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Monge–Ampère boundary measures

by Urban Cegrell and Berit Kemppe (Umeå)

Abstract. We study swept-out Monge–Ampère measures of plurisubharmonic func-
tions and boundary values related to those measures.

1. Introduction. The purpose of this paper is to study certain bound-
ary measures related to plurisubharmonic functions on hyperconvex domains.
These measures are obtained as swept-out Monge–Ampère measures and
generalize the boundary measures studied by Demailly [14] (see Section 3).
A number of properties of the measures, such as density, support and con-
vergence, are given in Section 4. The idea is then to use these measures to
define and study boundary values of plurisubharmonic functions on the given
domain. This is done in Section 5, where we also describe some situations
where this coincides with other notions of boundary values. Finally, in Sec-
tion 6 we study more general boundary measures on a more restricted class
of hyperconvex domains. Here we start with a measure on the boundary and
find a sequence of Monge–Ampère measures approximating it.

Results from this paper have been applied in [2].

2. Preliminaries. We first recall some definitions needed in this paper.
Let Ω be a domain in Cn, n ≥ 2. Denote by PSH(Ω) the plurisubhar-
monic functions on Ω and by PSH−(Ω) the subclass of nonpositive func-
tions. A set Ω ⊂ Cn is said to be a hyperconvex domain if it is open, con-
nected and if there exists a function ϕ ∈ PSH−(Ω) such that {z ∈ Ω :
ϕ(z) < −c} ⊂⊂ Ω for all c > 0. If Ω is a bounded hyperconvex do-
main, then it can be shown that the exhaustion function ϕ can be chosen
in C∞(Ω) ∩ C(Ω) and such that

	
Ω(ddcϕ)n < ∞ (see [11]). This implies

for example that the classes defined below are nontrivial. Unless otherwise
stated, throughout this paper, Ω will denote a bounded hyperconvex do-
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main in Cn. Also, by a measure we mean a positive regular Borel mea-
sure.

Let E0(Ω), F(Ω), E(Ω) and Fa(Ω) be the subclasses of PSH−(Ω) defined
as in [6] and [8], namely:

• E0(Ω) is the set of functions u ∈ PSH(Ω)∩L∞(Ω) such that
	
Ω(ddcu)n

<∞ and limz→ξ u(z) = 0 for all ξ ∈ ∂Ω.
• F(Ω) is the set of functions u ∈ PSH(Ω) such that there is a sequence
{uj} in E0(Ω) with uj ↘ u and supj

	
Ω(ddcuj)n <∞.

• E(Ω) is the set of functions u ∈ PSH(Ω) such that for each ω ⊂⊂ Ω
there is a function uω ∈ F(Ω) with uω ≥ u on Ω and uω = u on ω.
• Fa(Ω) is the set of functions u ∈ F(Ω) such that

	
E(ddcu)n = 0 for

each pluripolar set E ⊂ Ω.

For the convenience of the reader, we state some results concerning these
classes, which we use most frequently in this paper. If not indicated other-
wise, proofs can be found in [8].

First, observe that PSH−(Ω) ∩ L∞loc(Ω) is contained in E(Ω) and that
E0(Ω) ⊂ Fa(Ω) ⊂ F(Ω) ⊂ E(Ω). The following lemma explains why the
functions in E0(Ω) are sometimes called test functions.

Lemma 2.1. If ϕ ∈ C∞0 (Ω), then there are ϕ1, ϕ2 ∈ E0(Ω) ∩ C(Ω) such
that ϕ = ϕ1 − ϕ2.

If u1, . . . , un ∈ E(Ω), then ddcu1 ∧ · · · ∧ ddcun is defined as the limit
measure obtained by combining the following two theorems.

Theorem 2.2. Suppose that u ∈ PSH−(Ω). Then there is a sequence
{uj} ⊂ E0(Ω) ∩ C(Ω) such that uj ↘ u on Ω and supp (ddcuj)n ⊂⊂ Ω for
each j.

Theorem 2.3. For k = 1, . . . , n, let uk ∈ E(Ω) and {gkj}∞j=1 ⊂ E0(Ω)
be such that gkj ↘ uk as j →∞. Then ddcg1j ∧· · ·∧ddcgnj is weak∗-conver-
gent and the limit measure is independent of the sequences {gkj}.

A function u ∈ E(Ω) is a maximal plurisubharmonic function if and only
if (ddcu)n = 0 (see [5] and [7]). If u ∈ F(Ω) and (ddcu)n = 0, then u = 0
(see Theorem 5.15 in [8]). Theorem 2.3 can be generalized as follows (see e.g.
Lemma 3.2 in [10]).

Lemma 2.4. For k = 1, . . . , n, let uk ∈ E(Ω) and {gkj}∞j=1 ⊂ E(Ω) be
such that gkj ≥ uk and gkj tends weakly to uk as j →∞. If h ∈ PSH−(Ω)∩
L∞(Ω), then h ddcg1j ∧ · · · ∧ ddcgnj tends weak∗ to h ddcu1 ∧ · · · ∧ ddcun.
Moreover , if uk ∈ F(Ω) then limj→∞

	
Ω h dd

cg1j∧· · ·∧ddcgnj =
	
Ω h dd

cu1∧
· · · ∧ ddcun.
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The next lemma contains some useful basic properties of the classes we
use.

Lemma 2.5. Let K ∈ {E0,Fa,F , E}.

(i) If u, v ∈ K(Ω) and α, β ≥ 0, then αu+ βv ∈ K(Ω).
(ii) If u ∈ K(Ω) and v ∈ PSH−(Ω), then max{u, v} ∈ K(Ω). In partic-

ular , if u ∈ K(Ω), v ∈ PSH−(Ω) and v ≥ u, then v ∈ K(Ω).

Note that functions in F(Ω) have finite total Monge–Ampère mass. Also,
they have in some sense boundary values zero, which can be seen e.g. in the
following formula for partial integration.

Theorem 2.6. Let v, u1, . . . , un ∈ F(Ω). Then
�

Ω

v ddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun =
�

Ω

u1 dd
cv ∧ ddcu2 ∧ · · · ∧ ddcun.

Since a bounded function cannot put Monge–Ampère mass on pluripolar
sets (see e.g. [3]), we have F(Ω)∩L∞(Ω) ⊂ Fa(Ω). Moreover, Theorems 5.5
and 5.8 of [8] gives:

Lemma 2.7. If u1, . . . , un−1 ∈ F(Ω) and v ∈ Fa(Ω) or v ∈ PSH−(Ω) ∩
L∞(Ω), then ddcu1 ∧ · · · ∧ ddcun−1 ∧ ddcv vanishes on pluripolar sets.

We conclude this section with some notation needed in this paper. Let Ω
and u ∈ E(Ω) be given and choose a fundamental sequence {Ωj} of strictly
pseudoconvex domains, i.e. Ωj ⊂⊂ Ωj+1 ⊂⊂ Ω and

⋃∞
j=1Ωj = Ω. For each

j define

(2.1) uj = sup {ϕ ∈ PSH(Ω) : ϕ|Ω\Ωj ≤ u|Ω\Ωj}.

Note that since Ωj has C2 boundary, it follows that uj equals (uj)∗, the
smallest upper semicontinuous majorant of uj , so uj is plurisubharmonic.
Moreover, u ≤ uj ≤ uj+1 ≤ 0, so each uj ∈ E(Ω) and the same holds for
ũ = (limj→∞ u

j)∗. It follows that ũ is the smallest maximal plurisubharmonic
majorant of u and that ũ is independent of the sequence {Ωj} chosen. In
[10] the following classes were defined:

N (Ω) = {u ∈ E(Ω) : ũ = 0}, M(Ω) = {u ∈ E(Ω) : (ddcu)n = 0}.

Thus M(Ω) is the class of maximal plurisubharmonic functions in E(Ω).
Note that N (Ω) contains F(Ω), since if u ∈ F(Ω), then ũ is a maximal
function in F(Ω) so ũ = 0. It also follows that if u ∈ F(Ω), then uj ↗ 0
outside a pluripolar subset of Ω (see [16] or [3]).

Finally, we say that u ∈ E(Ω) has boundary values ũ if there is a function
ψ ∈ N (Ω) such that ũ ≥ u ≥ ũ+ ψ. Given H ∈M(Ω) we define

F(Ω,H) = {u ∈ PSH(Ω) : H ≥ u ≥ H + ψ for some ψ ∈ F(Ω)},
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which is a subclass of E(Ω). It follows that if u ∈ F(Ω,H) then ũ = H.
Also, F(Ω, 0) = F(Ω).

3. Construction of the boundary measures µu. In this section we
show that every function in F(Ω) gives rise to a measure on the bound-
ary of Ω. Let u ∈ F(Ω) be given, choose a fundamental sequence {Ωj}
of strictly pseudoconvex domains and let uj be defined by (2.1). Then u ≤
uj ≤ uj+1 ≤ 0, so each uj is in F(Ω). Moreover, Stokes’ theorem implies that	
Ω(ddcuj)n =

	
Ω(ddcu)n < ∞, and by maximality (ddcuj)n is concentrated

on Ω \Ωj .
Theorem 3.1. Suppose that u ∈ F(Ω). Then {(ddcuj)n} is a weak∗-

convergent sequence, which defines a positive measure µu on ∂Ω. Also
limj→∞

	
Ω ϕ (ddcuj)n exists for all ϕ ∈ PSH(Ω) ∩ L∞(Ω).

Proof. ChooseW to be a strictly pseudoconvex set containing the closure
of Ω. First assume that ϕ ∈ PSH(Ω) ∩ L∞(Ω) and ϕ ≤ 0. Then

−∞ <
�

Ω

ϕ (ddcu)n ≤
�

Ω

ϕ (ddcuj)n(3.1)

≤
�

Ω

ϕ (ddcuj+1)n ≤ sup
Ω
ϕ
�

Ω

(ddcu)n.

To see this, approximate ϕ with functions in E0(Ω) and use partial in-
tegration in F(Ω) (see Section 2). Since all Monge–Ampère measures in-
volved have the same total mass, it follows that (3.1) holds for all ϕ ∈
PSH(Ω) ∩ L∞(Ω). Thus {

	
Ω ϕ (ddcuj)n} is a bounded monotone sequence,

so limj→∞
	
Ω ϕ (ddcuj)n exists for all ϕ ∈ PSH(Ω) ∩ L∞(Ω). In particular,

the limit exists for ϕ ∈ C∞0 (W ) (see Lemma 2.1). Since each (ddcuj)n is a
positive distribution on C∞0 (W ), it follows from standard distribution theory
that the convergence in fact holds for all ϕ ∈ C0(W ). Also the limit distri-
bution itself is positive and thus defines a positive regular Borel measure µu
on W , which by the construction is concentrated on ∂Ω.

In this manner we may, to each u ∈ F(Ω), associate a positive mea-
sure µu, and it follows for example that
(3.2)

�

∂Ω

ϕdµu = lim
j→∞

�

Ω

ϕ (ddcuj)n

holds for all ϕ ∈ C0(W ), in particular for ϕ ∈ C(Ω). We also see that	
∂Ω dµ =

	
Ω(ddcu)n, which implies that µu = 0 if and only if u = 0 (since

u ∈ F(Ω)). Note that µu does not depend on the sequence {Ωj} chosen.
Note also that by applying (3.1) to ϕ and −ϕ we get

(3.3)
�

Ω

ϕ (ddcuj)n =
�

Ω

ϕ (ddcu)n, ∀ϕ ∈ PH(Ω) ∩ L∞(Ω),

where PH(Ω) denotes the pluriharmonic functions on Ω.
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In [14] Demailly defines a set of Monge–Ampère boundary measures in
the following setting. Let X be a Stein manifold of dimension n and Ω ⊂⊂ X
an open hyperconvex subset. Assume that φ : Ω → [−∞, 0) is a continuous
plurisubharmonic exhaustion function such that

	
Ω(ddcφ)n < ∞. For each

r < 0 define

B(r) = {z ∈ Ω : φ(z) < r},
S(r) = {z ∈ Ω : φ(z) = r},
φr(z) = max{φ(z), r}.

It is then shown that

(3.4) (ddcφr)n = χΩ\B(r) · (ddcφ)n + µφ,r

where µφ,r is a positive measure concentrated on S(r). Furthermore, if r → 0
then µφ,r converges in a weak sense to a positive measure µ̃φ concentrated
on ∂Ω. (More explicitly, it is shown that limr→0

	
h dµφ,r exists for all h ∈

C2(X,R).)
Now consider the case when X = Cn. Then the function φ is in F(Ω) so

we can define µφ according to Theorem 3.1. Choose a sequence {rj} such that
rj ↗ 0 and let Ωj = B(rj). Then φrj = max {φ, rj} is equal to the function
φj defined as in (2.1). Note that Ωj is not necessarily strictly pseudoconvex
in this setting, only hyperconvex. However, this is enough in the proof of
Theorem 3.1, since we only use the smoothness of ∂Ωj to ensure that the
function φj is plurisubharmonic. Hence

(3.5) (ddcφrj )
n = χΩ\B(rj) · (dd

cφ)n + µφ,rj ,

where the left hand side converges to the boundary measure µφ and the right
hand side to 0 + µ̃φ (since

	
Ω(ddcφ)n <∞). This shows that µφ = µ̃φ, so in

particular Demailly’s boundary measures form a subset of those defined in
Theorem 3.1, when X = Cn.

Also, note that if u ∈ E0(Ω)∩C(Ω) then u satisfies the conditions in De-
mailly’s definition, so for boundary measures corresponding to such functions
we may use Demailly’s results.

The following theorem, where uj is defined by (2.1), generalizes a formula
considered by Demailly in [14].

Theorem 3.2. Assume that u ∈ F(Ω), h ∈ E(Ω),
	
Ω h (ddcu)n > −∞

and ddch ∧ (ddcu)n−1 vanishes on pluripolar sets. Then

lim
j→∞

�

Ω

h (ddcuj)n =
�

Ω

h (ddcu)n −
�

Ω

u ddch ∧ (ddcu)n−1.

Note that the conditions in this theorem are satisfied if for example u ∈
F(Ω) and h ∈ PSH−(Ω) ∩ L∞(Ω) (see Lemma 2.7). Actually, it is enough
that h ∈ PSH(Ω) ∩ L∞(Ω), since

	
Ω(ddcuj)n =

	
Ω(ddcu)n.
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Proof of Theorem 3.2. First we claim the following:
�

Ω

u ddch ∧ (ddcu)n−1 > −∞,(i)

lim
j→∞

�

Ω

uj ddch ∧ (ddcu)n−1 = 0,(ii)

�

Ω

h (ddcuj)n−p+1 ∧ (ddcu)p−1 ≥
�

Ω

h (ddcuj)n−p ∧ (ddcu)p(iii)

≥
�

Ω

h (ddcu)n, 1 ≤ p ≤ n− 1,

�

Ω

h ddc(uj − u) ∧ (ddcuj)n−p ∧ (ddcu)p−1(iv)

=
�

Ω

uj ddch ∧ ddc(uj − u) ∧ (ddcuj)n−p−1 ∧ (ddcu)p−1

=
�

Ω

(uj − u) ddch ∧ (ddcuj)n−p ∧ (ddcu)p−1 ≥ 0, 1 ≤ p ≤ n.

For the proof of (i), choose a sequence {hk} in E0(Ω) decreasing to h on Ω.
Then ddchk ∧ (ddcu)n−1 converges weak∗ to ddch ∧ (ddcu)n−1 (Lemma 2.4).
Combining this with the fact that u is upper semicontinuous shows that
�

Ω

(−u) ddch ∧ (ddcu)n−1 ≤ lim sup
k→∞

�

Ω

(−u) ddchk ∧ (ddcu)n−1

= lim sup
k→∞

�

Ω

(−hk) (ddcu)n =
�

Ω

(−h) (ddcu)n <∞

(where we have used partial integration in F(Ω)). Since uj ↗ 0 outside
a pluripolar set (see Section 2) and since ddch ∧ (ddcu)n−1 puts no mass
there, (i) implies (ii) by the dominated convergence theorem. To see (iii),
use the same technique as in Theorem 3.1. Finally, (iv) follows from partial
integration, using the fact that h is locally in F(Ω) and that uj − u is
compactly supported in Ω. This proves the claim.

Now using (iv) we have
�

Ω

u ddch ∧ (ddcu)n−1

=
�

Ω

(u− uj) ddch ∧ (ddcu)n−1 +
�

Ω

uj ddch ∧ (ddcu)n−1

=
�

Ω

h ddc(u− uj) ∧ (ddcu)n−1 +
�

Ω

uj ddch ∧ (ddcu)n−1,

so we can write
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�

Ω

h (ddcuj)n −
�

Ω

h (ddcu)n +
�

Ω

u ddch ∧ (ddcu)n−1

=
�

Ω

h (ddcuj)n −
�

Ω

h ddcuj ∧ (ddcu)n−1 +
�

Ω

uj ddch ∧ (ddcu)n−1

where the last integral tends to 0 according to (ii). Moreover,
�

Ω

h (ddcuj)n −
�

Ω

h ddcuj ∧ (ddcu)n−1

=
n−1∑
p=1

( �
Ω

h (ddcuj)n−p+1 ∧ (ddcu)p−1 −
�

Ω

h (ddcuj)n−p ∧ (ddcu)p
)

=
n−1∑
p=1

ap

where ap ≥ 0 for all p by (iii). Using (iv) we have

ap =
�

Ω

h ddc(uj − u) ∧ (ddcuj)n−p ∧ (ddcu)p−1

=
�

Ω

uj ddch ∧ ddc(uj − u) ∧ (ddcuj)n−p−1 ∧ (ddcu)p−1

≤ −
�

Ω

uj ddch ∧ (ddcuj)n−p−1 ∧ (ddcu)p.

Now, the second expression in (iv) implies that
	
Ω u

j ddch ∧ (ddcuj)n−k ∧
(ddcu)k−1 is decreasing in k, so it follows that 0 ≤ ap ≤ −

	
Ω u

j ddch ∧
(ddcu)n−1. Hence (ii) implies that each term ap tends to 0 as j → ∞ and
the theorem is proved.

Remark 1. Combining the preceding theorem with (3.2), we have the
following formula. Given u ∈ F(Ω),

(3.6)
�

Ω

h (ddcu)n =
�

Ω

u ddch ∧ (ddcu)n−1 +
�

∂Ω

h dµu, ∀h∈PSH(Ω) ∩ C(Ω).

In Section 4 (Corollary 4.10) we will show that there is a set S ⊂ ∂Ω such
that suppµu = S for each u ∈ F(Ω), u 6= 0. Hence (3.6) gives a partial
integration formula for h ∈ PSH(Ω) ∩ C(Ω) such that h|S = 0. From The-
orem 5.3 in Section 5 it follows that if u ∈ Fa(Ω), then (3.6) is valid for
h ∈ PSH(W ) ∩ L∞(W ), where W is some neighbourhood of Ω.

We also get a Jensen-type inequality: given u ∈ F(Ω),

(3.7)
�

Ω

h (ddcu)n ≤
�

∂Ω

h dµu, ∀h ∈ PSH(Ω) ∩ C(Ω).

If h ∈ PSH(W ) for some neighbourhood W of Ω, then using convolution we



182 U. Cegrell and B. Kemppe

may find functions hk ∈ PSH(W ′)∩C(W ′), where Ω ⊂W ′ ⊂⊂W , such that
hk ↘ h on W ′. Therefore (3.7) holds true if h ∈ PSH(W ) and u ∈ F(Ω).

4. Some properties of the boundary measures µu. In this section
we investigate some properties of the boundary measures µu defined in Sec-
tion 3. Recall that a hyperconvex domain Ω is called B-regular if each con-
tinuous function on ∂Ω can be extended continuously to a plurisubharmonic
function on Ω (see [19]).

Theorem 4.1. Let µ be a finite positive measure on ∂Ω, where Ω is
a bounded B-regular domain. Then µ is in the weak∗ closure of {µu : u ∈
F(Ω)}.

Proof. For simplicity, assume that µ(∂Ω) = 1. Choose a sequence of
measures

µk =
Nk∑
j=1

akj δzkj
, where {zkj }

Nk

j=1
⊂ Ω and

Nk∑
j=1

akj = 1

such that

(4.1) lim
k→∞

�

Ω

h dµk =
�

∂Ω

h dµ, ∀h ∈ C(Ω),

where δzkj denotes the Dirac measure at zkj . Let e.g. akj = µ(Akj ) and zkj ∈

Akj ∩Ω, where {Akj }
Nk

j=1
is a partition of Ω such that diam(Akj ) ≤ 1/2k, and

use the fact that h is uniformly continuous on Ω. For each k, consider gk(z),
the multipole pluricomplex Green’s function for Ω with poles at {zkj } with
weights {(akj )1/n} (see [17] and [18]). Then gk ∈ F(Ω) and (ddcgk)n = µk.
Form µ̃k = limi→∞(ddc(gk)i)n as in Section 3. Then for each k,

(4.2)
�

∂Ω

dµ̃k =
�

Ω

(ddcgk)n =
�

Ω

dµk = 1 =
�

∂Ω

dµ,

and from (3.2) and (3.1) it follows that

(4.3)
�

∂Ω

ϕdµ̃k = lim
i→∞

�

Ω

ϕ (ddc(gk)i)n ≥
�

Ω

ϕ (ddcgk)n =
�

Ω

ϕdµk

for ϕ ∈ PSH(Ω) ∩ C(Ω). Let {µ̃km} be any weak∗-convergent subsequence
of {µ̃k}. (Such a subsequence exists since the measures {µ̃k} have uniformly
bounded total mass.) Now let t ∈ C(∂Ω) with t ≤ 0 be given. Since Ω is
B-regular there is a ϕ ∈ PSH(Ω)∩C(Ω) with ϕ = t on ∂Ω. Hence, by (4.1)
and (4.3),�

∂Ω

t dµ = lim
m→∞

�

Ω

ϕdµkm ≤ lim
m→∞

�

∂Ω

ϕdµ̃km = lim
m→∞

�

∂Ω

t dµ̃km .
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This shows that µ ≥ limm→∞ µ̃km . It then follows from (4.2) that they have
the same total mass, so µ = limm→∞ µ̃km and the theorem is proved. Note
that since the argument is valid for any weak∗-convergent subsequence, it
follows that {µ̃k} itself tends weak∗ to µ.

Later in this section, we will show that not every positive measure on
∂Ω is in {µu : u ∈ F(Ω)} (see for example Proposition 4.7). Moreover,
the assumption of B-regularity cannot be removed in Theorem 4.1 (see for
example Corollary 4.10 and Example 4.11). Before we can prove this, we
need the following convergence property.

Proposition 4.2. Suppose that u ∈ F(Ω) and that {uk} is a decreasing
sequence in F(Ω) such that uk ↘ u on Ω. Then µuk converges weak∗ to µu.

Proof. Let h ∈ E0(Ω′) ∩ C(Ω′) where Ω′ ⊃ Ω. Then (3.6) gives�

∂Ω

h dµu =
�

Ω

h (ddcu)n −
�

Ω

u ddch ∧ (ddcu)n−1,

and for each k,�

∂Ω

h dµuk =
�

Ω

h (ddcuk)n −
�

Ω

uk dd
ch ∧ (ddcuk)n−1.

From Lemma 2.4 it follows that limk→∞
	
Ω h (ddcuk)n =

	
Ω h (ddcu)n. More-

over, limk→∞
	
Ω uk dd

ch∧ (ddcuk)n−1 =
	
Ω u dd

ch∧ (ddcu)n−1 by the follow-
ing calculations. Since u ≤ uk for each k, Lemma 3.3 in [1] implies that�

Ω

u ddch ∧ (ddcu)n−1 ≤
�

Ω

u ddch ∧ (ddcuk)n−1 ≤
�

Ω

uk dd
ch ∧ (ddcuk)n−1

for each k. Hence, for fixed k0,�

Ω

u ddch ∧ (ddcu)n−1 ≤ lim inf
k→∞

�

Ω

uk dd
ch ∧ (ddcuk)n−1

≤ lim sup
k→∞

�

Ω

uk dd
ch ∧ (ddcuk)n−1

≤ lim sup
k→∞

�

Ω

uk0 dd
ch ∧ (ddcuk)n−1

≤
�

Ω

uk0 dd
ch ∧ (ddcu)n−1,

where the last inequality follows since ddch∧(ddcuk)n−1 is weak∗-convergent
to ddch∧ (ddcu)n−1 (Lemma 2.4) and uk0 is upper semicontinuous. Now, the
claim follows if we let k0 →∞.

Thus

(4.4) lim
k→∞

�

∂Ω

h dµuk =
�

∂Ω

h dµu
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holds true for h ∈ E0(Ω′)∩C(Ω′) and therefore for h ∈ C∞0 (Ω′). By standard
distribution theory it follows that (4.4) holds for h ∈ C0(Ω′) and hence for
h ∈ C(∂Ω).

Recall from Section 3 that for functions in E0(Ω) ∩ C(Ω) we can apply
the results of Demailly in [14]. We make use of this fact in the proof of the
following proposition.

Proposition 4.3. If u, v ∈ F(Ω) are such that u ≤ v, then µu ≥ µv.

Proof. Take {uk}, {wk} ⊂ E0(Ω) ∩ C(Ω) such that uk ↘ u and wk ↘ v.
Let vk = max {uk, wk}. Then vk ∈ E0(Ω) ∩ C(Ω), vk ↘ v and uk ≤ vk. By
Theorem 3.4 in [14], µuk ≥ µvk for each k. From Proposition 4.2 it follows
that µu ≥ µv.

Remark 2. When Ω is B-regular there is a slightly more direct proof of
Proposition 4.3, without using Demailly’s results. If in that case f ∈ C(∂Ω)
with f ≤ 0 is given, it may be extended to a function in PSH−(Ω) ∩ C(Ω).
Since u ≤ v we have uj ≤ vj for each j, which (see the proof of Theorem 3.1)
implies that

	
Ω f (ddcuj)n ≤

	
Ω f (ddcvj)n for each j. From (3.2) it follows

that
	
∂Ω f dµu ≤

	
∂Ω f dµv, so the regularity of µu and µv implies that

µu ≥ µv.

Corollary 4.4. Suppose that u ∈ F(Ω). Then µu = µmax{u,−1}.

Proof. Let v = max{u,−1}. Then µu ≥ µv by Proposition 4.3. Take
{uk} ⊂ E0(Ω) such that uk ↘ u and let vk = max{uk,−1}. Then vk ∈ E0(Ω),
vk ↘ v and vk = uk on Ω \ {uk < −1} (note that {uk < −1} ⊂⊂ Ω). From
Theorem 5.1 in [8] and Stokes’ theorem, it follows that

�

∂Ω

dµu =
�

Ω

(ddcu)n = lim
k→∞

�

Ω

(ddcuk)n

= lim
k→∞

�

Ω

(ddcvk)n =
�

Ω

(ddcv)n =
�

∂Ω

dµv,

so µu = µv.

We will now use this corollary to show that each µu vanishes on pluripolar
sets. We start with two technical lemmas.

Lemma 4.5. Suppose that u ∈ F(Ω) and that ϕ ∈ PSH(Ω) ∩ L∞(Ω) is
upper semicontinuous on some neighbourhood Ω′ of Ω. Then

lim
j→∞

�

Ω

ϕ (ddcuj)n ≤
�

∂Ω

ϕdµu.

Proof. Choose Ω′′ such that Ω ⊂⊂ Ω′′ ⊂⊂ Ω′. Then there is a decreasing
sequence {ϕk} of continuous functions on Ω′′ that are bounded above and
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that converge to ϕ on Ω′′. Using equality (3.2) we see that

lim
j→∞

�

Ω

ϕ (ddcuj)n ≤ lim
j→∞

�

Ω

ϕk (ddcuj)n =
�

∂Ω

ϕk dµu

for each k. Hence the lemma follows by letting k →∞.

Lemma 4.6. Let E ⊂ ∂Ω be a pluripolar set and u ∈ F(Ω). Suppose that
there is a function g ∈ PSH(Ω′), where Ω′ ⊃ Ω, such that E ⊂ Sg = {z :
g(z) = −∞} and (ddcu)n is concentrated on Ω \ Sg. Then µu(E) = 0.

Proof. By subtracting a suitable constant we may assume that g ≤ 0
on Ω. For each positive integer k, define hk = max{(1/k) ·g,−1}. Then from
(3.1) and Lemma 4.5 it follows that

−∞ <
�

Ω

hk (ddcu)n ≤ lim
j→∞

�

Ω

hk (ddcuj)n

≤
�

∂Ω

hk dµu ≤
�

E

hk dµu = −µu(E),

since hk ≤ 0 on Ω and hk = −1 on E. Moreover, hk(z)↗ 0 for all z ∈ Ω \Sg
as k →∞, so limk→∞

	
Ω hk (ddcu)n = 0. Hence µu(E) = 0.

Proposition 4.7. If u ∈ F(Ω), then µu vanishes on pluripolar subsets
of ∂Ω.

Proof. If u ∈ F(Ω) then v = max{u,−1} ∈ Fa(Ω) and from Corollary
4.4 we know that µu = µv. Now, for functions in Fa(Ω) the conditions in
Lemma 4.6 are satisfied for each pluripolar set E ⊂ ∂Ω, so the proposition
follows.

The next proposition enables us to say more about the support of the
µu-measures.

Proposition 4.8. Assume that u, v ∈ E0(Ω), u 6= 0, v 6= 0, are such
that supp (ddcu)n ⊂⊂ Ω and supp (ddcv)n ⊂⊂ Ω. Then there are constants
a, b > 0 such that

aµu ≤ µv ≤ bµu.
In particular , suppµu = suppµv.

Lemma 4.9. Assume that u ∈ Fa(Ω), u 6= 0, v ∈ E(Ω) and u ≥ v on
supp (ddcu)n. Then u ≥ v on Ω.

Proof. Assume that u(z0) < v(z0) for some z0 ∈ Ω. Let ψ ∈ E0(Ω) ∩
C∞(Ω) be a strictly plurisubharmonic exhaustion function and let s > 0
be such that u(z0) < sψ(z0) + v(z0). Corollary 3.6 in [10] gives, with A =
{u(z) < sψ(z) + v(z)},�

A

(ddc(sψ + v))n ≤
�

A

(ddcu)n = 0.
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Hence sn
	
A(ddcψ)n = 0, which implies that A has Lebesgue measure 0.

Since the functions involved are plurisubharmonic, this means that A = ∅.
This is a contradiction and the lemma is proved.

Proof of Proposition 4.8. LetK = supp (ddcu)n. SinceK is compact, and
since u and v are bounded upper semicontinuous functions, α > 0 may be
chosen such that αv ≤ u on K. It then follows from Lemma 4.9 that αv ≤ u
holds on all of Ω. Similarly, there is β > 0 such that βu ≤ v on Ω. Then
Proposition 4.3 implies that µα−1u ≤ µv ≤ µβu. Hence, if we let a = α−n

and b = βn, the proposition follows.

Corollary 4.10. There is a set S ⊂ ∂Ω such that suppµu = S for
each u ∈ F(Ω), u 6= 0.

Proof. Choose a function v0 ∈ E0(Ω) with supp (ddcv0)n ⊂⊂ Ω, and let
S = suppµv0 . Let u be an arbitrary function in F(Ω). Choose a sequence
{uj} ⊂ E0(Ω) such that uj ↘ u and supp (ddcuj)n ⊂⊂ Ω. Then Proposi-
tion 4.8 implies that suppµuj = S for each j. Moreover, µu1 ≤ · · · ≤ µu
and µuj tends weak∗ to µu, by Propositions 4.3 and 4.2. Hence suppµu
= S.

Note that if µ is in the weak∗ closure of {µu : u∈F(Ω)}, then suppµ⊂S.
Hence if Ω is B-regular, then the support set S has to be all of ∂Ω, because
of Theorem 4.1.

On the other hand, if Ω = ω1 × ω2 ⊂ Cn = Cn1+n2 , where ω1 ⊂ Cn1

and ω2 ⊂ Cn2 are bounded hyperconvex domains, then S ⊂ ∂ω1 × ∂ω2. To
see this, consider the function u(z, w) = max{g1(z), g2(w)} where gk is the
pluricomplex Green’s function for ωk with pole at some point in ωk. Note that
gk is continuous outside the pole and tends to zero at the boundary of ωk.
Then u ∈ F(Ω) and supp (ddcu)n ⊂ {(z, w) ∈ Ω : g1(z) = g2(w)}. Choose
a sequence {εj} such that εj ↘ 0. Then Ωj = {(z, w) ∈ Ω : u(z, w) <
−εj} defines a fundamental sequence of Ω and uj := sup {ϕ ∈ PSH(Ω) :
ϕ|Ω\Ωj ≤ u|Ω\Ωj} = max{u,−εj}. It follows that supp (ddcuj)n ⊂ {(z, w) ∈
Ω : g1(z) = g2(z) ≥ −εj}, which implies that suppµu ⊂ ∂ω1 × ∂ω2. Hence
the claim follows from Corollary 4.10.

Using a similar argument, the following example shows that when Ω =
D× D ⊂ C2, then we have equality, S = ∂D× ∂D.

Example 4.11. Let Ω be the unit bidisc D× D in C2. Then suppµu is
equal to the distinguished boundary ∂D × ∂D for each u ∈ F(Ω), u 6= 0.
This follows from Corollary 4.10, if we for example consider the pluricom-
plex Green’s function g for Ω with pole at the origin. We then see that
g(z, w) = mmax{log |z|, log |w|}, where the constant m > 0 is chosen such
that

	
Ω(ddcg)2 = 1. This is a function in F(Ω), and we can compute

µg explicitly. For j = 1, 2, . . . , let Ωj = {(z, w) : |z| < rj , |w| < rj}
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where rj = 1 − 1/j. Then gj := sup{ϕ ∈ PSH(Ω) : ϕ|Ω\Ωj ≤ g|Ω\Ωj} =
mmax{log |z|, log |w|, log(rj)}, from which it follows that

(ddcgj)2 = m2ddc(max{log |z|, log(rj)}) ∧ ddc(max{log |w|, log(rj)}).
Since

	
Ω(ddcgj)2 = 1 for each j (see Section 3), we conclude that (ddcgj)2 =

σj × σj , where σj is the normalized Lebesgue measure on the the circle
∂D(0, rj). This implies that µg = σ×σ, where σ is the normalized Lebesgue
measure on the unit circle.

Remark 3. Recall from Remark 1 at the end of Section 3 that Corollary
4.10 and (3.6) together give the partial integration formula

(4.5) h|S = 0 ⇒
�

Ω

h (ddcu)n =
�

Ω

u ddch ∧ (ddcu)n−1.

The implication (4.5) holds true for h ∈ PSH(Ω) ∩ C(Ω) if u ∈ F(Ω), and
for h ∈ PSH(W ) ∩ L∞(W ), W ⊃ Ω, if u ∈ Fa(Ω) (using Theorem 5.3 of
Section 5). Here S is the support set defined in Corollary 4.10.

Furthermore, (3.7) implies that

(4.6) sup
Ω
h ≤ sup

S
h, ∀h ∈ PSH(Ω) ∩ C(Ω).

To see this, let h ∈ PSH(Ω) ∩C(Ω) be given. For z ∈ Ω fixed, let gz be the
pluricomplex Green’s function for Ω with pole at z. Then (ddcgz)n = δz, the
Dirac measure at z, and we have h(z) =

	
Ω h (ddcgz)n ≤

	
∂Ω h dµgz ≤ supS h.

By the same argument, (4.6) holds true if h is an upper bounded function
in PSH(W ), where W ⊃ Ω.

Remark 4. Another property of the measures µu is that they are Henkin
measures (a kind of measure introduced by Henkin in [15]). This means that

lim
k→∞

�

∂Ω

fk dµu = 0

for each uniformly bounded sequence {fk} in A(Ω) such that limk→∞ fk(z)
= 0 for all z ∈ Ω. Here A(Ω) denotes the functions that are holomorphic
on Ω and continuous on Ω. To see this, take such a sequence {fk} and let
{ϕk} = {Re fk}. From (3.2) and (3.3) it follows that

lim
k→∞

�

∂Ω

ϕk dµu = lim
k→∞

(
lim
j→∞

�

Ω

ϕk (ddcuj)n
)

= lim
k→∞

�

Ω

ϕk (ddcu)n = 0

for each u ∈ F(Ω), since ϕk is uniformly bounded and
	
Ω(ddcu)n <∞. Since

the same holds for {ψk} = {Im fk}, it follows that limk→∞
	
∂Ω fk dµu = 0.

This property can be used to show the following fact about the support
of the measures µu. Suppose that u ∈ F(Ω) and that K ⊂ ∂Ω is a peak set
for A(Ω). Let f ∈ A(Ω) be a peak function for K and define fk(z) = (f(z))k

for z ∈ Ω and k = 1, 2, . . . . Then {fk} satisfies the assumptions above, so
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limk→∞
	
∂Ω fk dµu = 0. But we also know that limk→∞

	
∂Ω fk dµu = µu(K).

Hence µu(K) = 0 for each peak set K and each u ∈ F(Ω).

5. Boundary values. In this section we define and study boundary
values of plurisubharmonic functions with respect to the measures µu.

Lemma 5.1. Assume that u ∈ F(Ω) and g ∈ PSH(Ω) ∩ L∞(Ω). Then
{g (ddcuj)n} is weak∗-convergent.

Proof. By the same argument as in Theorem 3.1 it is enough to prove
that the limit limj→∞

	
Ω ϕg (ddcuj)n exists for all ϕ ∈ PSH−(Ω) ∩ L∞(Ω).

Given such a function ϕ, takeM,N ≥ 0 such that ϕ+M ≥ 0 and g+N ≥ 0.
Then (ϕ+M)2, (g +N)2, (ϕ+M + g +N)2 ∈ PSH(Ω) ∩ L∞(Ω), so if ψ is
any of these then limj→∞

	
Ω ψ (ddcuj)n exists by Theorem 3.1. Expanding

((ϕ+M)+(g+N))2, it follows that the limit exists for ψ = (ϕ+M)(g+N)
and then finally for ψ = ϕg (using Theorem 3.1 again).

Using this lemma, together with standard measure theory, we can make
the following definition.

Definition 5.2. For u ∈ F(Ω) and g ∈ PSH(Ω)∩L∞(Ω), let gu be the
function in L∞(∂Ω, µu) such that limj→∞ g (ddcuj)n = gu dµu.

We may consider gu as the boundary values of g with respect to µu. Note
that, at least formally, gu depends on both g and u. However, the following
theorems describe some situations when this definition agrees with other
notions of boundary values.

Theorem 5.3. Assume that u ∈ Fa(Ω) and g ∈ PSH(W ) ∩ L∞(W )
where W is a bounded domain containing Ω. Then gu = g|∂Ω a.e. (µu).

Proof. Note that if M is a constant then (g−M)u = gu−M , so we may
assume that g ≤ 0. Let t ∈ C(Ω) with t ≥ 0 be given. Then it follows, in the
same way as in the proof of Lemma 4.5, that�

∂Ω

tgu dµu = lim
j→∞

�

Ω

tg (ddcuj)n ≤
�

∂Ω

tg dµu.

Thus gu ≤ g a.e. (µu), so it remains to prove that
	
∂Ω g

u dµu =
	
∂Ω g dµu.

Choose K such that Ω ⊂⊂ K ⊂⊂ W . Given ε > 0 there is an open set
Uε ⊂ W and a function gε ∈ C0(W ) such that infW g ≤ gε ≤ 0, the relative
capacity cap(Uε,W ) < ε and K \Uε ⊂ {z ∈W : g(z) = gε(z)} (for definition
and properties of relative capacity, see [3]). It follows that�

∂Ω

gu dµu = lim
j→∞

�

Ω

g (ddcuj)n

= lim
j→∞

�

Ω∩Uε

g (ddcuj)n + lim
j→∞

�

Ω\Uε

gε (ddcuj)n
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≥ lim
j→∞

�

Ω∩Uε

g (ddcuj)n +
�

∂Ω

gε dµu

= lim
j→∞

�

Ω∩Uε

g (ddcuj)n +
�

∂Ω∩Uε

gε dµu +
�

∂Ω\Uε

g dµu

≥ lim
j→∞

�

Ω∩Uε

g (ddcuj)n +
�

∂Ω∩Uε

gε dµu +
�

∂Ω

g dµu.

Let hε = sup {ψ ∈ PSH−(W ) : ψ|Uε ≤ −1}. Then

0 ≥
�

∂Ω

gu dµu −
�

∂Ω

g dµu

≥ lim
j→∞

�

Ω∩Uε

g (ddcuj)n +
�

∂Ω∩Uε

gε dµu

≥ (inf
W
g)
(

lim
j→∞

�

Ω∩Uε

(ddcuj)n +
�

∂Ω∩Uε

dµu

)
= (− inf

W
g)
(

lim
j→∞

�

Ω∩Uε

hε (ddcuj)n +
�

∂Ω∩Uε

hε dµu

)
≥ (− inf

W
g)
(

lim
j→∞

�

Ω

hε (ddcuj)n +
�

∂Ω

hε dµu

)
≥ 2(− inf

W
g)

�

Ω

hε (ddcu)n,

where we have used (3.1) and Lemma 4.5 in the last inequality. From Lem-
ma 1.9 in [13], using the fact that u ∈ Fa(Ω) and cap(Uε,W ) < ε, it follows
that this last integral tends to zero as ε↘ 0, which completes the proof.

The following theorem may be compared with the definitions in Section 2.

Theorem 5.4. Suppose that H ∈M(Ω) ∩ L∞(Ω). Then, for every u ∈
Fa(Ω) and every g ∈ F(Ω,H) such that

	
Ω g (ddcu)n > −∞, g (ddcuj)n is

weak∗-convergent to Hu dµu.

Proof. By the same argument as in Theorem 3.1, it is enough to prove
that

lim
j→∞

�

Ω

tg (ddcuj)n = lim
j→∞

�

Ω

tH (ddcuj)n, ∀t ∈ PSH−(Ω) ∩ L∞(Ω).

Since g ∈ F(Ω,H) there is a ψ ∈ F(Ω) such that ψ +H ≤ g ≤ H. We may
assume that ψ ≥ g (otherwise, take ψ0 = max {ψ, g}). We may also (after
dividing by suitable constants) assume that −1 ≤ t ≤ 0 and −1 ≤ H ≤ 0.
Now, �

Ω

tg (ddcuj)n =
�

Ω

t(g −H) (ddcuj)n +
�

Ω

tH(ddcuj)n
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where

0 ≤
�

Ω

t(g −H) (ddcuj)n =
�

Ω

(−t)(H − g) (ddcuj)n

≤
�

Ω

(−t)(−ψ) (ddcuj)n ≤
�

Ω

(−ψ) (ddcuj)n.

Using partial integration in F(Ω) we have
�

Ω

(−ψ) (ddcuj)n =
�

Ω

(−uj) ddcψ ∧ (ddcuj)n−1

≤
�

Ω

(−u) ddcψ ∧ (ddcuj)n−1 =
�

Ω

(−uj) ddcψ ∧ ddcu ∧ (ddcuj)n−2

≤ · · · ≤
�

Ω

(−uj) ddcψ ∧ (ddcu)n−1 = Ij ≤
�

Ω

(−u) ddcψ ∧ (ddcu)n−1

=
�

Ω

(−ψ) (ddcu)n ≤
�

Ω

(−g) (ddcu)n <∞.

Since uj increases to zero outside a pluripolar set and ddcψ ∧ (ddcu)n−1

vanishes on pluripolar sets (see Lemma 2.7), it follows that Ij ↘ 0 as j →∞.
This proves the theorem.

Remark 5. If g ∈ L∞(Ω) then
	
Ω g (ddcu)n > −∞ for every u ∈ F(Ω).

Furthermore, ψ ≥ g implies that ψ is bounded as well, so ddcψ ∧ (ddcu)n−1

vanishes on pluripolar sets for every u ∈ F(Ω) (Lemma 2.7). Thus for
bounded functions g in F(Ω,H), the conclusion gu dµu = Hu dµu holds
for every u ∈ F(Ω).

Suppose that we have a bounded plurisubharmonic function on Ω and
want to approximate it with plurisubharmonic functions that are continu-
ous on Ω. The following theorem gives a condition for this to imply weak∗
convergence on the boundary.

Theorem 5.5. Assume that u ∈ F(Ω) and µu = limj→∞(ddcuj)n. Let
{ϕj} be a sequence in PSH(Ω) ∩ C(Ω) such that 0 ≤ ϕj ≤ 1. If ϕj tends to
ϕ ∈ PSH(Ω)∩L∞(Ω) in the sense of distributions, then ϕj dµu tends weak∗
to ϕu dµu if and only if limj→∞

	
ϕj dµu =

	
ϕu dµu.

Proof. By Corollary 4.4 we may assume that u ∈ Fa(Ω). The condition
in the theorem is obviously necessary; we prove it is also sufficient. First,
note that for {ψk} ⊂ PSH(Ω) ∩ C(Ω) with ψk ≥ 0, the following holds. For
k fixed, (supl≥k ψl)∗ ∈ PSH(Ω) ∩ L∞(Ω), therefore (supl≥k ψl)∗ (ddcuj)n is
weak∗-convergent (as j →∞) by Lemma 5.1. Furthermore, since supl≥k ψl =
(supl≥k ψl)∗ outside a pluripolar set and uj ∈ Fa(Ω) (since u ∈ Fa(Ω)), the
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star may be removed. We claim that

(5.1) lim
j→∞

(sup
l≥k

ψl) (ddcuj)n = (sup
l≥k

ψl) dµu.

Given f ∈ C(Ω), f ≥ 0, it follows from (3.2) that for each m,

lim
j→∞

�

Ω

f(sup
l≥k

ψl) (ddcuj)n ≥ lim
j→∞

�

Ω

f( sup
m≥l≥k

ψl) (ddcuj)n

=
�

∂Ω

f( sup
m≥l≥k

ψl) dµu,

where the last integral tends to
	
∂Ω f(supl≥k ψl) dµu as m → ∞. It follows

that limj→∞ (supl≥k ψl) (ddcuj)n ≥ (supl≥k ψl) dµu. On the other hand, by
(3.1) and (3.2),

�

Ω

( sup
m≥l≥k

ψl) (ddcuj)n ≤
�

∂Ω

( sup
m≥l≥k

ψl) dµu

for each m and j. So by letting m→∞ we obtain
�

Ω

(sup
l≥k

ψl) (ddcuj)n ≤
�

∂Ω

(sup
l≥k

ψl) dµu,

which proves the claim.
Now, let {ϕjm dµu} be any weak∗-convergent subsequence of {ϕj dµu}.

(Such a sequence exists by the same reasoning as in the proof of Theorem
4.1.) Then, by standard measure theory, the limit measure is equal to ϕ0 dµu
for some ϕ0 ∈ L∞(µu). We will show that ϕ0 = ϕu a.e. (µu). It then follows
that the original sequence itself converges to ϕu dµu, and the proof will be
complete.

From L2-theory it follows that we may choose ψk = (1/Mk)
∑Mk

l=1 ϕjml
such that ψk → ϕ0 in L2(µu) and then a subsequence converging to ϕ0 a.e.
(µu), for simplicity call it {ψk}. Since by assumption the original sequence
{ϕj} tends to ϕ in the sense of distributions, the same holds for {ψk}. Now,
for f ∈ C(Ω), f ≥ 0, with the definition of ϕu, (5.1) and monotone conver-
gence theorem yield

�

∂Ω

fϕu dµu = lim
j→∞

�

Ω

fϕ (ddcuj)n

= lim
j→∞

lim
k→∞

�

Ω

fψk (ddcuj)n (Lemma 1.4 in [13])

≤ lim
k→∞

lim
j→∞

�

Ω

f(sup
l≥k

ψl) (ddcuj)n

= lim
k→∞

�

∂Ω

f(sup
l≥k

ψl) dµu =
�

∂Ω

f(lim sup
k→∞

ψk) dµu.
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Hence ϕu ≤ lim supk→∞ ψk a.e. (µu), which implies that ϕu ≤ ϕ0 a.e. (µu).
Furthermore,

	
∂Ω ϕ0 dµu = limm→∞

	
∂Ω ϕjm dµu =

	
∂Ω ϕ

u dµu, by assump-
tion, so ϕu = ϕ0 a.e. (µu). Thus the theorem is proved.

6. More boundary measures. Let ν be a positive measure on Ω with
finite total mass. Then there is a positive measure µ 6= 0 which is supported
by ∂Ω, vanishes on pluripolar sets and satisfies

(6.1)
�

Ω

ϕdν ≤
�

∂Ω

ϕdµ, ∀ϕ ∈ PSH−(Ω),

where PSH−(Ω) = {ϕ : ϕ ∈ PSH−(Ω′), Ω′ ⊃ Ω}. To see this, let Pν denote
the pluricomplex potential of ν relative to Ω, i.e. Pν(z) =

	
Ω g(z, w) dν(w),

where g(z, w) is the pluricomplex Green’s function for Ω with pole at w.
Then Theorem 1.1 in [9] says that Pν ∈ F(Ω) and that

�

Ω

−ϕ (ddcPν)n ≤ (ν(Ω))n−1
�

Ω

−ϕdν, ∀ϕ ∈ PSH−(Ω).

Moreover,
	
Ω ϕ (ddcPν)n ≤

	
∂Ω ϕdµPν for each ϕ ∈ PSH−(Ω), by Re-

mark 1 at the end of Section 3. Hence, the claim follows if we take µ =
(ν(Ω))−n+1µPν .

Conversely, if a positive measure µ on ∂Ω is such that (6.1) holds for some
finite measure ν on Ω, we would like to find an approximation procedure,
similar to the one in Section 3. A motivation is that we are interested in
boundary values of plurisubharmonic functions with respect to µ.

We will study the case when ν vanishes on all pluripolar subsets of Ω
and Ω belongs to a more restricted class of hyperconvex domains:

(6a) Ω and {Ωk} are hyperconvex domains with Ω ⊂⊂ Ωk+1 ⊂⊂ Ωk,
such that for each t ∈ F(Ω) there is a sequence {tk}, where tk ∈
F(Ωk) and tk ↗ t a.e. on Ω.

(6b) Ω is not thin at any of its boundary points, so that lim supΩ3z→ξ v(z)
= v(ξ) for each ξ ∈ ∂Ω if v ∈ PSH−(Ω).

Conditions for the approximation property in (6a) to hold true have been
studied in for example [4] and [12]. Examples of domains satisfying (6a)
and (6b) are polydiscs and strictly pseudoconvex domains. Note that if t is
bounded, we may assume that each tk is bounded.

Theorem 6.1. Let Ω be a domain satisfying (6a) and (6b). Assume that
µ is a positive measure on ∂Ω, vanishing on pluripolar sets. Then there
is a sequence {wk} in Fa(Ω) = {u : u ∈ Fa(Ω′), Ω′ ⊃ Ω} such that
supp (ddcwk)n ⊂⊂ Ω,

	
Ω(ddcwk)n ≤

	
∂Ω dµ, and (ddcwk)n tends weak∗ to µ

as k →∞.
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Furthermore, if there is a finite positive measure ν on Ω, vanishing on
pluripolar sets, such that (6.1) holds, then limk→∞

	
Ω t (dd

cwk)n = 0 for each
t ∈ F(Ω) ∩ L∞(Ω). Hence t (ddcwk)n tends weak∗ to 0 for each such t.

If we compare this theorem with the results in the previous sections we
see the following. In the setting of Section 3 we know that if u ∈ Fa(Ω)
and ϕ ∈ PSH(W ) ∩ L∞(W ), W ⊃ Ω, then

	
Ω ϕ (ddcu)n ≤

	
Ω ϕ (ddcuj)n

which increases to
	
∂Ω ϕdµu (see Theorem 5.3). In particular, if µ = µu for

some u ∈ Fa(Ω), then (6.1) is satisfied if we take ν = (ddcu)n. Moreover,	
Ω(ddcuj)n =

	
∂Ω dµu and limj→∞ t (ddcuj)n = 0 for each t ∈ F(Ω)∩L∞(Ω)

(see Remark 5). Hence, the approximation procedure in Theorem 6.1 is sim-
ilar to the one in the previous sections, and it applies to a larger class of
boundary measures (see also Example 6.3).

Lemma 6.2. Let {µjk}j,k be a sequence of positive measures on Ω with

uniformly bounded mass. Suppose that , for each fixed k, µjk tends weak∗ to µ
as j →∞. Then there is a subsequence {µjkk }k such that µjkk tends weak∗ to
µ as k →∞.

Proof. Let {tl} be a dense sequence in C(Ω). For each k we choose jk
such that ∣∣∣ �

Ω

tl dµ−
�

Ω

tl dµ
jk
k

∣∣∣ < 1
k
, 1 ≤ l ≤ k.

It follows that µjkk tends weak∗ to µ as k → ∞, since {tl} is dense and the
measures have uniformly bounded total mass.

Proof of Theorem 6.1. For each k, the measure µ can be regarded as
a finite measure on Ωk which vanishes on pluripolar sets. Hence there is
uk ∈ Fa(Ωk) such that (ddcuk)n = µ (see Lemma 5.14 in [8]). Choose a
fundamental sequence {ωj} of Ω, i.e. ωj ⊂⊂ ωj+1 ⊂⊂ Ω and

⋃∞
j=1 ωj = Ω.

For each k and j, define ujk = sup {ϕ ∈ PSH−(Ωk) : ϕ|ωj ≤ uk|ωj}. Then
ujk ∈ F

a(Ωk) (note that (ujk)
∗ = ujk since ωj is open, so ujk is plurisubhar-

monic) and we have the following:

(i) supp (ddcujk)
n ⊂ ∂ωj , ujk ≥ uk on Ωk,

	
Ωk

(ddcujk)
n ≤

	
Ωk

(ddcuk)n =	
∂Ω dµ.

(ii) If j1 ≤ j2 then uj1k ≥ u
j2
k on Ωk.

(iii) limj→∞ u
j
k = uk on Ωk.

The first two statements are obvious. To prove the third, let vk = limj u
j
k.

Then vk ∈ F(Ωk), vk ≥ uk on Ωk and vk = uk on Ω. Thus vk(ξ) = uk(ξ) for
ξ ∈ ∂Ω, using the assumption (6b), so vk ≤ uk on Ωk by Lemma 4.9, and
the statement follows. Now, (ii) and (iii) imply that (ddcujk)

n tends weak∗ to
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(ddcuk)n = µ as j → ∞, for each fixed k. Hence, by (i) we can use Lemma
6.2 to pick {jk} such that (ddcujkk )n tends weak∗ to µ as k →∞. This proves
the first part of the theorem if we let wk = ujkk .

It remains to show that limk→∞
	
t (ddcujkk )n = 0 for all t ∈ F(Ω) ∩

L∞(Ω), assuming that (6.1) holds. Given t ∈ F(Ω)∩L∞(Ω) there is by (6a)
a sequence {tk} with tk ∈ F(Ωk) ∩ L∞(Ωk) such that tk increases a.e. to t
on Ω. Now, �

Ωk

t (ddcujkk )n ≥
�

Ωk

tk (ddcujkk )n ≥
�

Ωk

tk (ddcuk)n

=
�

∂Ω

tk dµ ≥
�

Ω

tk dν > −∞,

so lim infk→∞
	
Ωk
t (ddcujkk )n ≥

	
Ω t dν. Define ti = sup {ϕ ∈ PSH(Ω) :

ϕ|Ω\ωi ≤ t|Ω\ωi}. Then ti ∈ F(Ω) ∩ L∞(Ω) and ti = t on Ω \ ωi, so

lim inf
k→∞

�

Ωk

t (ddcujkk )n = lim inf
k→∞

�

Ωk

ti (ddcujkk )n ≥
�

Ω

ti dν,

by the above calculations. Now, the left hand side is independent of i, while
the right hand side tends to 0 as i tends to∞, since ν vanishes on pluripolar
sets. This completes the proof.

The reason not to keep k fixed in the proof above is to be able to prove
the second part of the theorem. Also, one can prove that limk→∞ u

j
k = 0 a.e.

on Ω, for each fixed j.

Remark 6. Suppose that v ∈ PSH−(Ω) satisfies ṽ ≥ v ≥ ṽ+ψ for some
ψ ∈ F(Ω) ∩ L∞(Ω) and that ṽ ∈ C(Ω). (Thus, v is a function in F(Ω, ṽ)
with some additional properties, see Section 2.) Then the preceding theorem
implies that

(6.2) lim
k→∞

v (ddcujkk )n = ṽ dµ,

where the limit is in weak∗ sense. To see this, take f ∈ C(Ω) with f ≥ 0.
Then by the theorem we have limk→∞

	
Ω fṽ (ddcujkk )n =

	
∂Ω fṽ dµ and

0 ≥
	
Ω fψ (ddcujkk )n ≥ max f ·

	
Ω ψ (ddcujkk )n, where the last integral tends

to 0 as k → ∞. Hence the inequality fṽ ≥ fv ≥ fṽ + fψ implies that
limk→∞

	
Ω fv (ddcujkk )n =

	
∂Ω fṽ dµ, and (6.2) follows.

Furthermore, if we assume that
	
Ω ϕdν > −∞ for all ϕ ∈ F(Ω), then

(6.2) holds for all v ∈ F(Ω, ṽ) where ṽ ∈ C(Ω). This is due to the fact that
the boundedness of t in the second part of Theorem 6.1 is used only to ensure
that

	
Ω tk dν > −∞ (because if t is bounded then tk is bounded). Hence the

assumption that t ∈ F(Ω)∩L∞(Ω) can be replaced by the assumption that
t ∈ F(Ω) and

	
Ω ϕdν > −∞ for all ϕ ∈ F(Ω).
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Example 6.3. Let Ω be the unit bidisc D × D in C2. Let µ and ν be
defined by

µ = σ1 × dV1/2 and ν = σ1/2 × dV1/2,

where σr denotes the normalized Lebesgue measure on the circle ∂D(0, r)
and dV1/2 the normalized Lebesgue measure on the disc D(0, 1/2). Then µ
and ν satisfy (6.1), so Theorem 6.1 tells us that we can approximate µ from
the inside of Ω by our procedure. Moreover, by Example 4.11 we see that µ
is not in the weak∗ closure of {µu : u ∈ F(Ω)}. Hence, we do reach more
measures by the method in this section than we could before.
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