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Monge—Ampére boundary measures

by URBAN CEGRELL and BERIT KEMPPE (Umea)

Abstract. We study swept-out Monge—Ampére measures of plurisubharmonic func-
tions and boundary values related to those measures.

1. Introduction. The purpose of this paper is to study certain bound-
ary measures related to plurisubharmonic functions on hyperconvex domains.
These measures are obtained as swept-out Monge-Ampére measures and
generalize the boundary measures studied by Demailly [14] (see Section 3).
A number of properties of the measures, such as density, support and con-
vergence, are given in Section 4. The idea is then to use these measures to
define and study boundary values of plurisubharmonic functions on the given
domain. This is done in Section 5, where we also describe some situations
where this coincides with other notions of boundary values. Finally, in Sec-
tion 6 we study more general boundary measures on a more restricted class
of hyperconvex domains. Here we start with a measure on the boundary and
find a sequence of Monge—Ampére measures approximating it.

Results from this paper have been applied in [2].

2. Preliminaries. We first recall some definitions needed in this paper.
Let {2 be a domain in C", n > 2. Denote by PSH({2) the plurisubhar-
monic functions on 2 and by PSH™(§2) the subclass of nonpositive func-
tions. A set 2 C C™ is said to be a hyperconver domain if it is open, con-
nected and if there exists a function ¢ € PSH™(£2) such that {z € 2 :
o(z) < —c} CcC 2 for all ¢ > 0. If 2 is a bounded hyperconvex do-
main, then it can be shown that the exhaustion function ¢ can be chosen
in C*(2) N C(£2) and such that |, (dd°¢)™ < oo (see [11]). This implies
for example that the classes defined below are nontrivial. Unless otherwise
stated, throughout this paper, 2 will denote a bounded hyperconvex do-
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main in C". Also, by a measure we mean a positive regular Borel mea-
sure.
Let & (£2), F(£2), £(12) and F*(§2) be the subclasses of PSH™(§2) defined

as in 6] and 8|, namely:

o &(£2) is the set of functions v € PSH(§2) N L*°(§2) such that {,(ddu)"
< 00 and lim,_,¢ u(z) = 0 for all £ € 012,

o F(12) is the set of functions u € PSH({2) such that there is a sequence
{u;} in £(£2) with u; \, u and sup; {,(ddu;)" < oco.

o £(12) is the set of functions v € PSH({?2) such that for each w CC 2
there is a function u,, € F({2) with u, > v on 2 and u, = u on w.

o F%(£2) is the set of functions u € F(£2) such that {(dd“u)” = 0 for
each pluripolar set £ C (2.

For the convenience of the reader, we state some results concerning these
classes, which we use most frequently in this paper. If not indicated other-
wise, proofs can be found in [8].

First, observe that PSH™(£2) N L{X.(2) is contained in £(f2) and that
Eo(£2) C FUN2) C F(£2) C £(£2). The following lemma explains why the

functions in &)(f2) are sometimes called test functions.

LEMMA 2.1. If ¢ € C§°(£2), then there are 1, pa € Eo(£2) N C(2) such
that ¢ = @1 — 2.

If up,...,u, € (), then dd®u; A --- A dd°u, is defined as the limit
measure obtained by combining the following two theorems.

THEOREM 2.2. Suppose that uw € PSH™(£2). Then there is a sequence

{u;} C &(2) N C(12) such that uj \, v on 2 and supp (ddu;)"™ CC 2 for
each j.

THEOREM 2.3. For k =1,...,n, let up € E(£2) and {gx;}32; C Eo($2)
be such that gi; ™\, ux as j — oo. Then dd®gy; \--- ANdd®gn; is weak™ -conver-
gent and the limit measure is independent of the sequences {gy;}-

A function u € £(£2) is a maximal plurisubharmonic function if and only
if (dd“u)™ = 0 (see [5] and [7]). If v € F(£2) and (dd°u)™ = 0, then u = 0
(see Theorem 5.15 in [8]). Theorem 2.3 can be generalized as follows (see e.g.
Lemma 3.2 in [10]).

LEMMA 2.4. For k =1,...,n, let i, € E(£2) and {gx;}32, C E(£2) be
such that grj > uy, and gi; tends weakly to uy as j — oo. If h € PSH™(£2) N
L*>(£2), then hdd®gij A --- A dd®gn; tends weak™ to hdd®uy A --- A dduy.
Moreover, if up, € F(§2) then limj_ §, hdd®giiA---Add°gn; = {, hdd®ui A
s A ddCuy,.
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The next lemma contains some useful basic properties of the classes we
use.

LEMMA 2.5. Let K € {&, F*, F,E}.

(1) If u,v € K(£2) and o, 5 > 0, then au+ fv € K(12).
(i) If u € K(£2) and v € PSH™(£2), then max{u,v} € K(£2). In partic-
ular, if u € K(£2), v € PSH™(£2) and v > u, then v € K(£2).

Note that functions in F(§2) have finite total Monge-Ampére mass. Also,
they have in some sense boundary values zero, which can be seen e.g. in the
following formula for partial integration.

THEOREM 2.6. Let v,uy,...,u, € F(£2). Then

Vvdduy Addouy A -+ Adduy = | uy dd®v A ddug A+ A dduy,.
9] (9}
Since a bounded function cannot put Monge-Ampére mass on pluripolar
sets (see e.g. [3]), we have F(£2)NL>(§2) C F*(£2). Moreover, Theorems 5.5
and 5.8 of [8] gives:

LEMMA 2.7. Ifuy,...,upn—1 € F(£2) and v € F*(£2) or v € PSH™(£2) N
L*>°(82), then dduy A - -+ A\ ddup—1 A dd®v vanishes on pluripolar sets.

We conclude this section with some notation needed in this paper. Let {2
and u € £(2) be given and choose a fundamental sequence {{2;} of strictly
pseudoconvex domains, i.e. £2; CC 211 CC {2 and U]o’;l 2; = (2. For each
j define

(2.1) w = sup {(p € PSH(!?) : gp]g\gj < U’Q\Qj}-

Note that since £2; has C? boundary, it follows that u/ equals (u/)*, the
smallest upper semicontinuous majorant of u’, so u’/ is plurisubharmonic.
Moreover, u < u! < w/t!t < 0, so each u? € E(£2) and the same holds for
@ = (lim; 00 w/)*. It follows that @ is the smallest maximal plurisubharmonic
majorant of u and that @ is independent of the sequence {f2;} chosen. In
[10] the following classes were defined:

N(@Q2)={uec&Q):a=0}, M(Q)={ue&): (ddu)"=0}.

Thus M(£2) is the class of maximal plurisubharmonic functions in £(£2).
Note that N (§2) contains F({2), since if u € F({2), then @ is a maximal
function in F(£2) so @ = 0. It also follows that if u € F(£2), then v/ 0
outside a pluripolar subset of {2 (see [16] or [3]).

Finally, we say that u € £(§2) has boundary values u if there is a function
1 € N(£2) such that @ > u > @+ . Given H € M(S2) we define

F(2,H) ={uePSH(?) : H>u> H + v for some ¢ € F(§2)},
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which is a subclass of £(£2). It follows that if u € F(§2,H) then « = H.
Also, F(£2,0) = F(£2).

3. Construction of the boundary measures p,. In this section we
show that every function in F({2) gives rise to a measure on the bound-
ary of (2. Let u € F({2) be given, choose a fundamental sequence {2;}
of strictly pseudoconvex domains and let u/ be defined by (2.1). Then u <
u? < u/t! <0, s0 each w is in F(£2). Moreover, Stokes’ theorem implies that
§o(ddw)™ = §,(dd°u)™ < oo, and by maximality (dd“u’/)" is concentrated
on {2 \ .Qj.

THEOREM 3.1. Suppose that u € F(£2). Then {(ddw)"} is a weak*-
convergent sequence, which defines a positive measure ju, on 9. Also
lim; oo §, ¢ (dd°u?)" exists for all p € PSH(£2) N L>(42).

Proof. Choose W to be a strictly pseudoconvex set containing the closure
of 2. First assume that ¢ € PSH(£2) N L*°(£2) and ¢ < 0. Then

(3.1) —o00 < | @ (ddu)" < | ¢ (ddu!)"

9] 9]

< S @ (dd“u/ ™)™ < sup S(ddcu)".

Q 2 0
To see this, approximate ¢ with functions in &y({2) and use partial in-
tegration in F(§2) (see Section 2). Since all Monge-Ampére measures in-
volved have the same total mass, it follows that (3.1) holds for all ¢ €
PSH(£2) N L*°(£2). Thus {{, ¢ (dd“u’)"} is a bounded monotone sequence,
s0 limj_.oc §, ¢ (dd“u?)™ exists for all ¢ € PSH(£2) N L*°(£2). In particular,
the limit exists for ¢ € C§°(W) (see Lemma 2.1). Since each (dd“uw’)" is a
positive distribution on C5°(W), it follows from standard distribution theory
that the convergence in fact holds for all ¢ € Cyo(WW). Also the limit distri-
bution itself is positive and thus defines a positive regular Borel measure pi,,
on W, which by the construction is concentrated on 9f2.

In this manner we may, to each u € F({2), associate a positive mea-
sure (i, and it follows for example that
(3.2) S edp, = lim S o (ddu/)"

o0 7%
holds for all ¢ € Cy(W), in particular for ¢ € C(§2). We also see that
$o0 di = §,(ddu)™, which implies that p, = 0 if and only if u = 0 (since
u € F(2)). Note that p, does not depend on the sequence {{2;} chosen.
Note also that by applying (3.1) to ¢ and —¢ we get
(3.3) | ¢ (ddw?)" = | o (dd°u)", V€ PH(2) N L>(1),
n N

where PH({2) denotes the pluriharmonic functions on (2.
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In [14] Demailly defines a set of Monge—Ampére boundary measures in
the following setting. Let X be a Stein manifold of dimension n and 2 CC X
an open hyperconvex subset. Assume that ¢ : {2 — [—00,0) is a continuous
plurisubharmonic exhaustion function such that {,(dd“$)" < co. For each
r < 0 define

B(r)={z€ 2:¢(z) <r},
S(r)={2€2:¢(z) =r},
¢r(z) = max{¢(z),r}.

It is then shown that

(3.4) (dd°Pr)" = X\B(r) - (dd°D)" + p1gr

where f14, is a positive measure concentrated on S(r). Furthermore, if r — 0
then g4, converges in a weak sense to a positive measure i, concentrated
on 912. (More explicitly, it is shown that lim, o { hdpg, exists for all h €
C?(X,R).)

Now consider the case when X = C". Then the function ¢ is in F({2) so
we can define 14 according to Theorem 3.1. Choose a sequence {r;} such that
r; /0 and let £2; = B(r;). Then ¢,, = max {¢,r;} is equal to the function
@’ defined as in (2.1). Note that (2; is not necessarily strictly pseudoconvex
in this setting, only hyperconvex. However, this is enough in the proof of
Theorem 3.1, since we only use the smoothness of 02; to ensure that the
function ¢ is plurisubharmonic. Hence

(3.5) (dd°¢r;)" = X\B(r;) - (dd°D)" + pigr;

where the left hand side converges to the boundary measure 14 and the right
hand side to 0 + fis (since {,(dd°¢)™ < 00). This shows that 114 = fig, so in
particular Demailly’s boundary measures form a subset of those defined in
Theorem 3.1, when X = C™.

Also, note that if u € £ (2)NC(§2) then u satisfies the conditions in De-
mailly’s definition, so for boundary measures corresponding to such functions
we may use Demailly’s results.

The following theorem, where 7 is defined by (2.1), generalizes a formula,
considered by Demailly in [14].

THEOREM 3.2. Assume that u € F(12), h € £(12), {,h(ddu)" > —o0
and dd°h A (dd®u)"~1 vanishes on pluripolar sets. Then

lim | b (ddw’)" = | h(ddu)" — | wddh A (dd°u)""".
70 Q Q

Note that the conditions in this theorem are satisfied if for example u €
F(§2) and h € PSH™ (£2) N L>(§2) (see Lemma 2.7). Actually, it is enough
that h € PSH(£2) N L>°(£2), since {,(dd“w’)" = |, (dd°u)™.
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Proof of Theorem 3.2. First we claim the following:

(i) {udd°h A (ddu)"™" > —o0,
2

(ii) lim | w/ dd°h A (dd°u)"™" =0,
Jj—00

(iii) | b (ddeu?)"PH A (ddeu)P" >
2

h (ddu?)" P A (ddu)P
h(dd“w)", 1<p<n-—1,

o)
o)

hdd®(u! —u) A (ddu?)" P A (ddu)P~

=
D —

= | w/ dd°h A dd(u? — u) A (ddu?)" P71 A (ddCu)? !

2
g I —w)ddh A (dd“w?)" P A (ddCu)P~1 >0, 1<p<n.

For the proof of (i), choose a sequence {hy} in & (f2) decreasing to h on (2.
Then ddhy, A (dd°u)"~! converges weak* to dd°h A (dd°u)" ! (Lemma 2.4).
Combining this with the fact that u is upper semicontinuous shows that

| (—u) dd°h A (ddu)"" < limsup | (—u) ddhy, A (ddu)"!

Q k=00 g
= limsup | (=hy) (dd°u)" = | (—h) (dd°u)" < oo
k—o0 0 0

(where we have used partial integration in F(£2)). Since v/ " 0 outside
a pluripolar set (see Section 2) and since dd°h A (dd“u)"~! puts no mass
there, (i) implies (ii) by the dominated convergence theorem. To see (iii),
use the same technique as in Theorem 3.1. Finally, (iv) follows from partial
integration, using the fact that h is locally in F(£2) and that v/ — u is
compactly supported in (2. This proves the claim.

Now using (iv) we have

| udd°h A (ddu)""

2

(w— ) dd°h A (dd®u)™" + | w/ dd°h A (ddCu)™!
(9}

hdd®(u—w?) A (ddu)"~" + | w dd°h A (dd°u)"™"
2

SO we can write
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| h(ddeu?y™ — | h(ddu)" + | wdd®h A (ddu)"~"
(9} 2 (9]
= | h(da®w))" — | hdd°u? A (dd°u)""" + | u/ dd°h A (ddu)™!
2 (9} 2
where the last integral tends to 0 according to (ii). Moreover,
| h(ddw?)" — \ hddw! A (ddu)™!
(0] 02
- Z(S B (ddeu? )" PV (ddeu)P ! — | B (ddoud)" P A (ddcu)p)
p=1 9]

n—1
= Z ap
p=1
where a, > 0 for all p by (iii). Using (iv) we have

ap =\ hdd®(w? — u) A (dd“u)"P A (ddu)P™

u? dd°h A dd®(u? — u) A (ddu?)" P A (ddCu)Pt

QD= J

< — | w/ dd°h A (ddu?)" P A (ddCu)P.

2
Now, the second expression in (iv) implies that {,u/ dd°h A (dd°u? )"~ A
(dd°u)*~! is decreasing in k, so it follows that 0 < a, < —{,u/ dd°h A
(dd°u)"~1. Hence (ii) implies that each term a, tends to 0 as j — oo and
the theorem is proved. =

REMARK 1. Combining the preceding theorem with (3.2), we have the
following formula. Given u € F({2),

(3.6) \h(ddw)" = {udd®h A (ddw)" ™ + | hdp,, VheEPSH(R2)NC(R2).
0 n on

In Section 4 (Corollary 4.10) we will show that there is a set .S C 942 such

that supp pu,, = S for each u € F(£2), u # 0. Hence (3.6) gives a partial

integration formula for h € PSH(£2) N C(§2) such that h|g = 0. From The-

orem 5.3 in Section 5 it follows that if u € F%(£2), then (3.6) is valid for

h € PSH(W) N L>®(W), where W is some neighbourhood of £2.

We also get a Jensen-type inequality: given u € F(12),
(3.7) | h(ddu)® < | hdp,, VhePSH(R)NC(2).
2 o2
If h € PSH(W) for some neighbourhood W of {2, then using convolution we
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may find functions hy, € PSH(W')NC(W’), where 2 C W/ cC W, such that
hi "\, h on W'. Therefore (3.7) holds true if h € PSH(W) and u € F({2).

4. Some properties of the boundary measures p,. In this section
we investigate some properties of the boundary measures p,, defined in Sec-
tion 3. Recall that a hyperconvex domain (2 is called B-regular if each con-
tinuous function on 9f2 can be extended continuously to a plurisubharmonic
function on 2 (see [19]).

THEOREM 4.1. Let u be a finite positive measure on 0§2, where {2 is
a bounded B-reqular domain. Then p is in the weak® closure of {i, : u €

Proof. For simplicity, assume that p(9f2) = 1. Choose a sequence of
measures

Ny, N
g = Za;‘?ézé_ﬁ, where {zf}jvzkl C 2 and Zaf =1
j=1 j=1
such that
(4.1) lim {hduy = | hdp, Vhe (),
S o0

where 625 denotes the Dirac measure at zé“ Let e.g. a;? = M(A;?) and zf €
A;? N {2, where {A";}ji’“l is a partition of {2 such that diam(Af) <1/2* and
use the fact that h is uniformly continuous on (2. For each k, consider g(z),
the multipole pluricomplex Green’s function for (2 with poles at {zf} with
weights {(af)l/"} (see [17] and [18]). Then g € F(£2) and (dd°gx)" = uk.
Form fij, = lim;_,00(dd®(gx)*)™ as in Section 3. Then for each k,

(42) V diie = \(dd°ge)" =\ dp = 1= | d,
o (9} (9} a1

and from (3.2) and (3.1) it follows that

(4.3) \ wdiy = Jim Vo (dd*(ge))" = | o (dd°gr)" = | o dpy
o0 Q Q Q

for ¢ € PSH(2) N C(S2). Let {fig,, } be any weak*-convergent subsequence
of {fi}. (Such a subsequence exists since the measures {/ix} have uniformly
bounded total mass.) Now let ¢t € C'(9(2) with ¢t < 0 be given. Since {2 is

B-regular there is a ¢ € PSH(£2) N C(§2) with ¢ = ¢ on 92. Hence, by (4.1)
and (4.3),

S tdpy = lim S pdpg,, < lim S pdig,, = lim S tdpy,, -
m—0o0 m—0o0 m—00
12 2 a12 o912
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This shows that p > limy, o0 fik,,. It then follows from (4.2) that they have
the same total mass, so p = lim;,— fix,, and the theorem is proved. Note
that since the argument is valid for any weak*-convergent subsequence, it
follows that {fi;} itself tends weak™ to . m

Later in this section, we will show that not every positive measure on
002 is in {py = u € F(£2)} (see for example Proposition 4.7). Moreover,
the assumption of B-regularity cannot be removed in Theorem 4.1 (see for
example Corollary 4.10 and Example 4.11). Before we can prove this, we
need the following convergence property.

PROPOSITION 4.2. Suppose that u € F(§2) and that {uy} is a decreasing
sequence in F(§2) such that ui \, u on 2. Then p,, converges weak™ to ji,.

Proof. Let h € &(£2') N C(£2") where £2' O 2. Then (3.6) gives

| hdp, = | h(ddw)" — | wddh A (ddu)"
on 2 2
and for each k,
\ hdp, = | h(ddu)
a1 (9}

ug ddh A (ddCug)" L.

From Lemma 2.4 it follows that limy_.o §, h (dd°uz,)" = {, h (ddu)". More-

over, limg_, o S ug, ddh A (dduy,)" ! = o U ddch A (ddu )”_1 by the follow-

ing calculations. Since u < wy, for each k, Lemma 3.3 in [1] implies that
Vuddh A (ddeu)"™" < {udd®h A (ddup)" ™ < | ug dd®h A (ddug)" ™
9] N n

for each k. Hence, for fixed ko,

{udd°n A (dd°u)"" < liminf | uy dd°h A (dd®ug)™!

:/;M {Q;,;

P k—o0
< limsup | ug dd°h A (dd®uz,)" "
k—o0 0
< limsup | ug, dd°h A (dd°u;)"!
k—o0 )
< | uny dd°n A (ddu)™!
02

where the last inequality follows since dd°h A (dd®uy)™ ! is weak*-convergent
to dd°h A (dd°u)™~! (Lemma 2.4) and wuy, is upper semicontinuous. Now, the
claim follows if we let kg — oo.

Thus
(4.4) lim | hdpy, = | hdpu,

k—oo

o8 of2
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holds true for h € £ (2')NC(£2’) and therefore for h € C§°(£2'). By standard
distribution theory it follows that (4.4) holds for h € Cy(£2’) and hence for
heC ((3(2) [

Recall from Section 3 that for functions in & (§2) N C(§2) we can apply
the results of Demailly in [14]. We make use of this fact in the proof of the
following proposition.

PROPOSITION 4.3. If u,v € F(£2) are such that u < v, then pu, > .

Proof. Take {ug}, {wr} C &(£2) N C(£2) such that ug \, v and wy \ v.
Let vg = max {ug, wg}. Then vy € E(2) N C(£2), vr, \, v and ug < vg. By
Theorem 3.4 in [14], jty, > p, for each k. From Proposition 4.2 it follows

that py > piy. =

REMARK 2. When {2 is B-regular there is a slightly more direct proof of
Proposition 4.3, without using Demailly’s results. If in that case f € C(912)
with f < 0 is given, it may be extended to a function in PSH™(£2) N C(£2).
Since u < v we have u/ < v/ for each j, which (see the proof of Theorem 3.1)
implies that §,, f (dd“u?)" < {, f (dd“v7)™ for each j. From (3.2) it follows
that §,, fdu, < §,, fdu, so the regularity of p, and p, implies that

P 2 o -
COROLLARY 4.4. Suppose that u € F(£2). Then p, = fmax{u,~1}-

Proof. Let v = max{u,—1}. Then p, > u, by Proposition 4.3. Take
{ur} C &(£2) such that ug \, v and let vy, = max{ug, —1}. Then vy € E(12),
v v and v =y on 2\ {ur < —1} (note that {ux < —1} CC £2). From
Theorem 5.1 in [8] and Stokes’ theorem, it follows that

| diu = {(ddu)" = lim |(ddu;)"

o0 Q ke
= Jim {(ddo)" = | (dd°v)" = | dp,

[0 an
SO by = [ly. m

We will now use this corollary to show that each pu,, vanishes on pluripolar
sets. We start with two technical lemmas.

LEMMA 4.5. Suppose that u € F(§2) and that p € PSH(£2) N L>(£2) is
upper semicontinuous on some neighbourhood 2 of £2. Then

lim Sg@(ddcuj)" < S O dfly.
e o

Proof. Choose 2" such that 2 CC 2" CC (2. Then there is a decreasing
sequence {pg} of continuous functions on 2” that are bounded above and
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that converge to ¢ on £2”. Using equality (3.2) we see that
lim S @ (dd“u/)" < lim S o (ddu! )" = S Ok Aty
0 NP 92

for each k. Hence the lemma follows by letting k — co. =

LEMMA 4.6. Let E C 012 be a pluripolar set and u € F(£2). Suppose that
there is a function g € PSH({2'), where ' O (2, such that E C Sg = {z :
g(z) = —oo} and (dd“u)™ is concentrated on 2\ Sy. Then p,(E) = 0.

Proof. By subtracting a suitable constant we may assume that g < 0
on (2. For each positive integer k, define hy = max{(1/k)-g,—1}. Then from
(3.1) and Lemma 4.5 it follows that

—00 < | by, (dd°u)" < lim | by, (dd°u?)"

0 g0
<\ hwdpy <\ hidp = —pu(E),
o9 E

since by, < 0 on §2 and hy, = —1 on E. Moreover, hy(z) / 0 forall z € 2\ S,
as k — 00, so limy_.oo {, Ay (dd°u)™ = 0. Hence j1,(E) = 0. m

PROPOSITION 4.7. If u € F(£2), then w, vanishes on pluripolar subsets
of 012.

Proof. If u € F(£2) then v = max{u, —1} € F*(§2) and from Corollary
4.4 we know that u, = u,. Now, for functions in F*({2) the conditions in
Lemma 4.6 are satisfied for each pluripolar set E C 02, so the proposition
follows. m

The next proposition enables us to say more about the support of the
[hy-Tneasures.

PROPOSITION 4.8. Assume that u,v € &(2), u # 0, v # 0, are such
that supp (ddu)™ CC £2 and supp (dd°v)™ CC 2. Then there are constants
a,b > 0 such that

apy < fry < bpty.
In particular, supp p, = SUpp fy-

LEMMA 4.9. Assume that uw € F(£2), u # 0, v € E(£2) and u > v on
supp (dd“u)™. Then u > v on (2.

Proof. Assume that u(zg) < v(zg) for some zy € 2. Let ¢ € &(12)
C*(f2) be a strictly plurisubharmonic exhaustion function and let s >
be such that u(z9) < s1(z9) + v(zp). Corollary 3.6 in [10] gives, with A
{u(z) < s9(2) +v(2)},

{(dd°(sy +v)™ < |(ddw)™ = 0.
A A

I oD
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Hence s™{,(dd°y))" = 0, which implies that A has Lebesgue measure 0.
Since the functions involved are plurisubharmonic, this means that A = 0.
This is a contradiction and the lemma is proved. =

Proof of Proposition 4.8. Let K = supp (dd‘u)™. Since K is compact, and
since v and v are bounded upper semicontinuous functions, & > 0 may be
chosen such that av < u on K. It then follows from Lemma 4.9 that av < u
holds on all of {2. Similarly, there is 8 > 0 such that Su < v on 2. Then
Proposition 4.3 implies that p,-1, < py < pg,. Hence, if we let a = a™"
and b = (", the proposition follows. =

COROLLARY 4.10. There is a set S C 0f2 such that supp p, = S for
each v € F(§2), u # 0.

Proof. Choose a function vy € E(£2) with supp (ddvy)™ CC {2, and let
S = supp fy,. Let u be an arbitrary function in F(§2). Choose a sequence
{u;j} C & () such that u; N\, u and supp (dd°u;)™ CC 2. Then Proposi-
tion 4.8 implies that supp u,; = S for each j. Moreover, p,, < -+ <y
and p,; tends weak® to p,, by Propositions 4.3 and 4.2. Hence supp iy
=S u

Note that if x is in the weak™* closure of {p,, : u€ F(§2)}, then supp uCS.
Hence if 2 is B-regular, then the support set S has to be all of 942, because
of Theorem 4.1.

On the other hand, if 2 = w; X wy C C* = C" ™2 where w; C C™
and wy C C™ are bounded hyperconvex domains, then S C dw; X dws. To
see this, consider the function u(z,w) = max{gi(z), g2(w)} where gy is the
pluricomplex Green’s function for wy with pole at some point in wy. Note that
gk is continuous outside the pole and tends to zero at the boundary of wy.
Then u € F(§2) and supp (dd“u)” C {(z,w) € 2 : gi1(z) = g2(w)}. Choose
a sequence {e;} such that €; \, 0. Then 2; = {(z,w) € 2 : u(z,w) <
—e;} defines a fundamental sequence of 2 and uw/ := sup {p € PSH() :
elove; < ulove;} = max{u, —¢;}. It follows that supp (dd°u?)™ C {(z,w) €
2 g1(2) = g2(2) > —¢;}, which implies that supp pr, C Owi X Ows. Hence
the claim follows from Corollary 4.10.

Using a similar argument, the following example shows that when (2 =
D x D C C?, then we have equality, S = 0D x JD.

EXAMPLE 4.11. Let £2 be the unit bidisc D x D in C2. Then supp j, is
equal to the distinguished boundary 9D x 9D for each u € F(£2), u # 0.
This follows from Corollary 4.10, if we for example consider the pluricom-
plex Green’s function g for 2 with pole at the origin. We then see that
g(z,w) = mmax{log |z|,log |w|}, where the constant m > 0 is chosen such
that {,(dd°g)*> = 1. This is a function in F(2), and we can compute
pg explicitly. For j = 1,2,..., let £2; = {(z,w) : |2| < 7}, |w| < 7;}
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where 7; = 1 — 1/4. Then ¢’ := sup{p € PSH(£) : elove, < glove b =
m max{log |z|,log |w|,log(r;)}, from which it follows that

(dd°g?)? = m2dd‘(max{log |2|,1log(r;)}) A dd°(max{log |w],log(r;)}).

Since {,(dd°g?)* = 1 for each j (see Section 3), we conclude that (dd®g’)? =
oj x 0j, where o; is the normalized Lebesgue measure on the the circle
0D(0,7;). This implies that 1y = 0 X o, where o is the normalized Lebesgue
measure on the unit circle.

REMARK 3. Recall from Remark 1 at the end of Section 3 that Corollary
4.10 and (3.6) together give the partial integration formula

(4.5) hls =0 = | h(ddw)" =\ uddh A (ddu)""".
n N
The implication (4.5) holds true for h € PSH(£2) N C(2) if u € F(£2), and
for h € PSH(W) N L®(W), W D 2, if u € F%(£2) (using Theorem 5.3 of
Section 5). Here S is the support set defined in Corollary 4.10.
Furthermore, (3.7) implies that

(4.6) suph <suph, Vh e PSH(2)NC(2).

9} S
To see this, let h € PSH(£2) N C(£2) be given. For z € (2 fixed, let g, be the
pluricomplex Green’s function for 2 with pole at z. Then (ddg,)" = 9, the
Dirac measure at z, and we have h(z) = {, h (dd°g.)" < {,, hdp,, < supgh.
By the same argument, (4.6) holds true if A is an upper bounded function
in PSH(W), where W D £2.

REMARK 4. Another property of the measures p,, is that they are Henkin
measures (a kind of measure introduced by Henkin in [15]). This means that

lim du, =0
JHm 889 Jrdp
for each uniformly bounded sequence { fi} in A(£2) such that limy_. fr(2)
= 0 for all z € 2. Here A(S2) denotes the functions that are holomorphic
on {2 and continuous on §2. To see this, take such a sequence {f;} and let
{or} = {Re fr}. From (3.2) and (3.3) it follows that
lim | @y dpr, = lim <1im § o (ddcuj)") = lim | @y (dd°u)" = 0
k—o0 50 k—o0 \j—o00 0 k—o0 0
for each u € F(£2), since gy, is uniformly bounded and {,(dd®u)™ < co. Since
the same holds for {¢;} = {Im fi}, it follows that limy_ 889 Sfedupy, = 0.
This property can be used to show the following fact about the support
of the measures p,,. Suppose that v € F(§2) and that K C 02 is a peak set
for A(£2). Let f € A(£2) be a peak function for K and define fi,(z) = (f(2))*

for z € 2 and k = 1,2,.... Then {f;} satisfies the assumptions above, so



188 U. Cegrell and B. Kemppe

limg o § 50 fr dptu = 0. But we also know that limy oo {5, fr dpte = pru(K).
Hence p,,(K) = 0 for each peak set K and each u € F(£2).

5. Boundary values. In this section we define and study boundary
values of plurisubharmonic functions with respect to the measures .

LEMMA 5.1. Assume that u € F(§2) and g € PSH(£2) N L*>(§2). Then
{g (dd°u? )"} is weak"-convergent.

Proof. By the same argument as in Theorem 3.1 it is enough to prove
that the limit lim;j_. {,, pg (dd°u?)™ exists for all ¢ € PSH™(§2) N L>=(12).
Given such a function ¢, take M, N > 0 such that o+ M > 0and g+ N > 0.
Then (¢ + M)%, (g + N)%, (p+ M + g+ N)? € PSH(2) N L>(2), so if ¥ is
any of these then lim;_ Srzw (dd°u’)"™ exists by Theorem 3.1. Expanding
((p+ M)+ (g+ N))?, it follows that the limit exists for ¢ = (¢ +M)(g+N)
and then finally for ¢ = ¢g (using Theorem 3.1 again). m

Using this lemma, together with standard measure theory, we can make
the following definition.

DEFINITION 5.2. For u € F({2) and g € PSH({2) N L>({2), let g* be the
function in L>°(942, p1,,) such that lim;_. g (dd“u?)" = g" djiy,.

We may consider g* as the boundary values of g with respect to 1. Note
that, at least formally, g* depends on both ¢ and u. However, the following
theorems describe some situations when this definition agrees with other
notions of boundary values.

THEOREM 5.3. Assume that u € F*(£2) and g € PSH(W) N L>(W)
where W is a bounded domain containing 2. Then g* = glan a.e. (pu)-

Proof. Note that if M is a constant then (g — M)" = g* — M, so we may

assume that g < 0. Let t € C(£2) with ¢ > 0 be given. Then it follows, in the
same way as in the proof of Lemma 4.5, that
S tg" dp, = lim Stg (ddu? )" < S tg dpiy.
j—0o0
o1 (9} o
Thus g* < g a.e. (i), so it remains to prove that {,, g% du, = {0, g dpn.
Choose K such that 2 cC K cC W. Given € > 0 there is an open set
Us C W and a function g. € Co(W) such that infyy g < g < 0, the relative
capacity cap(U;, W) < e and K\U, C {z € W : g(2) = g=(2)} (for definition
and properties of relative capacity, see [3]). It follows that
S g“dp, = lim Sg(ddcuj)"
j—o0
on 2
= lim S g (dd“u?)"™ + lim S ge (dd“uw)"

J—00 J—00

QnU. 2\U.
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> lim | g(ddw)" + | gedp

2NU. o0
= lim S g (dd“u)" + S ge djty, + S g dpy
I onu. 80N, OO\U.

>lim | gddvw)"+ | geduu+ | gdp.
02NU: 002NU: o082

Let he =sup {¢p € PSH™ (W) : ¢|y. < —1}. Then

0> | g"dpu— | gdpu
o2 o

> lim S g (ddcuj)n + S e A
j—00

2NU: o2NU:

> (inf ¢)( lim (ddu? )™ + dpiy
W (JHOO Qr§U5 BQ;UE )

:(—i%fg)(jlggo | he(daow) + haduu)

2NU: o2NU:

> (~inf g)(hm | he (ddcu?y" + § he duu>
Jmee o0
> 2(~inf g) ;Zha (dd°u)",

where we have used (3.1) and Lemma 4.5 in the last inequality. From Lem-
ma 1.9 in [13], using the fact that v € F*(£2) and cap(Us, W) < ¢, it follows
that this last integral tends to zero as € \, 0, which completes the proof. =

The following theorem may be compared with the definitions in Section 2.

THEOREM 5.4. Suppose that H € M(§2) N L*>(£2). Then, for every u €
F(£2) and every g € F(£2, H) such that §, g (ddu)™ > —oo, g (dd“w’)" is

weak* -convergent to H" du,, .

Proof. By the same argument as in Theorem 3.1, it is enough to prove
that
lim | tg (dd°u/)"” = lim | tH (dd“w/)", vt e PSH™(22) N L®(£2).
j—o0 0 j—o0
Since g € F(£2, H) there is a ¢ € F(§2) such that ¢ + H < g < H. We may
assume that 1) > g (otherwise, take ¥y = max {1, g}). We may also (after
dividing by suitable constants) assume that —1 < ¢ < 0 and —1 < H < 0.
Now,
| tg (ddw’)" = \ t(g — H) (ddu?)" + | tH(dd“u')"
Q 0 0
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Using partial integration in F(2) we have

| (=) (dd“w)™ = \ (—!) ddo A (dd°u?)" !

(9} 2
< |(—w) ddp A (dd°u )" = | (=) ddy A ddu A (ddu! )"
2 2
<< N (—ud) ddy A (ddeu)™ ™t = I < | (—u) ddop A (ddou)"
2 (0]
= (=) (dd°u)" < {(~g) (dd°u)" < 0.
2 k0]

Since u/ increases to zero outside a pluripolar set and dd®y A (dd‘u)™~!
vanishes on pluripolar sets (see Lemma 2.7), it follows that I; \, 0 as j — oc.
This proves the theorem. m

REMARK 5. If g € L>(£2) then {, g (dd“u)" > —oc for every u € F(12).
Furthermore, ¢ > g implies that v is bounded as well, so dd“i) A (dd“u)™~!
vanishes on pluripolar sets for every u € F(f2) (Lemma 2.7). Thus for
bounded functions ¢ in F(£2, H), the conclusion ¢g"du, = H"dpu, holds
for every u € F(12).

Suppose that we have a bounded plurisubharmonic function on {2 and
want to approximate it with plurisubharmonic functions that are continu-
ous on {2. The following theorem gives a condition for this to imply weak*
convergence on the boundary.

THEOREM 5.5. Assume that u € F(£2) and pr, = limj_oo(dd®u?)™. Let

{¢;j} be a sequence in PSH(£2) N C(§2) such that 0 < p; < 1. If ; tends to
@ € PSH(£2) N L>(2) in the sense of distributions, then y; dj, tends weak*

to " dpy if and only if im;_.oo § 0; dpy, = § 0" dpsa,.

Proof. By Corollary 4.4 we may assume that u € F*(£2). The condition
in the theorem is obviously necessary; we prove it is also sufficient. First,
note that for {¢} C PSH(2) N C(£2) with ¢, > 0, the following holds. For
k fixed, (sup;sjv;)* € PSH(£2) N L*(£2), therefore (sup;s1)* (dd°u’)" is

weak*-convergent (as j — oo) by Lemma 5.1. Furthermore, since sup;>y ¢ =
(sup;sy, t1)* outside a pluripolar set and w/ € F*(£2) (since u € F*(£2)), the
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star may be removed. We claim that

(5.1) lim (sup ¢y) (dd°u?)" = (sup 1) dpsa.
j=00 > >k

Given f € C(£2), f > 0, it follows from (3.2) that for each m,
lim | f(sup ) (dd“u/)" > lim | f( sup <) (dd°w’)"
Jj—00 0 1>k j—o0 0 >k

m>1
= | f(sup ) dp,
50 m>1>k
where the last integral tends to {,, f(sup;>, 1) dpy as m — oco. It follows
that limj oo (Supysy, ¢r) (dd°u?)™ > (sup;>y ¥1) diw. On the other hand, by
(3.1) and (3.2),

V(sup ) (dduw/)" < | ( sup ) dpy

0 m>1>k 50 m>1>k

for each m and j. So by letting m — oo we obtain

| (sup ) (dd“w?)™ < | (sup ) dpa,
o 1=k on 12k
which proves the claim.

Now, let {¢j,, duw} be any weak*-convergent subsequence of {¢; dpy,}.
(Such a sequence exists by the same reasoning as in the proof of Theorem
4.1.) Then, by standard measure theory, the limit measure is equal to @g dp,,
for some g € L>(p,,). We will show that ¢ = " a.e. (). It then follows
that the original sequence itself converges to ¢“ du,, and the proof will be
complete.

From L2-theory it follows that we may choose 1, = (1/Mj) Zz | Piim,
such that 1, — g in L?(j,) and then a subsequence converging to g a.e.
(t), for simplicity call it {1x}. Since by assumption the original sequence
{¢;} tends to ¢ in the sense of distributions, the same holds for {t;}. Now,
for f € C(£2), f > 0, with the definition of ¢*, (5.1) and monotone conver-
gence theorem yield

| fetduy = lim | foo(ddu’)"
o0 %0
= lim lim wak (dd°u?)"  (Lemma 1.4 in [13])

Jj—00 k—oo

2
< lim lim Sf(supwl) (dd°u? )™

k ) —00
—00 ) 0 1>k

= lim \ flsup ) dppy = | f(hmsupwk)duu
T%0 12k o0 koo
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Hence ¢" < limsupy,_, ., ¥ a.e. (i), which implies that " < g a.e. (py).

Furthermore, {,, w0 dpy = limp oo §5 @) dpta = §50 ©" djt, by assump-
tion, so " = ¢g a.e. (). Thus the theorem is proved. =

6. More boundary measures. Let v be a positive measure on 2 with
finite total mass. Then there is a positive measure pu # 0 which is supported
by 02, vanishes on pluripolar sets and satisfies

(6.1) S pdr < S odu, Yo € PSH (2),
02 o2

where PSH™ (2) = {¢ : ¢ € PSH™(£2'), 2’ > 02}. To see this, let P, denote
the pluricomplex potential of v relative to £2, i.e. P,(z) = |, g(z, w) dv(w),
where g(z,w) is the pluricomplex Green’s function for {2 with pole at w.
Then Theorem 1.1 in [9] says that P, € F({2) and that

| —¢@aP)" < (@) | ~pdv, Ve e PSH (2).
2 (9]

Moreover, {, ¢ (dd°P,)" < {4, @dup, for each ¢ € PSH™(£2), by Re-
mark 1 at the end of Section 3. Hence, the claim follows if we take pu =
(v(2)"up,.

Conversely, if a positive measure p on 942 is such that (6.1) holds for some
finite measure v on {2, we would like to find an approximation procedure,
similar to the one in Section 3. A motivation is that we are interested in
boundary values of plurisubharmonic functions with respect to u.

We will study the case when v vanishes on all pluripolar subsets of 2
and {2 belongs to a more restricted class of hyperconvex domains:

(6a) 2 and {f2;} are hyperconvex domains with 2 CC 241 CC (2,
such that for each t € F(2) there is a sequence {tj}, where t;, €
F(§2) and tg, /"t a.e. on f2.

(6b) 2 is not thin at any of its boundary points, so that limsup s, ¢ v(2)

= v(&) for each £ € 012 if v € PSH™(£2).

Conditions for the approximation property in (6a) to hold true have been
studied in for example [4] and [12|. Examples of domains satisfying (6a)
and (6b) are polydiscs and strictly pseudoconvex domains. Note that if ¢ is
bounded, we may assume that each t is bounded.

THEOREM 6.1. Let §2 be a domain satisfying (6a) and (6b). Assume that
1 s a positive measure on 02, vanishing on pluripolar sets. Then there

is a sequence {wy} in FUN2) = {u : u € FY2), 2 O 2} such that
supp (dd“wy)"™ CC 82, §,(dd°wy)" < §,, dp, and (dd°wy)" tends weak™ to p
as k — oo.
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Furthermore, if there is a finite positive measure v on §2, vanishing on
pluripolar sets, such that (6.1) holds, then limy_.o §, t (dd“wy)™ = 0 for each
t € F(£2)NL>®(82). Hence t (dd°wy)"™ tends weak® to O for each such t.

If we compare this theorem with the results in the previous sections we
see the following. In the setting of Section 3 we know that if u € F?(£2)
and ¢ € PSH(W) N L>®(W), W D £, then {, ¢ (ddu)" < {, ¢ (dd“uw’)"
which increases to §,, ¢ di, (see Theorem 5.3). In particular, if 4 = p,, for
some u € F({2), then (6.1) is satisfied if we take v = (dd“u)™. Moreover,
§o(ddeuw)™ = § 5 dpy and limj_oo t (ddu?)™ = 0 for each ¢t € F(£2)NL>(12)
(see Remark 5). Hence, the approximation procedure in Theorem 6.1 is sim-
ilar to the one in the previous sections, and it applies to a larger class of
boundary measures (see also Example 6.3).

LEMMA 6.2. Let {ui}jk be a sequence of positive measures on §2 with

uniformly bounded mass. Suppose that, for each fized k, ui tends weak* to

as j — 0o. Then there is a subsequence {ui’“}k such that ,ui’“ tends weak®™ to
woas k — oo.

Proof. Let {t;} be a dense sequence in C(£2). For each k we choose jj
such that

<17 1<I<E.

Htldu—gtldugf L

9 2

It follows that ,ui’“ tends weak* to pu as k — oo, since {t;} is dense and the
measures have uniformly bounded total mass. m

Proof of Theorem 6.1. For each k, the measure p can be regarded as
a finite measure on {2, which vanishes on pluripolar sets. Hence there is
up € F(f2) such that (dd°ux)™ = p (see Lemma 5.14 in [8]). Choose a
fundamental sequence {w;} of 2, i.e. wj CC wjt1 CC 2 and U2, w; = 2.
For each k and j, define u?c = Sup.{go € PSH™ () : olw; < Ug|w, }. Then
uy, € FO(£2;) (note that (up)* = w), since w; is open, so uj, is plurisubhar-
monic) and we have the following:
(i) supp (ddcui)” C Owj, ui > ug on (2, Snk (ddcui)" < SQk(ddcuk)” =
Yoo du- , ,
(i) If j1 < jo then ufﬂl > uf on {2.
(iil) Hmjeo uj, = ug on (2.
The first two statements are obvious. To prove the third, let vy, = lim; ui:
Then vy € F(2), vk > ug on 2 and v, = uy on 2. Thus v (€) = ug(§) for
§ € 0L2, using the assumption (6b), so vy < ug on (2 by Lemma 4.9, and
the statement follows. Now, (ii) and (iii) imply that (dd“u],)" tends weak* to
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(ddu)™ = p as j — oo, for each fixed k. Hence, by (i) we can use Lemma
6.2 to pick {jx} such that (ddcuik)” tends weak* to u as k — oo. This proves
the first part of the theorem if we let wy = ufg’“

It remains to show that limg .. St(ddcui’“)" = 0 for all t € F(2)N
L*>(12), assuming that (6.1) holds. Given ¢t € F(£2)N L>({2) there is by (6a)
a sequence {tx} with t; € F(£2;) N L>°(§2;) such that ¢ increases a.e. to ¢
on (2. Now,

| t(dduds )™ > |ty (dduff)" > | tg (ddup)"

2 2y 2
= S tp dp > Stkdy > —00,
o1 2

so liminfj_ o Snk t (ddcqik)” > SQ tdv. Define t% = sup{p € PSH({2) :
Olo\w < tlovw,}- Then t' € F(£2) N L>®(§2) and t* =t on 2\ w;, s0
liminf | ¢ (dd°u}*)" =liminf | ¢ (dd“ul*)" > | ' dv,
k—o0 k—o0
2 2% 0

by the above calculations. Now, the left hand side is independent of i, while
the right hand side tends to 0 as ¢ tends to oo, since v vanishes on pluripolar
sets. This completes the proof. =

The reason not to keep £ fixed in the proof above is to be able to prove
the second part of the theorem. Also, one can prove that limy_, ui =0 a.e.
on {2, for each fixed j.

REMARK 6. Suppose that v € PSH™ (£2) satisfies ¥ > v > 9 +1) for some
Y € F(2) N L>(f2) and that o € C(£2). (Thus, v is a function in F(§2,0)
with some additional properties, see Section 2.) Then the preceding theorem
implies that
(6.2) lim v (ddw ]’“) = vdpu,

k—o00
where the limit is in weak® sense. To see this, take f € C(Q) with f > 0.
Then by the theorem we have hmkﬁoos fo (ddcu{c" = {0 f0dp and
0>\, fi (ddui¥)™ > max f - {, 9 (ddu;*)", where the last integral tends
to 0 as k — oo. Hence the inequality fo > fv > fv + ft implies that
limy oo §, f (dduf )™ = §,, fOdp, and (6.2) follows.

Furthermore, if we assume that {, pdv > —oo for all ¢ € F(£2), then
(6.2) holds for all v € F(£2,7) where & € C(§2). This is due to the fact that
the boundedness of ¢ in the second part of Theorem 6.1 is used only to ensure
that |, t, dv > —oo (because if ¢ is bounded then t; is bounded). Hence the
assumption that ¢t € F(£2) N L>({2) can be replaced by the assumption that
t e F(£2) and §, o dv > —oo for all p € F(£2).
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EXAMPLE 6.3. Let §2 be the unit bidisc D x I in C2. Let u and v be
defined by

p=o01xdVyy and v =01/ X dVy,

where o, denotes the normalized Lebesgue measure on the circle 9D(0, )
and dV}, the normalized Lebesgue measure on the disc I(0,1/2). Then p
and v satisfy (6.1), so Theorem 6.1 tells us that we can approximate p from
the inside of {2 by our procedure. Moreover, by Example 4.11 we see that p
is not in the weak™ closure of {u, : v € F(§2)}. Hence, we do reach more
measures by the method in this section than we could before.
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