under the proper holomorphic
map w. We characterize those continuous functions f : 92, — R that can be extended to
a real-valued pluriharmonic function in 2.

1. Introduction. For each j = 1,...,s, s > 3, let D; be a bounded
hyperconvex domain in C"/, n; > 1. Recall that a bounded domain 2 C C",
is called hyperconvez if there exists a plurisubharmonic function ¢ : 2 —
(—00,0) such that the closure of the set {z € 2 : ¢(z) < ¢} is compact in
12, for every ¢ € (—00,0). A bounded hyperconvex domain {2 in C", viewed
as a domain in R?", is always regular with respect to the Dirichlet problem
for the Laplace operator (see e.g. [4]). Set

(1.1) D=Dyx---xD,, j=1,...,5 5>3.

Then D C C", n = ny + -+ + ng, is a hyperconvex domain (see e.g. [2,
Proposition 2.1]). Let U be an open neighborhood of D and 7 : U — C",
n = ny + --- + ng, be a proper holomorphic map. Set 2, = w(D). Then
w(0D) = 02, since 7 is a proper map (see e.g. [6]). Furthermore, 2, is
hyperconvex (Proposition 2.1).

Let f: 002, — R, s > 3, be a continuous function. Our main goal in
Section 2 is to characterize those continuous functions f that can be extended
to real-valued pluriharmonic functions in {2;. We prove:

THEOREM A. Let D; be a bounded hyperconver domain in C", n; > 1.
Set D =Dy x---xDg, j=1,...,8 s > 3. Moreover, let U be an open
neighborhood of D, let m : U — C", n = ny+---+ns, be a proper holomorphic
map and let 2, = w(D). If f : 0D — R, n > 3, is a continuous function,
then the following assertions are equivalent:
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(1) there exists a function h that is pluriharmonic on 2., continuous on
27 and h‘@()w =/,

(2) f is pluriharmonic on 082 in the sense of Definition 2.2,

(3) the Perron—Bremermann envelope PBy is pluriharmonic on 2, i.e.,

PB_; = —PBy,

(see Section 2 for the definition of the Perron—Bremermann enve-
lope),

(4) for every zg € 082 and every Jensen measure i € J5, with barycenter
2o we have

flz0) =\ fdp.

082

Furthermore, if we assume that £2; has the approximation property, then the
above conditions are equivalent to:

(5) the function PB_; 4+ PBy has smallest maximal plurisubharmonic
majorant identically zero,
(6) limsupgs,_.(PBy +PB_y)(2) = 0 for every £ € 0(2:.

(see Section 2 for the definition of the approximation property).

An elementary example of a continuous function f : 02, — R satisfying
the above conditions is the following: Let u be holomorphic in a neighborhood
of 2, and let f = Re(u) be defined on 9§2;. Then h = Re(u) satisfies (1).

Let s = n; = 1. Then property (2) in Theorem A does not make sense and
properties (1), (3)—(6) are true for every continuous function f : 2, — R. If
s = 2, then it is in general not true that (2) implies (1) (|2, Example 3.4]),
and if s > 3 and 7 is the identity map or is such that {2, is the symmetrized
polydisc (see e.g. [5] for the definition), then Theorem A was obtained in [2].
The equivalence between (1) and (3) was proved for an arbitrary hyperconvex
domain in [1].

This article is organized as follows. The equivalence between assertions
(1)—(4) is proved in Section 3 and the final part is proved in Section 4. In
Section 5 we study plurisubharmonic boundary values in terms of analytic
discs, in the case when D = Dy X --- x D,, is a hyperconvex domain in C".

2. Definitions, basic facts and notations. Let D; be a bounded
hyperconvex domain in C", n; > 1, and set

D=D;x---xDg CC",

where n = ny + --- + n,. For an open neighborhood U of D and a proper
holomorphic map 7 : U — C™ we use the notation 2, = w(D).



Pluriharmonic extension 165

Let Iy, = (j1,...,Jk) be an increasing multi-index of length k: 1 < j; <
- < Jr < s, where 1 < k < s. Define

J1 Jk
I — N N I — I
A% =Dy x - x0Dj x---x0Dj, x---x Dg and AF =7(AF).
Hence,
oD =A™ and 002, =x(0D) = Al
Iy Iy,

Finally, denote by D™ the distinguished boundary of D, i.e.
0Dt = 0Dy x --- x 0D,
PROPOSITION 2.1. The domain {2, is hyperconvex.
Proof. For every j, let ¢; be an exhaustion function for D;. Then
w(Cr, -5 Gs) = max{e1(Cr), .-, s(Cs)}
is a plurisubharmonic exhaustion function for D in C". Now define
o(w) = max{u(z) : z € 7 (w)}.

From [7] it follows that ¢ is a plurisubharmonic exhaustion function for 2.
Thus, (2, is hyperconvex. m

DEFINITION 2.2. An upper semicontinuous function u : 92, — R U
{—o0} is plurisubharmonic if u is plurisubharmonic on every Alr for every

increasing multi-index Iy, = (j1,...,Jx) of length k < s, i.e., for every w;, €
0Dj,,...,wj, € 0Dj,, the function defined by
(2.1) U oo e e Wi (21,0 25k) P UOT(21, oy Wiy v oy Wy -+ Zs—k)

is plurisubharmonic on
ka:Dlx---xa/D;><---><8/Dz><---><Ds.

The identically —oo function is by fiat not considered as plurisubharmonic.
In a similar manner a continuous function w : 32, — R is plurtharmonic if
u is pluriharmonic on every Alk for every increasing multi-index I, of length
k <s.

REMARK. Note that, if we take 7 = idp in Definition 2.2, then an upper
semicontinuous function w is plurisubharmonic on 0D if for every increasing
multi-index I}, the restriction of u to A* is plurisubharmonic.

The following definition comes from [11].

DEFINITION 2.3. Let 2 C C". We say that {2 has the approzimation
property if for all upper bounded plurisubharmonic functions u in (2 there
exists a decreasing sequence u; € PSH((2) NC(§2) such that u; — u* on 2.
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Wikstrom proved that B-regular domains and polydiscs have the approx-
imation property (see [11]).

DEFINITION 2.4. Let £2 C C” be a bounded domain and let x4 be a non-
negative, regular Borel measure on 2. The measure y is a Jensen measure
with barycenter at z € £2 for continuous plurisubharmonic functions if

u(z) < S udp
]
for every continuous function u € PSH(S2). The set of all such measures will
be denoted by J¥.

Similarly the measure p is a Jensen measure with barycenter at z € (2

for upper bounded plurisubharmonic functions if
u'(z) < S u* dp

(9]

for every upper bounded function u € PSH(S2). The set of all such measures
will be denoted by J..

It is clear that {4.} C J. C Jf, where J, denotes the Dirac measure
at z. If {2 is a hyperconvex domain, then supp u C 92 for all z € 0f2 and
all p € J¢ (see [3]). Moreover, for a bounded hyperconvex domain 2 C C"
it was proved in [11] that (2 has the approximation property if, and only if,
JS=J, forall z € 0.

We say that there exists a strong plurisubharmonic barrier at z € 02 if
there exists u € PSH(2) N C(§2) such that u(z) = 0 and u < 0 in 2\ {z}.
A bounded domain {2 in C" is called B-regular (see [9]) if for each z € 012
there exists a strong plurisubharmonic barrier at z.

PROPOSITION 2.5. Let §2 C C" be bounded domain and let z € 02 be
such that there exists a strong plurisubharmonic barrier at z. Then J£={0.}.

Proof. Let z € (2. Assume that there exists u € PSH(£2) N C(§2) such
that u(z) =0 and u < 0 in 2\ {z}. Then we get

0=u(z) < S udp < 0.
o192
Therefore supp u C {z}, so IS ={0,}. =

PROPOSITION 2.6. Let Dj be a bounded B-regular domain in C"i, and
let D=Dyx---xDg CC" wheren=mn1+---+ns. Ficke {1,...,s—1},
1 <1< <gx <5, 2, € 0Dj forl =1,...,k and z, € Dy, for
m¢{j1,...,jk}. Let z = <Z17-"7Zj17---7zjk7"'728) edD. Ifu € jZC, then

suppp C Dy x -+ x {zj, } x -+ x {zj,} x -+ x Ds.
If € DT, then J¢ = {4.}.
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Proof. Let zo € 9D\ OD™, e.g. 20 = (21,...,Wj,, ..., Wj,--.,2s). where
zj € Dj, wj, € 0Dj,. Let hj, be a strong plurisubharmonic barrier at wj,
for Dj,. Define u;, () = hj, (2;,), and let p € J5 . Then

0= uj,(2) < S wjy, dyt,
oD
which implies that

suppp C Dy x -+ x {w;, } X -+ x Ds.

Hence,

supp,ucmbl X -+ x {wj, } x -+ x Dy
Jk
=Dy x - x{wj } x - x{w;} x -+ x Ds.

To prove the second part of the proposition, we will show that for each z €
OD™ there exists a strong plurisubharmonic barrier at z; then Proposition 2.5
will finish the proof. Let (w1, ..., ws) € dDT. Then for each j there exists
vj € PSH(D;)NC(D;) such that ¢;(w;) = 0 and p; < 0in D;\ {w;}. Now
define

u(z,. . 2) = Y wi(z).
j=1

Then u € PSH(D)NC(D), u(w) =0 and u < 0 in D\ {w}. =

Let 2 C C™ be a bounded hyperconvex domain and let f : 92 — R be
a continuous function. The Perron—Bremermann envelope is defined by
PB(z) = sup{w(z) : w € PSH({2), limsupw(() < f(&) V& € 042}.
23¢—¢

Hence PBy is always plurisubharmonic, but not necessarily continuous. In

[10] Walsh proved that if

liminf PBf(z) = limsup PB(z) = f(§)
252—¢ 252—¢€

for every £ € 02, then PBy € C(§2). We will refer to this result as Walsh’s
theorem.

3. Proof of the equivalence (1)—(4) in Theorem A

LEMMA 3.1. Let U be an open neighborhood of D defined in Section 2
and let m : U — C™ be a proper holomorphic map. Let (2, := w(D) and
let f: 02; — R be a continuous function. If there exists u € PSH(2;) N
C(2,) such that ulpn, = f, then f is plurisubharmonic in the sense of
Definition 2.2.
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Proof. Let Ij; be an increasing multi-index of length & < s, and wj, €
0Dj,,...,wj, € 0Dj,. Let fwjl,”_,wjk : D, — R U {—o0} be defined as
n (2.1). We need to prove that this function is plurisubharmonic under the
assumption that there exists u € PSH(£2:) N C(§2;) such that ulgn, = f.
Take a sequence [(wj],...,wi)|7°_y in Dj x -+ x Dj, which converges to
(wjy, ..., wj,) as m — oo. Moreover, let [u,,]| be the sequence of real-valued
functions on Dy, defined by

m m
U (215 -+ 5 Zs—) = UOT(21, ., W5 W 2 )
This construction implies that w,, is plurisubharmonic on Dy, and continu-
ous up to the boundary. The sequence [u,,] converges uniformly to fwjl""’wjk

on Dy, as m — oo, and therefore f is plurisubharmonic in the sense of Def-
inition 2.2. =

Next we prove a characterization of those continuous boundary values
which can be extended to continuous plurisubharmonic functions inside the
domain.

PROPOSITION 3.2. Let D = Dq X --- X Dy, where D; is a B-regular
domain in C", j =1,...s, and let f : 0D — R be a continuous function.
The following conditions are then equivalent:

(1) there exists u € PSH(D) N C(D) such that u|p = f,

(2) f is plurisubharmonic in the sense of Definition 2.2 (with m = idp).

Proof. (2)=(1): If z € D%, then J¢ = {6,} by Proposition 2.6. If
z € 8D\8D+ then there exist k < sand 1 < j; < --+ < jr < s such that
zj, € 0Dy, for 1 = 1,...,k and 2z, € Dy, for m & {j1,...,j}. If p € TS,
then B B

suppp C Dy x -+ x {zj } x -+ x {zj.} x -+ x D,
by Proposition 2.6. By our assumption f is plurisubharmonic on Dy X --- X
{zj,} x -+ x{zj,} x -+ x Dy and then by definition of Jensen measures we
get
fz) < | fdp.
Dix-x{zjy }xx{zj, }x--xDs
Taking p = 0, we find that for all z € 9D,
f(z) = inf{ S fdu:pe jzc}
oD
Then from Theorem 3.5 in [11] there exists u € PSH(D) N C(D) such that
ulp = f.
(1)=-(2): Follows from Lemma 3.1. =

LEMMA 3.3. Let D be a bounded hyperconvex domain in C", and let U
be an open neighborhood of D. Let w : U — C™ be a proper holomorphic
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map and let 2, = n(D). If f:02; — R is a continuous function such that
PBfor € PSH(D)NC(D) and PByor = fom on OD, then

PBtor = PByom.
Furthermore, PByor is pluriharmonic in D if, and only if , PBy is plurihar-

monic on (2.

Proof. Define g = f om: 9D — R. By our assumption, PB is plurisub-

harmonic on D and continuous on D. Set

o(w) = max{PB,(2) : z € 7~ H(w)}.
Then ¢ € PSH(£2:) N C(£2:) (see [7]). We prove that ¢lon, = f. Let
2 5 wj — w € 052;. Then there exist finitely many 2]1-, e z;-cj € 1 (wj).
Take z;-j such that p(w;) = PBg(z;j). Since 7 is a proper map, we have
zé.j — 29 € 0D and then ¢(w;) = PBg(z;j) — PBy(20) = 9(20) = f(7(20)) =
[ (wo). _

Hence ¢ < PBy € PSH(£2;) N C(§2x), by Walsh’s theorem. Therefore
PB;onm € PSH(D) and (PBfom)|gp = g. Thus, for z € 7! (w) we get
(PByom)(z) < PBy(2) and so PBy(w) < ¢(w), which implies that ¢ = PBy.
Therefore

PBfoﬂ- = PBf o7,
since both functions are maximal with the same boundary values g.

Now we prove the second part of the lemma. From the first part it is clear
that if PB; is pluriharmonic on (2, then PBy., is pluriharmonic on D.

Now assume that PB, is pluriharmonic on D. Note that PB, = —PB_,,
since PB, pluriharmonic on D and continuous on D. Hence by the first part
of the proof,

PBj(w) = max{PBy(z) : z € 7~ }(w)} = max{-PB_,(2) : 2 € 7} (w)}
= —min{PB_,(2) : z € 7} (w)}.

Similarly, PB_f(w) = max{PB_g4(z) : 2 € 77! (w)}. Combining these two
representations we obtain

0>PB; +PB_; = max{PB_4(2) : z € 7' (w)}
—min{PB_,(2): z € 7 *(w)} >0,
so PBy = —PB_¢, which means that PB; is pluriharmonic. =
We are now in a position to prove the first part of Theorem A.

Proof of Theorem A. (1)=(2): Follows immediately from Lemma 3.1.
(3)=(1): Obvious.
(3)=(4): Follows from Theorem 2.4 in [2].
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(4)=(2): Let I be an increasing multi-index 1 < j; < -+ < ji < s of
length k < s, and zg € A’%. Take any complex line [ through 2o and r > 0
such that zg+7E C INA, where E is in C. Since the Lebesgue measure \ on
the unit disc E is a Jensen measure at zp, the measure i, (A) = A7~ 1(A)),
where A C zg + rE, is a Jensen measure at 7(zg). By assumption,

frzo) = | fdue= | foman

w(z0+rE) zo+rE

which implies that f is harmonic on 7(z9 + rE) and therefore pluriharmonic
on 0§2;.

(2)=(3): Let g = fom : 9D — R. Then g is pluriharmonic on 0D
and therefore Theorem 3.3 in [2] implies that PB, is pluriharmonic on D,
continuous on D and PB, = g on dD. Therefore Lemma 3.3 finishes the
proof. m

4. The final part of Theorem A. We prove the following theorem.

THEOREM 4.1. Assume that {2 C C™ is a bounded hyperconvexr domain
having the approximation property and that f : 02 — R is a continuous
function. The following assertions are then equivalent:

(1) for every & € 012,

(4.1) limsup(PB; +PB_¢)(2) =0,
235z—¢

(2) for every zo € 012 and every p € Js,,
fz0) =\ fdu,

of?

(3) PBf,PB_; € C(2)NPSH(S2), PBy = f and PB_;y = —f on 012.
Proof. (3)=-(1): Obvious.
(2)=(3): Lemma 3.3 in [11] implies that there exist u,v € PSH(£2) N
C(£2) such that
lim wu(z)=f(¢) and lim wv(z)=—f(§)

252—C 232—¢
for all (,& € 012, hence

Gim PBy(z)= () and  lm PB_;(z) = —/(¢).

and by [10] we get PB;,PB_; € C(£2) N PSH(12).
(1)=-(2): First we will prove that assumption (4.1) implies that
limsupPBy(z) = f(¢) and limsupPB_y(z) = —f(§)

232—( 25z—¢
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for all (,£ € 0f2. Assume that this is not the case, for example there exists
a & € 0§2 such that limsup,_,. PBy(z) < f(&). Then

0 = limsup (PBy + PB_y)(2) < limsup PB¢(z) 4 limsup PB_¢(z)
252—¢& 252—¢& 252—¢
< f(&) = f(§) =0,
a contradiction, hence limsup PBy = f and limsupPB_; = —f on 012.
Fix zp € 02 and take p € J,, = JZCO. Then supp u C 942 and

f(20) =PB}(20) < | PBjdp= | PBjdu= | fdpu.
] on o
Thus
flz0) <int{ | fdu:pe T}
on
If 4 =9,,, then we obtain

flz0) = inf{ § fdp:pe T}
on
A similar formula can be obtained for —f and therefore

inf{ | —fduipe T} = —flz0) = —inf{ | fdu:ne )

on on
= Sup{ \ —fdu:pe jzo}'
of
Thus, for every zyp € 02 and every p € J,,
f(Z()) = S fd)uv
on

and the proof is complete. n

Proof of the final part of Theorem A. (5)=(6): If a bounded plurisubhar-
monic function u on a bounded hyperconvex domain {2 has smallest maximal
plurisubharmonic majorant identically zero, then limsup, ¢, u(2) = 0.

(3)=(5): Obvious.

(6)=(4): Follows from Theorem 4.1. m

5. Plurisubharmonicity in terms of analytic discs. Let E be the
open unit disc in C. Let U be an open neighborhood of the closure of a
bounded hyperconvex domain D = Dy X -+ x D, in C", and let 7 : U — C"
be a proper holomorphic map. Set 2, := m(D). Note that since each Dj is
a one-dimensional hyperconvex domain, it is also B-regular.

PropOSITION 5.1. Let U be an open neighborhood of the closure of a
bounded hyperconvexr domain D = Dy X --- X Dy, in C", n > 2, and let 7 :
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U — C™ be a proper holomorphic map. Let 2, := w(D) and let f : 002, — R
be a continuous function. The following conditions are then equivalent:

(1) there exists u € PSH(£2:) N C(£2;) such that u|pn, = f,
(2) f is plurisubharmonic in the sense of Definition 2.2,
(3) f is subharmonic on every analytic disc d embedded in 02, i.e.,

[ od is subharmonic on E for every injective, holomorphic function
d:E — 2, with d(E) C 92;.

Proof. Since each D; is B-regular, the equivalence (1)<(2) was proved
in Lemma 3.3.

(3)=(2): Let I be an increasing multi-index of length k < n, w;, €
0Dj,,...,wj, € 0Dj,. Let fwjl""’wjk : Dy, — R U {—o0} be defined as
in (2.1). To prove that this function is plurisubharmonic, take zop € Dy, .
Let Zo = (21,...,wj,...,Wj,,...,2n) € Ak choose X € C"* and let
X = (X1,...,Xj,,...,Xn), where X;, = 0 for I = 1,...,k. Choose r > 0
such that {Z) + ¢rX : ¢ € E} C Al¥. Let d : E — A'* be an analytic disc
embedded in A’ defined by d(¢) = %o+ ¢rX. Then 7 od is an analytic disc
imbedded in AZ. Thus f o 7 o d is subharmonic on E by assumption, hence
fw Wi is plurisubharmonic on A’x.

(2)=(3): Let d : E — 02;. It is enough to show that there exists an
increasing multi-index Ij, of length k& < n such that d(E) C A, It is clear
that d(E) ¢ 7((9E)™). So there exist z € d(E) and an increasing multi-index
I of length k < n such that z € A,

We prove that d(E) C AZ. Assume that it is not true. Then, since both
sets are connected, there exist A1, Ao € E such that d(\;) € Al¥ and d(\;) €
OAL (we can treat Al like a domain in C"~¥). Therefore we can assume

that there exists an analytic disc d : E — AL such that d(\),d(\2) € d(E).
Let

11)(21,...,éjl,...,éjk,...,zn)

= max(¢1(z1), . .. » D (z]d)v s Oy (ij)’ ce s Pn(zn))
be an exhaustion function for A’ treated like a subset of C"~*, where ¢; is
an exhaustion function for D;. We can consider the restriction = : cr k5
Al — Al ¢ C"F. Define

v(w) = max{y(2) : z € 71 (w)}.
Then v is an exhaustion function for A, Define h(\) = v o d(A). Then h

is a negative subharmonic function on E. But on the other hand, h(A;) < 0
and h(A2) = 0, which is impossible. =

REMARK. Let D = Dy x --- x Dy, where each D; is a hyperconvex
domain in C"% with C'-boundary, 1 < j < s, s > 2, and let U be an open
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neighborhood of D. Let w : U — C" be a proper holomorphic map, where
n=ni+---+ ng, and let 2, := w(D). Following the idea from [2] one can
show that the conclusion of Proposition 5.1 is also true for the {2, described
above.

THEOREM 5.2. Let f € C(OEXORE), and let do be the normalized Lebesgue
measure on OE. Then the Poisson integral of f defined by

B (1= |21 = [22]%)
PG =} o Pl — =P

f(wy,we) do(wy) do(ws)

is 2-harmonic (i.e. harmonic in each variable separately) on E? and contin-
uous on E2. Furthermore, P[f] is pluriharmonic in E? if , and only if,

S wlflw;%f(wl; ws) do(wy) do(wg) =0
OEXOE

for all k1, ko € N. Moreover, if u is a 2-harmonic function on E2, continuous
on B2, then u = Plu].

Proof. See [8]. m

Using Rudin’s result we obtain a similar result for 0(2;.

PROPOSITION 5.3. Let U be an open neighborhood of the closure of E?
in C2, and let 7 : U — C? be a proper holomorphic map. Let 2, := w(E?),
and let f : 082 — R be a continuous function. The following are then
equivalent:

(1) there exists a function w which is pluriharmonic on {2, continuous
on 2 and ulpn, = f,
(2) f is harmonic in the sense of Definition 2.2 and

(5.1) S Wi wh? f (7 (wy, wy)) do(wy) do(wy) = 0
OEXOE
for all ky, ko € N.

Proof. (1)=-(2): Similarly to the proof of Lemma 3.1 one can show that
f is harmonic in the sense of Definition 2.2. By assumption it also follows
that PBy is pluriharmonic on {2;. Therefore by Lemma 3.3, PB o, = PByom
and PBy o 7 is pluriharmonic on E2, continuous on E2, and PB fom=form
on OE%. Then PByo, = P[f o] is the Poisson integral of fo, so (5.1) holds
by Theorem 5.2.

(2)=(1): From (2) it follows that (5.1) holds for all k1, ks € N. By The-
orem 5.2, P[f o] is pluriharmonic on E2. Since f is harmonic in the sense
of Definition 2.2, the function P[f o 7] = PBjo, is pluriharmonic on E2,
continuous on OE2, and PB for = fomon OE?. Therefore by Lemma 3.3,
PBy is pluriharmonic on {2, and the proof is complete. =
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