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Quantifier elimination, valuation property and
preparation theorem in quasianalytic geometry

via transformation to normal crossings

by Krzysztof Jan Nowak (Kraków)

Abstract. This paper investigates the geometry of the expansion RQ of the real
field R by restricted quasianalytic functions. The main purpose is to establish quanti-
fier elimination, description of definable functions by terms, the valuation property and
preparation theorem (in the sense of Parusiński–Lion–Rolin). To this end, we study non-
standard models R of the universal diagram T of RQ in the language L augmented by the
names of rational powers. Our approach makes no appeal to the Weierstrass preparation
theorem, upon which the majority of fundamental results in analytic geometry rely, but
which is unavailable in the general quasianalytic geometry. The basic tools applied here
are transformation to normal crossings and decomposition into special cubes. The latter
method, developed in our earlier article [Ann. Polon. Math. 96 (2009), 65–74], combines
modifications by blowing up with a suitable partitioning. Via an analysis of L-terms and
infinitesimals, we prove the valuation property for functions given by L-terms, and next
the exchange property for substructures of a given model R. Our proofs are based on
the concepts of analytically independent as well as active and non-active infinitesimals,
introduced in this article. Further, quantifier elimination for T is established through
model-theoretic compactness. The universal theory T is thus complete and o-minimal,
and RQ is its prime model. Under the circumstances, every definable function is piece-
wise given by L-terms, and therefore the previous results concerning L-terms generalize
immediately to definable functions. In this fashion, we obtain the valuation property and
preparation theorem for quasi-subanalytic functions. Finally, a quasi-subanalytic version
of Puiseux’s theorem with parameter is demonstrated.

1. Introduction. As in our previous paper [28], we begin—following
Bierstone–Milman [4, 3]—by fixing a family Q = (Qm)m∈N of sheaves of
local R-algebras of smooth functions on Rm. For each open subset U ⊂ Rm,
Q(U) = Qm(U) is thus a subalgebra of the algebra C∞m (U) of real smooth
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functions on U . By a Q-function we mean any function f ∈ Q(U). Similarly,

f = (f1, . . . , fk) : U → Rk

is called a Q-mapping if so are its components f1, . . . , fk. We impose the
following six conditions on this family of sheaves:

1. each algebra Q(U) contains the restrictions of polynomials;
2. Q is closed under composition, i.e. the composition of Q-mappings is

a Q-mapping (whenever it is well defined);
3. Q is closed under taking inverse, i.e. if ϕ : U → V is a Q-mapping

between open subsets U, V ⊂ Rm, a ∈ U , b ∈ V and if ∂ϕ∂x (a) 6= 0, then
there are neighbourhoods Ua and Vb of a and b, respectively, and a
Q-diffeomorphism ψ : Vb → Ua such that ϕ◦ψ is the identity mapping
on Vb;

4. Q is closed under differentiation;
5. Q is closed under division by a coordinate, i.e. if f ∈ Q(U) and
f(x1, . . . , xi−1, ai, xi+1, . . . , xm) = 0 as a function in the variables xj ,
j 6= i, then f(x) = (xi − ai)g(x) with some g ∈ Q(U);

6. Q is quasianalytic, i.e. if f ∈ Q(U) and the Taylor series f̂a of f at a
point a ∈ U vanishes, then f vanishes in the vicinity of a.

By means of Q-mappings, one can build, in the ordinary manner, the
category Q of Q-manifolds and Q-mappings, which is a subcategory of that
of smooth manifolds and smooth mappings. Similarly, Q-semianalytic and
Q-subanalytic sets can be defined. Consider now the expansion RQ of the
real field R by restricted Q-functions, i.e. functions of the form

f̃(x) =
{
f(x) if x ∈ [−1, 1]m,
0 otherwise,

where f(x) is a Q-function in the vicinity of the compact cube [−1, 1]m. The
structure RQ is model-complete and o-minimal (cf. [36, 35, 28]). The defin-
able subsets in RQ coincide with those subsets in Rm that are Q-subanalytic
in a semialgebraic compactification of Rm.

In order to investigate L-terms of the structure RQ, we shall consider
the universal diagram T of the structure RQ in the language L of restricted
quasianalytic functions augmented by the names of rational powers (i.e. the
set of all universal L-sentences that are true in RQ). We impose the ordinary
postulates on the reciprocal function 1/x and roots, namely

x · 1/x = 1 if x 6= 0 and 1/x = 0 if x = 0,

( n
√
x)n = x if x ≥ 0 and n

√
x = 0 if x < 0.

The role of the function symbols attached to the language of restricted quasi-
analytic functions can be explained as follows. The reciprocal function 1/x
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is indispensable when inverting transformation by blowing up, and roots are
indispensable when inverting substitution of powers.

Our analysis of L-terms and infinitesimals in non-standard models of T is
based on transformation to normal crossings and decomposition into special
cubes. The latter method, introduced in our article [28] for relatively compact
Q-semianalytic sets, combines modifications by blowing up along smooth
centres with a suitable partitioning. It carries over, as shown in Section 2, to
any sets described by L-terms, both in the structureRQ and in non-standard
models of T . Generally, in our non-standard analysis, we are interested in
finding suitable special modifications which take into account a tuple of
infinitesimals. A counterpart of this problem in the classical subanalytic
geometry is to find a finite (or locally finite) family of suitable modifications
whose targets cover a space under consideration. The major part of Sections 2
and 3 will be concerned with such problems.

In Section 2, the notion of analytically independent infinitesimals is in-
troduced. There we deal, inter alia, with the desingularization of L-terms
by special modifications and a modification of a Q-function to a regular one
with respect to one distinguished variable. Sections 3 and 4 are devoted to
the study of our concept of an active and a non-active infinitesimal, which
is crucial for the whole work. An infinitesimal µ is active over a finite set λ
of infinitesimals if, for a certain L-term t(x, y) which is linear with respect
to the variable y, the valuation of t(λ, µ) is not in the valuation group of the
structure 〈λ〉 generated by the set λ.

In the third section, we treat the case of a non-active infinitesimal. We
consider certain modifications, which are linear with respect to the distin-
guished variable that corresponds to a non-active infinitesimal. Most of the
theorems from this section ensure that a Q-function or an L-term in question
can be improved after applying such modifications; these are for instance:
the theorem on behaviour of an L-term at a non-active infinitesimal or the
exchange property for a non-active infinitesimal. The latter amounts to solv-
ing, with respect to one distinguished variable, say y, an equation given by
an L-term. It is worth pointing out that we have reduced the problem of
solving such an equation to that of solving a linear equation and to the
implicit function theorem.

Let us mention that a linearization of an analytic equation with re-
spect to one distinguished variable y can be achieved in the classical an-
alytic geometry by means of the Weierstrass preparation theorem and the
Abhyankar–Jung theorem (cf. [1, 17, 33]). Whereas the former reduces a
given equation, after blowing up the remainder variables x, to a polyno-
mial one with respect to y, the latter allows one, after modifying the re-
mainder variables x by transformation to normal crossings and substitu-
tion of powers, to decompose the polynomial into a finite product of linear
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factors of the form y − ai(x) with some analytic functions ai(x) (see e.g.
[34, 37, 31, 33]).

We wish to emphasize the linear character of the definition of a non-active
infinitesimal as well as of modifications with respect to a distinguished vari-
able, on which our theory has been built. Not only does it enable us to avoid
the Weierstrass preparation theorem, but also plays a vital role in the proof of
the valuation property. Moreover, transformation to normal crossings, when
taking into account the coordinate functions, propagates linearly through
the valuation group. Note that classically, as initiated by Łojasiewicz [21]
(see also [7, 8]), the combination of the Weierstrass preparation and Tarski–
Seidenberg theorems was a basic tool in the geometry of semianalytic and
subanalytic sets.

An active infinitesimal cannot be handled in a similar way to a non-active
one. Section 4 is devoted to the study of an active infinitesimal. We prove,
inter alia, the theorem on behaviour of an L-term at a regular sequence
of infinitesimals, the valuation property for L-terms and, eventually, the
exchange property for substructures of a given model R of the universal
theory T . It means that the span operation on the family of all subsets of the
modelR is a pregeometry onR. This enables us to introduce a general notion
of independence for subsets of R as well as—by analogy with the dimension
of vector spaces or with the transcendence degree of field extensions—the
notion of rank and relative rank for substructures of R. Following Zariski–
Samuel [41, Chap. II, §12], we express the former as the notion of a free set,
which turns out to coincide, for the case of a set of infinitesimals, with our
notion of analytical independence.

What is crucial for our analysis of active infinitesimals is a delicate the-
orem on an active infinitesimal from Section 4. For its proof in the case of
real analytic functions, we can make use of diagonal series. In the general
quasianalytic settings, however, we are not able to apply this technique, be-
cause we do not know whether the diagonal series of a quasianalytic function
determines a quasianalytic function too. Our further deduction is as follows:
we derive from the theorem in question the valuation and exchange proper-
ties for L-terms; next, in Section 5, quantifier elimination for the theory T
under study is established.

The line of reasoning mentioned above could be reversed. Quantifier
elimination for a universal theory in the language L, established by Ram-
baud [35], implies that our theory T coincides with the o-minimal theory of
the structure RQ. By a theorem of Herbrand [14] (see Section 6), every de-
finable function is then piecewise given by L-terms. Therefore the exchange
property for L-terms holds, and thus the theorem follows immediately.

One of the reasons why we provide a separate, direct proof of this the-
orem is that—in our opinion—Rambaud’s paper [35] contains an essential
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gap. His proof of quantifier elimination from Section 8 is based on Corol-
lary 6.14 which, in turn, relies on Proposition 6.11 about stable families of
infinitesimals (to the effect that a stable family x1, . . . , xn of infinitesimals
remains stable after attaching an infinitesimal y independent of x1, . . . , xn).
But the application of Lemma 5.7 in the proof of the proposition is valid
only if the conclusion of the proposition holds. This brings about a vicious
circle, and we do not know how to repair it.

We are able to provide a complete proof of the theorem for the particular
quasianalytic case where the valuations of the infinitesimals λ1, . . . , λm are
linearly independent over Q. Let us mention that our proof for this case is
much more complicated. Instead of diagonal series, we use a recursive method
of admissible annihilation of a sufficient yet finite number of diagonal Taylor
coefficients of the function under study.

In a previous version of this article (see also [29]), we posed the following
problem which generalizes the one about diagonal series:

Let f be a Q-function at 0 ∈ Rk with Taylor series f̂ . Split the set Nk of
exponents into two disjoint subsets A and B, Nk = A ∪ B, and decompose
the formal series f̂ into the sum of two formal series G and H, supported
by A and B, respectively. Do there exist two Q-functions g and h at 0 ∈ Rk

with Taylor series G and H, respectively?

and related it to the question whether polynomials are dense in a certain
Hilbert space associated with a quasianalytic Denjoy–Carleman class, inves-
tigated by Thilliez [38] in connection with his proof of Carleman’s theorem
on the failure of surjectivity for the Borel mapping. A slight modification of
his proof provides a one-dimensional counter-example (given by a lacunary
Taylor series) to the foregoing problem. We know as yet no counter-examples
for the case of diagonal splitting of the set of Taylor coefficients. In case the
answer to this problem turns out to be an affirmative, our proof of the ana-
lytic case of the theorem would extend verbatim to the general quasianalytic
settings.

The Hilbert space considered by Thilliez (an analogue of Sobolev spaces
of infinite order of type l2) allowed him to handle simultaneously an infinite
number of derivatives. Earlier, O’Farrell [30] had studied in general the den-
sity of polynomials in Banach spaces of ultradifferentiable functions of type
lp, 1 ≤ p ≤ ∞, embracing that of Thilliez. He had given the affirmative an-
swer for functions of one variable using a principle of dominated convergence
and the Poisson integral. Nevertheless, it seems to remain valid for the case
of several variables as well. Let us mention that certain Banach algebras of
this type, with particular reference to the non-analytic quasianalytic case,
were also investigated by Dales–Davie [6].
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In Section 5, we apply the foregoing results along with model-theoretic
compactness to the problem of inversion of general special modifications.
It will turn out that the requirement for the inverse mapping ψ of a special
modification ϕ we impose in Section 2 is no constraint on special cubes at all,
because it is fulfilled by every special modification. We need this inversion
theorem and Gabrielov’s closure theorem in order to establish quantifier
elimination for the theory T . In fact, we shall prove that if a set E is described
by L-terms, so is its projection. Our proof makes use of model-theoretic
compactness again. Consequently, the theory T is complete and o-minimal,
and the standard model RQ is its prime model.

Quantifier elimination and an elementary universal axiomatization for
the expansion of the real field by restricted analytic functions were estab-
lished by van den Dries–Macintyre–Marker in the language augmented by
the names of the reciprocal function 1/x and the roots (see [10], and also
[9, 24, 25]). Recently, Rambaud [35] proved a theorem of this kind for the
quasianalytic setting, which was also a stimulus for our writing this article.
In particular, the theorem on lowering order from Section 3 was inspired
by the relevant idea from his Lemma 5.8. Rambaud investigates families of
so-called stable infinitesimals, which play a key role in his proof. He makes
use of certain desingularization algorithms and an embedding of a model
under consideration into an ultrapower of the real field.

The fact that a universal theory T admits quantifier elimination has
weighty model-theoretic and geometric consequences, implying in particular
that every definable function is piecewise given by terms (a theorem of Her-
brand [14]). Therefore all the results we have previously proved for L-terms
remain valid for definable functions. Section 6 provides a brief exposition
of several applications. First, the valuation property for definable functions
is stated. Hence, through model-theoretic compactness and definable choice
(which is available for o-minimal structures), one can derive the prepara-
tion theorem in the sense of Parusiński–Lion–Rolin (see [12, 26]). Finally, we
demonstrate a subanalytic version of Puiseux’s theorem with parameter as
well as its immediate consequence, piecewise uniform asymptotics.

We conclude this section with some useful remarks.

Remarks 1.1. (1) Let Φ be an arbitrary semialgebraic diffeomorphism
of Rm onto (−1, 1)m. In view of Gabrielov’s complement theorem, E ⊂ Rm is
a definable subset of the structure RQ iff Φ(E) is a (bounded) Q-subanalytic
subset in Rm.

(2) Condition 4 imposed on the family of quasianalytic functions is a
direct consequence of condition 5. We must show that if f̃(x) is a restricted
Q-function, so is each partial derivative ∂f

∂xi
(x). We check it for i = m. Since

the function f(x) is Q-analytic in the vicinity of [−1, 1]m, the function
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g(x, y) := f(x1, . . . , xm−1, xm + y)− f(x)

is Q-analytic in the vicinity of [−1, 1]m × [−δ, δ] ⊂ Rm+1 with some δ > 0.
It follows from condition 5 that g(x, y) = yh(x, y) for a function h(x, y)
Q-analytic in the vicinity of [−1, 1]m × [−δ, δ]. Hence

∂f

∂xm
(x) =

∂g

∂y
(x, 0) = h(x, 0)

for x in the vicinity of [−1, 1]m, which is the desired result.
(3) Under condition 6 of quasi-analyticity, condition 5 for convex subsets

U is equivalent to the following one: if the Taylor series of f ∈ Q(U) at a
point a ∈ U is divisible by xi − ai, then f(x) = (xi − ai)g(x) with some
g ∈ Q(U).

(4) Although it is well-known that every model R of the theory T is a
real closed field (see e.g. [23]), we shall not use this fact in our approach.

(5) The interpretation fR of each restricted Q-function f̃ in any model
R of the theory T is an infinitely differentiable function, and we have

∂fR

∂xi
=
(
∂f

∂xi

)R
.

Indeed, if f(x) is Q-analytic in the vicinity of [−1, 1]m, then (as in Remark 2)

f(x1, . . . , xm−1, xm + y)− f(x) = yh(x, y) = y[h(x, 0) + yk(x, y)]

for certain functions h(x, y) and k(x, y) which are Q-analytic in the vicinity
of [−1, 1]m × [−δ, δ] with some δ > 0. Hence

∂fR

∂xm
(x) = hR(x, 0) =

(
∂f

∂xi

)R
(x).

(6) Similarly, making use of Taylor’s formula, we have

f(x1, . . . , xm−1, xm + y)−
n∑
j=0

1
j!
· ∂

jf

∂xjm
(x) · yj = yn+1 · h(x, y)

for a function h(x, y) Q-analytic in the vicinity of [−1, 1]m × [−δ, δ] with
some δ > 0.

2. Special cubes and analytically independent infinitesimals. We
proved in [28] the following

Theorem 2.1 (on decomposition into special cubes). Every bounded Q-
semianalytic subset E in Rm is a finite union of special cubes Sj , i.e. subsets
in Rm of the form

Sj = ϕj((−1, 1)dj ),

where ϕj(x) is a Q-mapping from the vicinity of [−1, 1]dj into Rm such that
the restriction of ϕj to (−1, 1)dj is a diffeomorphism onto Sj.
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Furthermore, each of those special cubes Sj and the inverse mappings

ψj : Sj → (−1, 1)dj

to the associated Q-diffeomorphisms ϕj are piecewise given by terms in the
language of restricted Q-analytic functions augmented by the name of the
reciprocal function 1/x.

Remark 2.2. The inverse mappings ψj to the diffeomorphisms ϕj are
piecewise given by terms in the language of restricted Q-functions augmented
by the name of the reciprocal function 1/x, because—roughly speaking—
the mappings ψj have been locally built in the process of blowing up as
a successive superposition of restricted Q-functions and of the reciprocal
function 1/x off the zero argument.

Corollary 2.3. Let F ⊂ Rm be a bounded subset described by L-terms
and t(x) = t(x1, . . . , xm) be an L-term. Then the part of the graph of t(x)
lying over F is a finite union of special cubes Si in Rm × R of the form

Si = ϕi((−1, 1)di),

where ϕi(x) is a Q-mapping from the vicinity of [−1, 1]di into Rm × R such
that the restriction of ϕi to (−1, 1)di is a Q-diffeomorphism onto Si.

Furthermore, each of those special cubes Si and the inverse mappings
ψi : Si → (−1, 1)di to ϕi are piecewise given by L-terms.

Remark 2.4. Decomposition into special cubes yields the above corol-
lary according to the following observation. After adding new variables (one
for each occurrence of a function symbol involved in a given L-term), the
graph of this term and the sets described by a finite number of L-terms
are bijective projections of certain Q-semianalytic subsets, and the inverse
mappings to those projections are given by L-terms. Note that if a sub-
set contained in the domain of such a projection is described by L-terms,
so is its image under this projection. In this fashion, techniques related to
Q-semianalytic sets can be adapted to the sets described by L-terms.

Remark 2.5. Given an L-term t(x) = t(x1, . . . , xm), there exists a
partition of Rm into finitely many Q-submanifolds described by L-terms,
such that the restriction of the function given by t(x) to each of these Q-
submanifolds is smooth (i.e. C∞).

Unless otherwise stated we shall deal with special cubes (S, ϕ) such that

• ϕ is a Q-mapping in the vicinity of [−1, 1]d (or sometimes [0, 1]d) which
is a diffeomorphism of (−1, 1)d onto S;
• the inverse mapping ψ to this diffeomorphism is piecewise given by
L-terms.
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It will turn out that the above requirement for the inverse mapping ψ is no
constraint on special cubes at all, because it is fulfilled by every special cube
(Proposition 5.4). We shall also consider special cubes described above, but
which are the diffeomorphic images of arbitrary cubes in Rd, and especially
of the cubes (0, 1)d.

We may regard a special cube ϕ : (0, 1)d → S as a kind of modification
of the set S. When we look at the special cube (S, ϕ) in this manner, we
shall call ϕ a special modification.

We now fix a model R of the universal theory T in the language L. Every
L-substructure of R is a model of T . We always regard the standard model
RQ as a substructure of R. Since the decompositions into special cubes we
deal with are described by L-terms (both a special modification ϕ and its
inverse ψ), they are preserved by passage to any model R of T :

ER =
⋃
j

SRj and (graph t(x) ∩ (F × R))R =
⋃
j

SRj .

For simplicity of notation, we shall usually omit the superscript R referring
to the interpretations in a model R, which will not lead to confusion.

We now turn to an analysis of infinitesimals of the model R. We say that
infinitesimals λ = (λ1, . . . , λm) ∈ R are analytically dependent if λ lies in a
special cube S = ϕ((0, 1)d) with d < m. We call infinitesimals λ analytically
independent if they are not analytically dependent. Analytical independence
is preserved, of course, under permutation of infinitesimals. We say that
a subset A in R is analytically independent if every finite subset A in R
consists of analytically independent infinitesimals. If A ⊂ B and the set B
is analytically independent, so is A.

For any subset A ⊂ R, 〈A〉 denotes the substructure of R generated
by A. Every finitely generated model of T has, of course, a finite, analytically
independent set of generators.

The convex hull of R in R is a valuation ring V of bounded (with respect
to R) elements in R; its maximal ideal m consists of all infinitesimals in R.
The valuation v induced by V is called the standard valuation on the field R;
its value group ΓR is a Q-vector space. In order to investigate the valuation v,
we shall need several results about Q-functions, stated and proved in this
and the next section.

Now we state yet another corollary to the theorem on decomposition into
special cubes, which is a direct consequence of Corollary 2.3, applied to the
graph of a given term t(x).

Corollary 2.6 (Desingularization of an L-term). Consider an L-term
t(x) and positive analytically independent infinitesimals λ = (λ1, . . . , λm).
If t(λ) is bounded , then there exist a special cube S = ϕ((0, 1)m) ⊂ Rm, a



256 K. J. Nowak

Q-function f(x′) in the vicinity of [0, 1]m, and positive infinitesimals λ′ =
(λ′1, . . . , λ

′
m) such that λ = ϕ(λ′) ∈ S and

tϕ(x′) := t(ϕ(x′)) = f(x′) for all x′ ∈ (0, 1)m.

We can rephrase the conclusion of Corollary 2.6 as follows.

One can find a special modification

ϕ : (0, 1)m → Rm with λ = ϕ(λ′) for some λ′ ∈ (0, 1)m

such that the superposition f := t ◦ϕ extends to a Q-function in the vicinity
of [0, 1]m; in particular , t(λ) = f(λ′).

The next theoremwill be crucial for investigation of y-regular Q-functions.
Its proof makes use of the noetherianity of the rings of formal power series.

Proposition 2.7. Let fn : [−1, 1]m → R, n ∈ N, be restricted Q-
functions, not all of which vanish identically , and let λ = (λ1, . . . , λm) be
positive analytically independent infinitesimals. Then one can find a special
cube

S = ϕ((0, 1)m) ⊂ Rm

with special modification ϕ(x) Q-analytic in the vicinity of the cube [0, 1]m

and a composite of successive blowings-up, and positive infinitesimals λ′ =
(λ′1, . . . , λ

′
m) such that λ = ϕ(λ′) ∈ S and

fϕn (x′) := (fn ◦ ϕ)(x′) = x′α un(x′), n ∈ N,

in the vicinity of [0, 1]m, where α ∈ Nm, the functions un(x′) are Q-analytic
in the vicinity of [0, 1]m and uk(0) 6= 0 for a certain k ∈ N.

Remark 2.8. Note that the inverse mapping ψ : S → (0, 1)m to the spe-
cial modification ϕ is piecewise given by terms in the language of restricted
Q-functions augmented by the name of the reciprocal function 1/x. Such a
special modification ϕ can be achieved by transformation to normal crossings
by blowing up combined with a suitable partitioning on each successive stage
of the process of blowing up (according to our method of decomposition into
special cubes, presented in [28]).

For the proof of Proposition 2.7, consider the ideal I ⊂ R[[x]] generated
by the Taylor series at zero f̂n(x) of the functions fn(x) and take genera-
tors f̂1, . . . , f̂N of I. One can simultaneously transform by blowing up the
functions

f1(x), . . . , fN (x), x1, . . . , xm

to normal crossings, so that

fϕn (x′) = x′βnvn(x′), vn(0) 6= 0 for n = 1, . . . , N,
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and the exponents β1, . . . , βN are totally ordered with respect to the partial
ordering induced from Nm (i.e. α ≤ β means αi ≤ βi for all i = 1, . . . ,m)—
see e.g. [2, 4]. Putting

α := βk = min{β1, . . . , βN},

we see that all the Taylor series at zero f̂ϕn (x′) are divisible by x′α, whence
so are the functions fϕn (x′) (by condition 5 imposed on our family of Q-
functions, which asserts that the quasianalytic family of functions is closed
under division by a coordinate; see also Remark 1.1(3)). The conclusion can
thus be achieved by our method of decomposition into special cubes [28],
when one takes into account the following two observations:

• when transforming to normal crossings by blowing up, the successive
inverse images of the infinitesimals λ lie on no centre of the successive
blowings-up, because they continue to be analytically independent;
• the final inverse image under the transformation of each orthant is a

union of orthants, so that one may assume that the inverse image λ′
of λ lies in the first orthant.

By the y-order ord f(x, y) of a Q-function f(x, y) at zero we mean the
smallest non-negative integer n ∈ N for which ∂nf

∂yr (0, 0) 6= 0, if such integers
exist, or ∞ otherwise. We say that the function f(x, y) is y-regular at zero
if ord f(x, y) < ∞, i.e. f(0, y) 6≡ 0. A useful fact, which is an immediate
consequence of postulate 5 imposed on the family of Q-functions, is stated
below.

Lemma 2.9. If f(x, y) : [−1, 1]m× [−1, 1]→ R is a restricted Q-function
such that each partial derivative

∂nf

∂yn
(x, 0) for n = 0, 1, 2, . . .

is divisible by xα, then so is the function f(x, y).

Hence and by the foregoing proposition applied to the sequence of Q-
functions fn(x) := ∂nf

∂yn (x, 0) for n = 0, 1, 2, . . . , we obtain

Corollary 2.10 (Modification of a Q-function to a y-regular one). Let
f(x, y) : [−1, 1]m × [−1, 1] → R be a restricted Q-function, f 6≡ 0, and
λ = (λ1, . . . , λm) be positive analytically independent infinitesimals. Then
one can find a special cube S = ϕ((0, 1)m) ⊂ Rm with ϕ being a composite
of successive blowings-up, and positive infinitesimals λ′ = (λ′1, . . . , λ

′
m) such

that λ = ϕ(λ′) ∈ S and

fϕ(x′, y) := f(ϕ(x′), y) = x′αg(x′, y)

in the vicinity of [0, 1]m+1, where α ∈ Nm and g(x′, y) is a Q-function y-
regular at (0, 0) ∈ Rm × R.
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Corollary 2.11. Consider infinitesimals λ = (λ1, . . . , λm) and µ. If
v(µ) 6∈ Γ〈λ〉, then for any Q-function f(x, y) at (0, 0) ∈ Rm

x × Ry we have

v(f(λ, µ)) ∈ Γ〈λ〉 ⊕ N · v(µ).

Indeed, we may assume that the infinitesimals λ are analytically inde-
pendent. In view of Corollary 2.10, we can assume that the function f(x, y)
is y-regular at zero, say, of y-order n. Then, in the vicinity of zero, we have

f(x, y) = f0(x) + f1(x)y + · · ·+ fn−1(x)yn−1 + fn(x, y)yn,

where f0(x), . . . , fn−1(x), fn(x, y) are Q-functions at zero and fn(0, 0) 6= 0.
By the assumption of the corollary, the values

v(f0(λ)), v(f1(λ)µ), . . . , v(fn−1(λ)µn−1), v(fn(λ, µ)µn) = v(µn)

are pairwise distinct, and thus the assertion follows.

3. Active and non-active infinitesimals. We say that an infinitesimal
µ is non-active over infinitesimals λ = (λ1, . . . , λm) if for each L-term t(x)
we have

v(µ− t(λ)) ∈ Γ〈λ〉.

Otherwise, the infinitesimal µ is called active over λ. It is clear that if µ is
non-active over λ, so is the infinitesimal µ′ = s(λ)µ+ t(λ) that is the value
at (λ, µ) of any y-linear L-term.

Theorem 3.1 (on lowering y-order). Let f(x, y) be a Q-function, y-
regular at (0, 0) ∈ Rm

x × Ry of y-order n > 0, λ = (λ1, . . . , λm) be positive
infinitesimals and µ a positive infinitesimal , non-active over λ. Then there
exist a special cube S = ϕ((0, 1)d) ⊂ Rm with d ≤ m, a Q-function ω(x′, y′)
in the vicinity of [0, 1]d ×R, linear with respect to the last variable and with
ω(0, 0) = 0, a Q-function g(x′, y′) in the vicinity of [0, 1]m+1 of y′-order
< n, positive infinitesimals λ′ = (λ′1, . . . , λ

′
d), a positive infinitesimal µ′,

non-active over λ′, and α ∈ Nm such that λ = ϕ(λ′) ∈ S, µ = ω(λ′, µ′) and

fσ(x′, y′) := f(ϕ(x′), ω(x′, y′)) = x′αg(x′, y′)

in the vicinity of [0, 1]d+1; here σ(x′, y′) := (ϕ(x′), ω(x′, y′)).

We may, of course, assume that the infinitesimals λ are analytically in-
dependent, and in this case we have d = m. Our proof starts with the
observation that the implicit function theorem yields a Q-function χ(x) at
0 ∈ Rm such that

∂n−1f

∂yn−1
(x, χ(x)) = 0 and χ(0) = 0.

After the y-linear change of variables y′ = y − χ(x), the infinitesimal µ′ :=
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µ− χ(λ) remains non-active over λ. Therefore, one may assume that
∂n−1f

∂yn−1
(x, 0) ≡ 0.

Since µ is non-active over λ, v(µ) = v(t(λ)) for some L-term t(x). Due to
the desingularization of L-terms (Corollary 2.6), there exist a special cube
S = ϕ((0, 1)m) ⊂ Rm as described in the theorem, a Q-function ξ(x) in the
vicinity of [0, 1]m and positive infinitesimals λ′ = (λ′1, . . . , λ

′
m) such that

λ = ϕ(λ′) and t(λ) = ξ(λ′).

Through transformation to normal crossings by blowing up, one can also
assume that ξ(x) is a normal crossing at zero, whence

v(µ) = v(t(λ)) = v((λ′)α)

for some multi-index α ∈ Nm. We are thus reduced to the case where v(µ) =
v(λα); then µ = (c+ ε)λα with some c ∈ R and an infinitesimal ε.

Consider now the y-linear change of variables y′ = y − cxα and put

µ′ := µ− cλα = ελα;

obviously, v(µ′) > v(µ). Then

f(x, y) = f(x, y′ + cxα) =: g(x, y′)

and
∂n−1g

∂(y′)n−1
(x, y′) =

∂n−1f

∂yn−1
(x, y′ + cxα).

Note that
∂n−1g

∂(y′)n−1
(x, 0) =

∂n−1f

∂yn−1
(x, cxα) 6≡ 0,

because, by the initial reduction, y = 0 is a unique solution near zero of the
equation ∂n−1f

∂yn−1 (x, y) = 0. Again, through transformation to normal crossings

by blowing up, one can assume that the function ∂n−1g
∂(y′)n−1 (x, 0) is a normal

crossing at 0 ∈ Rm, i.e.
∂n−1g

∂(y′)n−1
(x, 0) = u(x)xβ

for some β ∈ Nm and a Q-function u(x) at 0 ∈ Rm with u(0) 6= 0.
We now show that µ′′ := µ′/λβ is an infinitesimal too. Indeed, we have

v(λβ) = v

(
∂n−1g

∂(y′)n−1
(λ, 0)

)
= v

(
∂n−1f

∂yn−1
(λ, cλα)

)
.

Since ∂nf
∂yn (0, 0) 6= 0, we get

∂n−1f

∂yn−1
(λ, µ) =

∂n−1f

∂yn−1
(λ, 0) + unit · µ = unit · µ
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and
∂n−1f

∂yn−1
(λ, µ) =

∂n−1f

∂yn−1
(λ, cλα) + unit · µ′.

Hence
∂n−1f

∂yn−1
(λ, cλα) = unit · µ,

and thus v(λβ) = v(µ) < v(µ′), as desired.
The above allows one to introduce yet another y-linear change of vari-

ables, namely y′′ = y′/xβ . Then

f(x, y) = g(x, y′) = g(x, y′′ · xβ) =: h(x, y′′)

whence we get

∂kh

∂(y′′)k
(x, y′′) = xk·β · ∂kg

∂(y′)k
(x, y′′ · xβ) for all k ∈ N.

We have, in particular, the equalities

∂kh

∂(y′′)k
(x, 0) = xk·β · ∂

kg

∂yk
(x, 0) for all k ∈ N.

But for k = n− 1 we get

∂n−1h

∂(y′′)n−1
(x, 0) = x(n−1)·β · ∂

n−1g

∂yn−1
(x, 0) = xn·β · u(x)

with u(0) 6= 0. Every partial derivative ∂kh
∂(y′′)k (x, 0), k ≥ n−1, is thus divisible

by xn·β . Since the quotient for k = n−1 is just u(x) with u(0) 6= 0, we are able
to lower the y-order of the function f(x, y) by means of Proposition 2.7 and
Lemma 2.9 applied to the functions xn·β and ∂kh

∂(y′′)k (x, 0), k = 0, 1, . . . , n−2.
This completes the proof.

Repeated application of the above theorem enables us to draw the fol-
lowing two conclusions, which will play a crucial role in what follows. We
keep the foregoing assumptions.

Proposition 3.2 (Behaviour of a Q-function at non-active infinitesi-
mals). We can find a special cube S = ϕ((0, 1)d) ⊂ Rm with d ≤ m, a
Q-function ω(x′, y′) in the vicinity of [0, 1]d × R, linear with respect to the
last variable and with ω(0, 0) = 0, a Q-function g(x′, y′) in the vicinity of
[0, 1]d+1, positive infinitesimals λ′ = (λ′1, . . . , λ

′
d), an infinitesimal µ′, non-

active over λ′, and α ∈ Nd such that λ = ϕ(λ′) ∈ S, µ = ω(λ′, µ′), g(0, 0) 6= 0
and

fσ(x′, y′) := f(ϕ(x′), ω(x′, y′)) = x′αg(x′, y′)

in the vicinity of [0, 1]d+1. In particular , v(f(λ, µ)) = v(λ′α) ∈ Γ〈λ〉.
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Proposition 3.3 (Exchange property for a non-active infinitesimal).
We can find a special cube S = ϕ((0, 1)d) ⊂ Rm with d ≤ m, a Q-function
ω(x′, y′) in the vicinity of [0, 1]d × R, linear with respect to the last vari-
able and with ω(0, 0) = 0, a Q-function g(x′, y′) in the vicinity of [0, 1]d+1,
a Q-function h(x′) in the vicinity of [0, 1]d, positive infinitesimals λ′ =
(λ′1, . . . , λ

′
d), an infinitesimal µ′, non-active over λ′, and α ∈ Nd such that

λ = ϕ(λ′) ∈ S, µ = ω(λ′, µ′), ∂g∂y (0, 0) 6= 0 and

fσ(x′, y′)− h(x′) = f(ϕ(x′), ω(x′, y′))− h(x′) = x′αg(x′, y′)

in the vicinity of [0, 1]d+1. Consequently , the non-active infinitesimal µ is
the value of an L-term τ(x, y) at the infinitesimals λ and ν := f(λ, µ):

µ = τ(λ1, . . . , λm, ν) or equivalently µ ∈ 〈λ, ν〉.

We shall now derive some consequences of Proposition 3.2.

Corollary 3.4. Given a finite number of infinitesimals λ=(λ1, . . . , λm),
the value group Γ〈λ〉 is a vector space over Q of dimension ≤ m.

We argue by induction on the numberm of generators. We may, of course,
assume that the infinitesimals λ are analytically independent. It suffices to
show that the vector space spanned by the set

{v(f(λ)) : f is a Q-function at 0 ∈ Rm}

is of dimension d(λ) ≤ m. Indeed, supposing the vectors v(t1(λ)), . . . ,
v(tm+1(λ)) to be linearly independent over Q, by applyingm+1 times Corol-
lary 2.6 we would find infinitesimals λ′ = (λ′1, . . . , λ

′
m) ∈ 〈λ〉 and Q-functions

f1(x), . . . , fm+1(x) at 0 ∈ Rm such that

ti(λ) = fi(λ′) for i = 1, . . . ,m+ 1.

Hence we would get d(λ′) > m, which contradicts our hypothesis.
Suppose now that the assertion holds for m and take m+1 infinitesimals

λ = (λ1, . . . , λm), µ. We must show that d(λ, µ) ≤ m+ 1. If µ is non-active
over λ, it follows from Proposition 3.2 and the induction hypothesis that

d(λ, µ) = d(λ) ≤ dimΓ〈λ〉 ≤ m.

In the other case, v(µ − t(λ)) 6∈ Γ〈λ〉 for an L-term t(x). By the desingu-
larization of L-terms (Corollary 2.6), one can find a special modification ϕ
and infinitesimals λ′ such that λ = ϕ(λ′) and f := t ◦ ϕ is a Q-function at
0 ∈ Rm. Then t(λ) = f(λ′) and v(µ − f(λ′)) 6∈ Γ〈λ〉. Consequently, from
Corollary 2.11 and the induction hypothesis we get the inequalities

d(λ, µ) ≤ d(λ′, µ) = d(λ′) + 1 ≤ dimΓ〈λ′〉 + 1 ≤ m+ 1,

which is the desired result.
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Proposition 3.5 (Behaviour of an L-term at non-active infinitesimals).
For each L-term t(x, y), there exist a special modification ϕ : (0, 1)d → Rm

with d ≤ m, a Q-function ω(x′, y′) in the vicinity of [0, 1]d × R, linear with
respect to the last variable and with ω(0) = 0, a Q-function f(x′, y′) in the
vicinity of [0, 1]d+1, positive infinitesimals λ′ = (λ′1, . . . , λ

′
d) and a positive

infinitesimal µ′, non-active over λ′, such that λ = ϕ(λ′) ∈ S, µ = ω(λ′, µ′)
and for all (x′, y′) ∈ (0, 1)d+1 we have

tσ(x′, y′) = f(x′, y′) or tσ(x′, y′) =
1

f(x′, y′)
,

according as t(λ, µ) is bounded or not ; here tσ(x′, y′) := t(ϕ(x′), ω(x′, y′)).
In particular , we have the dichotomy : either

• an infinitesimal µ is active over λ, or
• Γ〈λ,µ〉 = Γ〈λ〉.

The proof is by induction on the complexity of the term t(x, y) with
substitution of a special modification, and consists in repeated application
of Proposition 3.2 and transformation to normal crossings of the functions
in the non-distinguished variables x′, which occur in the process. In the
case of a product of two L-terms, one should simultaneously transform to
normal crossings the two functions in the non-distinguished variables x′,
so that the two exponents obtained are totally ordered (as in the proof of
Proposition 2.7). In the case of a root of an L-term, after transformation
to normal crossings, one should substitute suitable power functions. The
detailed verification is straightforward, and we leave it to the reader. Note,
however, that the equality in question holds only for (x′, y′) ∈ (0, 1)d+1, and
not in the vicinity of [0, 1]d+1.

Propositions 3.3 and 3.5 immediately yield the following

Corollary 3.6 (Exchange property for a non-active infinitesimal). We
can find a special modification ϕ : (0, 1)d → Rm with d ≤ m, a Q-function
ω(x′, y′) in the vicinity of [0, 1]d × R, linear with respect to the last vari-
able and with ω(0, 0) = 0, a Q-function g(x′, y′) in the vicinity of [0, 1]d+1,
a Q-function h(x′) in the vicinity of [0, 1]d, positive infinitesimals λ′ =
(λ′1, . . . , λ

′
d), an infinitesimal µ′, non-active over λ′, and α ∈ Nm such that

λ = ϕ(λ′) ∈ S, µ = ω(λ′, µ′), ∂g∂y (0, 0) 6= 0 and

tσ(x′, y′)− h(x′) = t(ϕ(x′), ω(x′, y′))− h(x′) = x′αg(x′, y′)

in the vicinity of [0, 1]d+1. Consequently , the non-active infinitesimal µ is
the value of an L-term τ(x, y) at the infinitesimals λ and ν := t(λ, µ):

µ = τ(λ1, . . . , λm, ν) or equivalently µ ∈ 〈λ, ν〉.
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4. Valuation property for L-terms. We begin with

Proposition 4.1. Consider a sequence λ = (λ1, . . . , λk) of positive in-
finitesimals whose valuations are linearly independent over Q. Then, for each
term t(x1, . . . , xk) with t(λ) bounded , there are a Q-function f at 0 ∈ Rk

and multi-indices βi = (βi1, . . . , βik) ∈ Qk, i = 1, . . . , k, linearly independent
over Q, such that λβ1 , . . . , λβm are positive infinitesimals and

t(λ) = f(λβ1 , . . . , λβk).

Our proof starts with the observation that, due to the desingularization
of L-terms (Corollary 2.6), there exist a special cube S = ϕ((0, 1)k) ⊂ Rk,
a Q-function g(x′) in the vicinity of [0, 1]m, positive infinitesimals λ′ =
(λ′1, . . . , λ

′
k) such that λ = ϕ(λ′) ∈ S and

tϕ(x′) := t(ϕ(x′)) = g(x′) for all x′ ∈ (0, 1)k.

Via transformation to normal crossings by blowing up, applied to the func-
tions ϕ1, . . . , ϕk and the coordinate functions x1, . . . , xk, one can assume
that the infinitesimals λ′ are a regular sequence too, and that

ϕi(x′) = ui(x′)(x′)αi with αi = (αi1, . . . , αik) ∈ Nk, i = 1, . . . , k,

where the Q-functions ui(x′) are units at zero and the multi-indices αi,
i = 1, . . . , k, are linearly independent over Q. Let A be the matrix whose
rows are just the multi-indices αi, and B the inverse matrix with rows βl =
(βl1, . . . , βlk) ∈ Qk. Consider the mapping

ψ : (0,∞)k → (0,∞)k, ψ(x) := (xβ1 , . . . , xβk).

Then the superposition χ = (χ1, . . . , χk) := ψ ◦ ϕ is of the form χi(x′) =
x′ivi(x

′), i = 1, . . . , k, where the Q-functions vi(x′) are units at zero. Hence

λβ1 = χ1(λ′), . . . , λβk = χk(λ′)

are infinitesimals, and the mapping χ is invertible; put ω := χ−1. Then
x′ = ω(xβ1 , . . . , xβk), and thus we get

t(λ) = g(λ′) = (g ◦ ω)(λβ1 , . . . , λβk).

Putting f := g ◦ ω finishes the proof.

We now introduce the following definition: a sequence λ = (λ1, . . . , λm) of
infinitesimals will be called regular with main part λ1, . . . , λk if the valuations

v(λ1), . . . , v(λk) ∈ Γ〈λ〉
form a basis over Q of the valuation group Γ〈λ1,...,λm〉. Note that k ≤ m by
Corollary 3.4.

Combining Proposition 4.1 with Proposition 3.5 (on behaviour of an L-
term at non-active infinitesimals), we immediately obtain
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Corollary 4.2 (Behaviour of an L-term at a regular sequence). Sup-
pose that λ = (λ1, . . . , λm) is a regular sequence of positive infinitesimals
with main part λ1, . . . , λk, k < m. Each infinitesimal λj , j = k + 1, . . . ,m,
is obviously non-active over the preceding infinitesimals. Then, for each L-
term t(x1, . . . , xm) with t(λ) bounded , there are a Q-function f at 0 ∈ Rm

and multi-indices βi = (βi1, . . . , βik) ∈ Qk, i = 1, . . . , k, linearly independent
over Q, such that (λ1, . . . , λk)β1 , . . . , (λ1, . . . , λk)βm are positive infinitesi-
mals and

t(λ) = f((λ1, . . . , λk)β1 , . . . , (λ1, . . . , λk)βk , λk+1, . . . , λm).

In particular , the value of any L-term at a regular sequence of infinitesimals
coincides with the value of a Q-function at a regular sequence of infinitesimals
that generates the same L-substructure.

We are now in a position to prove a basic theorem on an active infinites-
imal, stated below. For the analytic case, we shall present a direct proof
which makes use of diagonal series. However, in the general quasianalytic
settings, we are not able to apply this technique as yet, because we do not
know whether the diagonal series of a quasianalytic function determines a
quasianalytic function. Our further deduction is as follows: we derive from
this theorem the valuation and exchange properties for L-terms; next, in
Section 5, quantifier elimination for the theory T under study is established.

Remark 4.3. We are able to provide a complete proof of the theorem
below for the particular quasianalytic case where the valuations of the in-
finitesimals λ1, . . . , λm are linearly independent over Q. The proof is quite
complicated. Instead of diagonal series, we use a recursive method of admis-
sible annihilation of a sufficient yet finite number of diagonal Taylor coeffi-
cients of the function under study. An affirmative answer to the problem of
diagonal series for the general quasianalytic case would allow us to extend
verbatim our proof for the analytic case to the general quasianalytic settings.

Theorem 4.4 (on an active infinitesimal). Consider a regular sequence
µ, λ1, . . . , λm of infinitesimals with main part µ, λ1, . . . , λk and an L-term
t(y, x), x = (x1 . . . , xm), such that

ν := t(µ, λ) 6∈ 〈λ〉

is an infinitesimal. Then ν is active over the infinitesimals λ.

Direct proof for the analytic case. We first reduce the form taken by the
term t(y, x) at the infinitesimals (µ, λ). We may, of course, assume that all
the infinitesimals under consideration are positive. Put

λ′ = (λ1, . . . , λk), λ′′ = (λk+1, . . . , λm);
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by Proposition 4.1 we have

ν = t(µ, λ) = f((λ′, µ)β1 , . . . , (λ′, µ)βk+1 , λ′′)

for some Q-function f at 0 ∈ Rm+1 and multi-indices

βi = (βi,1, . . . , βi,k+1) ∈ Qk+1, i = 1, . . . , k + 1,

linearly independent over Q, such that (λ′, µ)β1 , . . . , (λ′, µ)βk+1 are positive
infinitesimals. Without loss of generality, the problem can be reduced to the
case where βi = (βi,1, . . . , βi,k+1) ∈ Zk+1, i = 1, . . . , k + 1, and next to the
case

ν = f((λ′)α1µε1 , . . . , (λ′)αk+1µεk+1 , λ′′)

with εi ∈ {−1, 0, 1}, i = 1, . . . , k + 1.
But one can always replace a Q-function f(u, v) by g(u, v/u), where the

Q-function g(u′, v′) is given by the formula g(u′, v′) := f(u′, u′v′). Since
the valuations of the infinitesimals (λ′)α1µε1 , . . . , (λ′)αk+1µεk+1 are pairwise
distinct, we can thus reduce the situation to the case where

ν = f((λ′)α1µ, (λ′)α2/µ, (λ′)α3 , . . . , (λ′)αk+1 , λ′′),

and next to the case

ν = f(µ, (λ′)α1/µ, (λ′)α2 , . . . , (λ′)αk , λ′′).

Since the multi-indices α1, . . . , αk ∈ Zk are obviously linearly independent
over Q, we can eventually assume, without loss of generality, that

ν = f(µ, λ1/µ, λ̃) with λ̃ = (λ2 . . . , λk, λk+1, . . . , λm),

where f(u, v, x̃) is a Q-function at 0 ∈ Rm+1 and x̃ = (x2, . . . , xm).
But in the analytic case we certainly have at our disposal diagonal decom-

positions of Taylor series. Therefore we can write the function f as follows:

f(u, v, x̃) = u · g(u, uv, x̃) + v · h(v, uv, x̃) + ϕ(uv, x̃),

where g, h are Q-functions at 0 ∈ Rm+1 and ϕ is a Q-function at 0 ∈ Rm.
Hence

ν = µ · g(µ, λ1, λ̃) + λ1/µ · h(λ1/µ, λ1, λ̃) + ϕ(λ1, λ̃)
= µ · g(µ, λ) + λ1/µ · h(λ1/µ, λ) + ϕ(λ).

Since ν = f(µ, λ1/µ, λ̃) 6∈ 〈λ〉, the functions g and h cannot vanish simulta-
neously: g 6≡ 0 or h 6≡ 0. It follows immediately from Corollary 2.11 that the
valuations of the infinitesimals

µ · g(µ, λ1, λ̃) and λ1/µ · h(λ1/µ, λ1, λ̃)

lie respectively in

Γ〈λ1,...,λm〉 + Z+ · v(µ) and Γ〈λ1,...,λm〉 + Z− · v(µ).
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Consequently, these valuations are distinct and do not belong to the group
Γ〈λ1,...,λm〉, and thus we get

v(ν − ϕ(λ)) = min{v(µ · g(µ, λ1, λ̃)), v(λ1/µ · h(λ1/µ, λ1, λ̃))} 6∈ Γ〈λ1,...,λm〉.

This means that ν is active over the infinitesimals λ, as asserted.

Proof for a particular quasianalytic case. We assume in addition that
the valuations of the infinitesimals λ1, . . . , λm are independent over Q. As
before, we are reduced to the case where

ν = f(µ, λ1/µ, λ̃) with λ̃ = (λ2, . . . , λm),

where f(u, v, x̃) is a Q-function at 0 ∈ Rm+1 and x̃ = (x2, . . . , xm). Let

f̂(u, v, x̃) =
∑
i,j∈N

∑
γ∈Nm−1

ai,j,γ · uivj x̃γ =
∑
i,j∈N

ai,j(x̃) · uivj

be the Taylor series at zero of the function f(u, v, x̃). First observe that not
all of the coefficients ai,j,γ with i, j ∈ N, i 6= j, γ ∈ Nm−1, of the Taylor
series at zero of the function f(u, v, x̃) vanish. This follows immediately from
the lemma below, since otherwise we would get

ν = f(µ, λ1/µ, λ̃) = h(λ1, λ̃) = h(λ) ∈ 〈λ〉,
contrary to the assumption of our theorem.

Lemma 4.5. With the above notation, if all the Taylor coefficients at zero
ai,j,γ with i, j ∈ N, i 6= j, γ ∈ Nm−1, of a Q-function f(u, v, x̃) vanish, then

f(u, v, x̃) = h(uv, x̃)

for a Q-function h(w, x̃) at zero.

In order to prove this, fix u and v, and consider the Q-function

hu,v(t, x̃) := f(tu, tv, x̃).

It is easy to check that the Taylor series at zero of the functions hu,v(t, x̃)
coincide whenever uv = w. By quasi-analyticity, the functions hu,v(t, x̃) co-
incide whenever uv = w. Hence f(u, v, x̃) = h(uv, x̃) for a definable function
h(w, x̃) near zero. When we fix a sufficiently small u 6= 0 from the source of
the function f , we have

h(w, x̃) = f(u,w/u, x̃),

which demonstrates that h(w, x̃) is a Q-function at zero, as required.

Now we wish to repeat the method from the proofs of Proposition 2.7
and its corollaries, which consists in a simultaneous transformation to normal
crossings of some partial derivatives of a given Q-function so as to get finitely
many exponents totally ordered with respect to the induced partial ordering
from Nm. It uses the noetherianity of the rings of formal power series and the
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fact that a Q-function is divisible by a monomial whenever so is its Taylor
series (see Remark 1.1(3)). We apply this method to the partial derivatives

∂i+jf

∂ui∂vj
(0, 0, x̃), i, j ∈ N, i 6= j.

In this fashion one can find a special cube S = ϕ((0, 1)m−1) ⊂ Rm−1 with
ϕ being a composite of successive blowings-up, and positive infinitesimals
λ̃′ = (λ′2, . . . , λ

′
m) such that

λ̃ = ϕ(λ̃′) ∈ S

and the partial derivatives ∂i+j

∂ui∂vj (0, 0, x̃′) with i 6= j of the function

fϕ(u, v, x̃′) := f(ϕ(u, v, x̃′))

are divisible by a certain partial derivative

∂p+qfϕ

∂up∂vq
(0, 0, x̃′) = (x̃′)α · unit(x̃′) with p 6= q, α ∈ Nm−1,

which is a normal crossing. One can, of course, replace the infinitesimals
λ2, . . . , λm with the new ones λ′2, . . . , λ′m and the function f with fϕ. For
simplicity we drop the prime on x̃.

We shall have proved that the infinitesimal ν = f(µ, λ1/µ, λ̃) is active
over the infinitesimals λ if we find a Q-function g(w, x̃) at 0 ∈ Rm such that

f(µ, λ1/µ, λ̃)− g(λ1, λ̃) = f(µ, λ1/µ, λ̃)− g(λ) 6∈ Γ〈λ〉.
A function g(w, x̃) as above will be constructed recursively as follows. We
first find a finite sequence of Q-functions gl(w, x̃), fl(u, v, x̃) at zero, and of
multi-indices δl ∈ Nm−1, 1 ≤ l ≤ L with L ≤ |α|, such that

f(u, v, x̃)− g1(uv, x̃) = x̃δ1 · f1(u, v, x̃),
f1(u, v, x̃)− g2(uv, x̃) = x̃δ2 · f2(u, v, x̃),. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fL−1(u, v, x̃)− gL(uv, x̃) = x̃δL · fL(u, v, x̃),

where the partial derivative ∂p+qfL
∂up∂vq (0, 0, x̃) is a Q-analytic unit at zero.

In order to construct the functions gl(w, x̃), fl(u, v, x̃), we start from
f0(u, v, x̃) := f(u, v, x̃) and suppose that xm occurs in xα with a positive
exponent. Then the Taylor series of the function

f0(u, v, x2, . . . , xm−1, 0)

has non-zero coefficients

bi,j,β2,...,βm−1 · uivjx
β2
2 · · ·x

βm−1

m−1

only for i = j (i.e. on the diagonal with respect to the variables u, v), and
thus, according to Lemma 1, we get
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f0(u, v, 0, x2, . . . , xm−1, 0) = g(uv, x2, . . . , xm−1)

for a Q-function g(w, x2, . . . , xm−1) at zero. Moreover, the difference

f0(u, v, x̃)− g(uv, x2, . . . , xm−1)

is divisible by a positive power xδmm (see Remark 1.1(3)), whence

f0(u, v, x̃)− g(uv, x2, . . . , xm−1) = xδmm f1(u, v, x̃)

for a Q-function f1(u, v, x̃). It is easy to check that

∂p+qf1

∂up∂vq
(0, 0, x̃) = x̃α1 · unit(x̃)

with α1 := α − (0, . . . , 0, δm), |α1| < |α|. We proceed further by descending
induction on |αl| where

∂p+qfϕl
∂up∂vq

(0, 0, x̃) = x̃αl · unit(x̃).

Having constructed the above finite sequences of functions, it is sufficient
to construct the desired function g(w, x̃) for the last function fL(u, v, x̃), and
thus we are reduced to the case where a partial derivative

∂p+qf

∂up∂vq
(0, 0, x̃) with p 6= q

is a Q-analytic unit at zero. We now show that the function

g(w, x̃) :=
max{p,q}∑
i=0

1
(i!)2

· ∂2if

∂ui∂vi
(0, 0, x̃) · wi

satisfies the desired condition, i.e.

η(µ, λ1/µ, λ̃) 6∈ Γ〈λ〉 for the function η(u, v, x̃) := f(u, v, x̃)− g(uv, x̃).

This follows immediately from the lemma below, because its assumptions
are obviously satisfied by the above function η(u, v, x̃).

Lemma 4.6. If η(u, v, x̃) is a Q-function at zero with Taylor coefficients
ci,j,γ such that cp,q,0,...,0 6= 0 for some p, q ∈ N with p 6= q, and ci,i,γ = 0
for all γ ∈ Nm−1 and i ∈ N with i ≤ max{p, q}, then η(µ, λ1/µ, λ̃) 6∈ Γ〈λ〉.

In order to prove this, we shall once again use Axiom 5 on the quasian-
alytic class Q to the effect that Q is closed under division by a coordinate
(see also Remark 1.1(3)). Hence we have

η(u, v, x̃)−
q−1∑
j=0

∂jη

∂vj
(u, 0, x̃) · v

j

j!
= vq · ζ(u, v, x̃)
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for some Q-function ζ(u, v, x̃) at zero, and

ζ(u, v, x̃)−
p−1∑
i=0

∂iζ

∂ui
(0, v, x̃) · u

i

i!
= up · ω(u, v, x̃)

for some Q-function ω(u, v, x̃) at zero.
Again, through repeating successive modifications of the variables x̃ by

means of special cubes, as in Corollary 2.10, one can assume that

1
j!
· ∂

jη

∂vj
(u, 0, x̃) = x̃γj · ηj(u, x̃),

where ηj(u, x̃), j = 0, . . . , q − 1, are u-regular Q-functions at zero, say, of
order rj ; similarly,

1
i!
· ∂

iζ

∂ui
(0, v, x̃) = x̃δi · ζi(v, x̃),

where ζi(v, x̃), i = 0, . . . , p − 1, are v-regular Q-functions at zero, say, of
order si. Therefore we are able to write down these functions in the following
form (cf. Corollary 2.11):

ηj(u, x̃) =
rj−1∑
r=0

ηj,r(x̃) · ur + ηj,rj (u, x̃) · urj with ηj,rj (0, 0) 6= 0

and

ζi(v, x̃) =
si−1∑
s=0

ζi,s(x̃) · vs + ζi,si(v, x̃) · vsi with ζi,si(0, 0) 6= 0;

all functions which occur above are Q-analytic at zero.
Moreover, making use of transformation to normal crossings by blowing

up, one can also assume that

ηj,r(x̃) = x̃αj,r · unit(x̃) and ζi,s(x̃) = x̃βi,s · unit(x̃),

with some αj,r, βi,s ∈ Nm−1.
Then

η(u, v, x̃) =
q−1∑
j=0

vj
[ rj−1∑
r=0

urx̃γj · ηj,r(x̃) + urj x̃γj · unit(u, x̃)
]

+
p−1∑
i=0

uivq
[ si−1∑
s=0

vsx̃δi · ζi,s(x̃) + vsi x̃δi · unit(v, x̃)
]

+ upvq · ω(x̃, u, v).

Since ∂p+qη
∂up∂vq (0, 0, 0) 6= 0, we get ω(0, 0, 0) 6= 0. Substituting

µ, λ1/µ, λ2, . . . , λm for u, v, x2, . . . , xm
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and taking into account our additional assumption about the infinitesimals
λ, we deduce that the valuations of the summands in the above formula are
pairwise distinct. Consequently, v(η(µ, λ1/µ, λ̃)) coincides with the valuation
of one summand in the above formula.

But our assumption about the vanishing of certain coefficients (lying on
the diagonal with respect to the variables u, v) of the Taylor series of the
function η(u, v, x̃) implies that no summand with a factor of the form uivi

occurs in the above summation. It follows immediately that

v(η(µ, λ1/µ, λ̃)) ∈ v(µi · (λm/µ)j) + Γ〈λ〉 = v(µi−j) + Γ〈λ〉

for some i, j ∈ N, i 6= j. Hence v(η(µ, λ1/µ, λ̃)) 6∈ Γ〈λ〉, which proves
Lemma 4.6.

We have thus shown that

v(ν − g(λ)) = v(f(µ, λ1/µ, λ̃)− g(λ)) = v(η(µ, λ1/µ, λ̃)) 6∈ Γ〈λ〉.

This means that the infinitesimal ν is active over λ, concluding the proof of
the theorem.

Proposition 4.7. Let λ = (λ1, . . . , λm) be a regular sequence of in-
finitesimals with main part λ1, . . . , λk, and µ be an infinitesimal whose val-
uation does not lie in Γ〈λ〉. Then dimΓ〈µ,λ〉 = k + 1, and thus µ, λ1, . . . , λm
is a regular sequence of infinitesimals with main part µ, λ1, . . . , λk.

The proof is by induction with respect to the difference l := m− k. The
assertion is trivial for l = 0.

For the induction step, consider infinitesimals µ and λ = (λ1, . . . , λm)
such that dimΓ〈λ〉 = k − 1 and µ, λ1, . . . , λk−1 form a regular sequence; the
difference in question is thus m − k + 1. Since for the infinitesimals µ and
λ = (λ1, . . . , λm−1) which also satisfy the assumptions of Proposition 4.7,
the difference in question is

(m− 1)− (k − 1) = m− k = l,

we get dimΓ〈µ,λ1,...,λm−1〉 = k by induction hypothesis. We must show that
dimΓ〈µ,λ1,...,λm〉 = k.

Were dimΓ〈µ,λ1,...,λm〉 > k, the infinitesimal λm would be active over the
preceding infinitesimals, i.e.

v(λm − t(µ, λ1, . . . , λm−1)) 6∈ Γ〈µ,λ1,...,λm−1〉 = Γ〈µ,λ1,...,λk−1〉

for an L-term t. Since λm is non-active over λ1, . . . , λm−1, we have

t(µ, λ1, . . . , λm−1) 6∈ 〈λ1, . . . , λm−1〉.

Otherwise we would get a contradiction

v(λm − t(µ, λ1, . . . , λm−1)) ∈ Γ〈λ1,...,λm〉 = Γ〈λ1,...,λk−1〉.
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Further, the induction hypothesis means that the infinitesimals

µ, λ1, . . . , λk−1, λk, . . . , λm−1

satisfy the assumptions of the theorem on an active infinitesimal. This im-
plies that the infinitesimal ν := t(µ, λ1, . . . , λm−1) would be active over
λ1, . . . , λm−1, and thus

v(t(µ, λ1, . . . , λm−1)− τ(λ1, . . . , λm−1)) 6∈ Γ〈λ1,...,λm−1〉 = Γ〈λ1,...,λk−1〉

for an L-term τ . Then

v(λm − t(µ, λ1, . . . , λm−1))

= v((λm − τ(λ1, . . . , λm−1))− (t(µ, λ1, . . . , λm−1)− τ(λ1, . . . , λm−1)))
= min{v(λm − τ(λ1, . . . , λm−1)), v(t(µ, λ1, . . . , λm−1)− τ(λ1, . . . , λm−1))}.

Again, since λm is non-active over λ1, . . . , λm−1, we have

v(λm − τ(λ1, . . . , λm−1)) ∈ Γ〈λ1,...,λm−1〉 = Γ〈λ1,...,λk−1〉,

whence both the valuations in the above minimum are distinct and belong
to Γ〈µ,λ1...,λk−1〉. Consequently,

v(λm − t(µ, λ1, . . . , λm−1)) ∈ Γ〈µ,λ1,...,λm−1〉 = Γ〈µ,λ1,...,λk−1〉.

This contradiction completes the proof of Proposition 4.7.

As an immediate consequence, we obtain:

Corollary 4.8 (Valuation property for L-terms). If λ = (λ1, . . . , λm)
and µ are infinitesimals, we have the following dichotomy : either

• µ is non-active over λ, and then Γ〈λ,µ〉 = Γ〈λ〉; or
• µ is active over λ, and then dimΓ〈λ,µ〉 = dimΓ〈λ〉 + 1.

In the latter case, one can find an L-term t(x) such that

v(µ− t(λ)) 6∈ Γ〈λ〉 and Γ〈λ,µ〉 = Γ〈λ〉 ⊕Q · v(µ− t(λ)).

Corollary 4.9 (Steinitz’s exchange property). Consider a finite num-
ber of infinitesimals λ = (λ1, . . . , λm), µ, ν. If ν ∈ 〈λ, µ〉 and ν 6∈ 〈λ〉, then
µ ∈ 〈λ, ν〉.

The case where µ is non-active over the infinitesimals λ has been treated
as the exchange property for a non-active infinitesimal in Proposition 4.7
and Corollary 3.6. Consider now the other case.

We may, of course, assume that λ1, . . . , λm is a regular sequence of in-
finitesimals with main part λ1, . . . , λk and that µ 6∈ Γ〈λ〉. Then, due to Propo-
sition 4.7, the infinitesimals µ, λ1, . . . , λm form a regular sequence with main
part µ, λ1, . . . , λk. It follows from the theorem on an active infinitesimal that
ν is active over the infinitesimals λ. Hence and by the valuation property for
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L-terms (Corollary 4.8), we get

dimΓ〈λ,µ〉 = dimΓ〈λ,ν〉 = k + 1,

and thus the infinitesimal µ is non-active over the infinitesimals λ, ν.
Consider now the equation ν− t(λ, µ) = 0. Since µ is non-active over the

infinitesimals (λ, ν), the exchange property for a non-active infinitesimal (cf.
Proposition 4.7 and Corollary 3.6) may be applied. Therefore this equation
can be solved by means of the implicit function theorem with respect to µ, i.e.
µ = τ(λ, ν) ∈ 〈λ, ν〉 for an L-term τ(x, y), which is the desired conclusion.

5. Description of Q-subanalytic sets by L-terms. We begin by
drawing some conclusions from Steinitz’s exchange property (Corollary 4.9).
The span operation s(A) := 〈A〉, which assigns to each subset A ⊂ R the
substructure generated by A, satisfies the following conditions:

(S1) A ⊂ B ⇒ s(A) ⊂ s(B);
(S2) b ∈ s(A)⇒ b ∈ s(a1, . . . , am) for some a1, . . . , am ∈ A;
(S3) A ⊂ s(A);
(S4) s(s(A)) = s(A);
(S5) c ∈ s(A, b) and c 6∈ s(A)⇒ b ∈ s(A, c).
Model-theorists call such a span operation s a pregeometry on the struc-

ture R (see e.g. [22]). Conditions (S1)–(S4) are satisfied by algebraic clo-
sure in any structure. A first-order structure is called geometric if alge-
braic closure has the exchange property (S5). Definable closure and alge-
braic closure coincide in a structure with linear ordering, because in any
finite set one can define the least element, the next least element and so
on.

Every o-minimal structure satisfies condition (S5) too, and thus is ge-
ometric. One can build—by analogy with the dimension of vector spaces
or with the transcendence degree of field extensions—a general dimension
theory for geometric structures. There is a general notion of independence
in such structures. We say that a subset A in R is free (or independent)
if

a 6∈ s(A \ {a}) for any a ∈ A;

A is called a basis of R if it is both a generating system of R and a free
set (cf. [41, Vol. I, Chap. II, § 12]). It can be checked that every maxi-
mal free subset of an algebraically closed structure R is a basis, and that
any two bases have the same size, called the rank of R. We also have at
our disposal the notion of relative rank for a pair of geometric structures
R ⊂ S.

In our case, the span operation consists just in generating the substruc-
ture for subsets of a model R of the universal theory T . Clearly, any ana-
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lytically independent set of infinitesimals in R is a free set. Therefore the
assertion below is a special case of the one for free sets.

Proposition 5.1 (Inversion of analytically independent infinitesimals).
Consider two analytically independent sets

λ = (λ1, . . . , λm) and µ = (µ1, . . . , µm)

of infinitesimals and m L-terms t(x) = (t1(x), . . . , tm(x)), x = (x1, . . . , xm).
If µ = t(λ), then there are m L-terms τ1(y), . . . , τm(y), y = (y1, . . . , ym),
such that λ = τ(µ). In other words, 〈λ〉 = 〈µ〉.

As a direct consequence, we obtain

Corollary 5.2. Let λ = (λ1, . . . , λm) be an analytically independent
set of infinitesimals and µ an infinitesimal. Then the set (λ1, . . . , λm, µ) is
analytically independent iff µ 6∈ 〈λ〉.

Corollary 5.3. A set λ = (λ1, . . . , λm) of infinitesimals is analytically
independent iff it is a free set.

This can be easily checked by induction with respect to the number m
of infinitesimals.

We now state a theorem concerning the inversion of general special mod-
ifications, which asserts that the requirement for the inverse mapping ψ of
a special modification ϕ we impose in Section 2 is no constraint on special
cubes.

Proposition 5.4. Let ϕ : (0, 1)d → S ⊂ Rm be a general special mod-
ification, i.e. ϕ is a diffeomorphism of (0, 1)d onto S which extends to a
Q-mapping in the vicinity of [0, 1]d. If S is described by L-terms, then the
inverse mapping ϕ−1 : S → (0, 1)d is piecewise given by L-terms.

For the proof, we shall show that there exists a family (tι(y))ι∈I of L-
terms, tι(y) = (tι,1(y), . . . , tι,d(y)), such that the infinite disjunction∨

ι∈I
[(b = ϕ(a) ∧ a ∈ (0, 1)d)⇒ (a = tι(b) ∧ b ∈ S)]

holds for any tuples a ∈ Rd and b ∈ Rm in an arbitrary model R of the
theory T . Then, through model-theoretic compactness, one can find a finite
set ι1, . . . , ιn ∈ I of indices for which the finite disjunction∨

k=1,...,n

[(b = ϕ(a) ∧ a ∈ (0, 1)d)⇒ (a = tιk(b) ∧ b ∈ S)]

holds for any such tuples a and b in an arbitrary model R of the theory T .
Hence

(b = ϕ(a) ∧ a ∈ (0, 1)d)⇒ [(a = tι1(b) ∨ · · · ∨ a = tιn(b)) ∧ b ∈ S],
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and thus the inverse mapping ϕ−1 is piecewise given by L-terms, which is
the desired conclusion.

So take any elements a ∈ (0, 1)d and b ∈ SR for which b = ϕ(a). We
may, of course, confine our analysis to the case where a = λ and b = µ
are infinitesimals. Observe that rk 〈λ〉 ≤ rk 〈µ〉, for otherwise µ ∈ TR

for a special cube T of dimension < rk 〈λ〉, whence λ ∈ (ϕ−1(T ))R and
dimϕ−1(T ) = dimT < rk 〈λ〉, which is impossible.

Consequently, we have

〈µ〉 ⊂ 〈λ〉 and rk 〈λ〉 ≤ rk 〈µ〉,
and thus 〈µ〉 = 〈λ〉. Therefore our auxiliary assertion follows and the proof
is complete.

Before turning to quantifier elimination for the theory T , we state the
quasianalytic version of Gabrielov’s theorem [13] on the closure and frontier
of a semianalytic set, which will be needed in the proof.

Theorem 5.5 (Gabrielov’s closure theorem). If E ⊂ Rm is a Q-semi-
analytic set , so are the closure E and the frontier ∂E. Moreover , if E is of
the form

E = {x ∈ [−1, 1]m : f1(x) = · · · = fk(x) = 0, g1(x) > 0, . . . , gl(x) > 0},
where fi’s and gj’s are Q-analytic functions in the vicinity of the cube
[−1, 1]m, then E and ∂E are described by Q-analytic functions which are
polynomials in the variables x, in the functions fi’s, gj’s and in their (finitely
many) partial derivatives.

Remark 5.6. Gabrielov’s proof used a method of truncating Taylor se-
ries, which allows one to reduce the problem to sets described by polynomials
where the Tarski–Seidenberg theorem applies. This method does not involve
the Weierstrass preparation theorem, but relies on the Łojasiewicz inequality
instead. Consequently, it can be transferred almost verbatim to the quasi-
analytic settings.

Corollary 5.7. If E ⊂ Rm is a set described by L-terms, so are the
closure E and the frontier ∂E.

It is sufficient, of course, to consider the case of closure. The proof consists
then in adding new variables, one for each occurrence of a function symbol
involved in a given L-term (as explained in Remark 2.4).

We can now turn to quantifier elimination for the theory T .

Theorem 5.8 (on quantifier elimination). Let π : Rm
x × Rn

y → Rm
x be

the canonical projection. If a set E ⊂ Rm
x ×Rn

y is defined by a quantifier-free
L-formula φ(x, y) (i.e. E is described by a finite number of L-terms involved
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in φ), so is its projection

F = π(E) = {x ∈ Rm : ∃yn . . . ∃y1 φ(x, y)}.
Accordingly , the theory T admits quantifier elimination.

The proof is by induction with respect to the dimension dimE =: d. It
suffices, of course, to consider the case n = 1. The case dimE = 0 is trivial;
take d ≥ 1. Assuming the assertion to hold for 0, 1, . . . , d− 1, we shall prove
it for d.

For this purpose, we shall show that there exist a family of quantifier-free
formulae (φι(x))ι∈I such that∧

ι∈I
R |= ∀x [φι(x)⇒ ∃y φ(x, y)]

and the infinite disjunction∨
ι∈I

[(∃y φ(a, y))⇒ φι(a)]

holds for any fixed tuple a ∈ Rm in an arbitrary model R of the theory T .
Then, through model-theoretic compactness, we get

F = {x ∈ Rm : φι1(x)} ∪ · · · ∪ {x ∈ Rm : φιl(x)}
for some ι1, . . . , ιl ∈ I, which is the desired result.

Obviously, we may assume that the set E is bounded. Take any element

(a, b) = (a1, . . . , am, b) ∈ ER ∈ Rm.
We can, of course, confine our analysis to the case where (a, b) = (λ, µ) =
(λ1, . . . , λm, µ) are infinitesimals. Note that in non-standard models R we
shall work only with the interpretations ER of the set E, because the set F
is not a priori described by L-terms, and thus we are not able to analyse its
interpretations yet.

We have two possibilities: either µ ∈ 〈λ〉 or µ 6∈ 〈λ〉. The former is easy;
it yields µ = t(λ) for an L-term t, and thus one should attach to our family
of formulae one that describes the set (x1, . . . , xm, t(x))−1(E).

The latter needs a more careful treatment. We can reduce our problem
to the case where the infinitesimals λ are analytically independent. Indeed,
one can find a basis chosen from among λ’s, say λ1, . . . , λr with r := rk 〈λ〉.
Clearly,

λj = τj(λ1, . . . , λr), j = r + 1, . . . ,m,

for some L-terms τr+1, . . . , τm. Let ρ : Rm → Rr be the canonical projection
onto the first r coordinates. Then our analysis of the projection π of the set
E can be replaced by that of the projection ρ ◦ π of the set

Ẽ := E ∩ {xr+1 = τr+1(x1, . . . , xr)} ∩ · · · ∩ {xm = τm(x1, . . . , xr)},
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which is equivalent to that of the projection onto the first r coordinates of
the following set also described by L-terms:

(x1, . . . , xr, y)(Ẽ) ⊂ Rr × Ry.

Hence the reduction goes. The replacement described above is a non-standard
counterpart of fibre cutting in the classical subanalytic geometry.

So suppose the infinitesimals λ are analytically independent. According
to Corollary 5.2, the infinitesimals (λ, µ) ∈ ER are analytically independent
too, and thus we can assume that E is a special cube of dimension d =
m+ 1. Further, due to Gabrielov’s closure theorem, the frontier V := ∂E is
described by L-terms of dimension < d.

Observe that we can replace the set E by its part lying over the comple-
ment of any closed subset Z ⊂ Rm described by L-terms of dimension < m,
because the infinitesimals λ are analytically independent. Therefore it is suf-
ficient to investigate the parts of the sets E and V over such a complement.
Consequently, we can assume that the set V over such a complement is a
finite union of special cubes S1, . . . , Sl such that each projection

π : Si → Rm, i = 1, . . . , l,

is a local Q-diffeomorphism. Indeed, if V is a finite union of special cubes, we
should remove the special cubes whose projections onto Rm are of dimension
< m and cut out from the remaining special cubes the sets of ramification
points, which are described by L-terms and of dimension < m.

Further, we can replace the special cubes Si by the sets

Si \ π−1(π(∂Si)), i = 1, . . . , l.

These sets are also described by L-terms due to Gabrielov’s closure theorem
and the induction hypothesis. Each projection

π : Si \ π−1(π(∂Si))→ π(Si) \ π(∂Si)

is thus a proper mapping, whence a topological covering.
After decomposition of the sets π(Si) \ π(∂Si) into special cubes and

removing those of dimension < m, the part of the set V under study is now
a finite union of topological covering spaces VC over simply connected open
special cubes C ⊂ Rm.

Clearly, each set VC is a finite union of leaves Λ1, . . . , Λn that are the
graphs of certain smooth functions ξ1(x) < · · · < ξn(x). Then the set

Λ := {(x, y1, . . . , yn) : (x, y1) ∈ Λ1, . . . , (x, yn) ∈ Λn}
= {(x, y1, . . . , yn) : x ∈ C, (x, y1), . . . , (x, yn) ∈ V, y1 < · · · < yn}

(which is an open subset of the fibre product of the leaves Λ1, . . . , Λn over C)
is described by L-terms of dimensionm, and so are its projections Λ1, . . . , Λn,
again by the induction hypothesis. Observe now that, due to Proposition 5.4
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and the induction hypothesis, the functions ξ1(x), . . . , ξn(x) are also piece-
wise given by L-terms.

We need to consider above only special cubes C such that λ ∈ CR, say
C1, . . . , Cs. The part of the set V lying over D := C1∩· · ·∩Cs is then a finite
union of the graphs of certain smooth functions ξ1(x), . . . , ξN (x) piecewise
given by L-terms. Again, we can cut out the set W of points of D at which
any two distinct functions above are equal, because this set is of dimension
< m. Take the connected component U of D \ W (which is described by
L-terms through decomposition into special cubes) such that λ ∈ UR. It is
obvious that the functions ξ1(x), . . . , ξN (x) are totally ordered over U , say
ξ1(x) < · · · < ξN (x) for all x ∈ U .

But then the part EU of the set E lying over U is a finite union of strata
between some of the leaves Λk and Λk+1, k ∈ K ⊂ {1, . . . , N − 1}:

EU = {(x, y) : x ∈ U, ξk(x) < y < ξk+1(x) for some k ∈ K}.
This can be expressed by means of the following universal L-formula:

(x, y) ∈ EU ⇔
[
x ∈ U,

∨
k∈K

ξk(x) < y < ξk+1(x)
]
,

which is true in every model R of the theory T . Therefore (λ, µ) lies in one
of those strata, and hence

ξ(λ) < µ < ζ(λ) and {λ} × (ξ(λ), ζ(λ)) ⊂ ER,
for some functions ξ(x), ζ(x) piecewise given by L-terms. In order to complete
the proof, we should attach to our family of formulae one that describes the
set

(x1, . . . , xm, t(x))−1(E)

with t(x) := (ξ(x) + ζ(x))/2.

Hence and by decomposition into special cubes (see Section 2 and [28]),
we obtain immediately

Corollary 5.9. The theory T is complete and o-minimal , and the stan-
dard model RQ is its prime model.

6. Applications. The fact that a universal theory T admits quantifier
elimination has weighty model-theoretic and geometric consequences. Every
definable function is then piecewise given by terms (a well-known result due
to Herbrand [14]; see e.g. [16]):

Proposition 6.1. Consider a first-order language L, a universal theory
T in L and a quantifier-free L-formula φ(x1, . . . , xm, y). If

T |= ∀x1 . . . ∀xm∃y φ(x1, . . . , xm, y),
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then there exist a finite number of terms t1(x), . . . , tk(x) such that

T |= ∀x1 . . . ∀xm φ(x1, . . . , xm, t1(x)) ∨ · · · ∨ φ(x1, . . . , xm, tk(x)).

Corollary 6.2. If a universal theory T admits quantifier elimination,
then for each definable function f(x1, . . . , xm) there are finitely many L-
terms t1(x), . . . , tk(x) such that in every model M of T we have

M |= ∀x1 . . . ∀xm f(x1, . . . , xm) = t1(x) ∨ · · · ∨ f(x1, . . . , xm) = tk(x),

i.e. f is piecewise given by the terms t1(x), . . . , tk(x).

Consequently, the structure RQ admits smooth cell decomposition piece-
wise given by L-terms (cf. [28]). Further, the operation of definable closure
for subsets of a given model R of the theory T coincides with that of span
discussed in Section 5. We can thus deduce from the valuation property for
L-terms (Corollary 4.8) the following general version (cf. [11, 12, 26]):

Theorem 6.3 (Valuation property for definable functions). Consider a
simple (with respect to definable closure) extension R ⊂ R〈a〉 of substruc-
tures in a fixed model of the theory T . Then we have the following dichotomy :

either dimΓR〈a〉 = dimΓR or dimΓR〈a〉 = dimΓR + 1.

In the latter case, one can find an element r ∈ R such that

v(a− r) 6∈ ΓR and ΓR〈a〉 = ΓR ⊕Q · v(a− r).

The significance of the valuation property lies to a great extent in its
geometric content (see e.g. [12, 26]), namely it is equivalent to the preparation
theorem in the sense of Parusiński–Lion–Rolin [32, 19, 33], which says that
every definable function of several variables depends piecewise on (or can be
prepared with respect to) any fixed variable in a certain simple fashion. The
preparation theorem, in turn, yields many geometric, differential and integral
applications, like the Lipschitz structure of subanalytic sets (cf. [32, 39]),
the log-analytic nature of the volumes of subanalytic sets or asymptotic
expansions related to integration (cf. [20, 33, 18]).

The preparation theorem can be derived from the valuation property
through model-theoretic compactness and definable choice (cf. [12, 26]). Note
that definable choice is available once we know the theory T is o-minimal.
We recall below a version of this theorem for our o-minimal theory T with
exponent field Q.

Theorem 6.4 (Preparation theorem). Consider a definable function f :
Rm+1 → R and an ε ∈ Q, ε > 0. Then there exist finitely many rational
numbers q1, . . . , qk ∈ Q and definable functions

θ1, . . . , θk, c1, . . . , ck : Rm → R, u1, . . . , uk : Rm+1 → (1− ε, 1 + ε) ⊂ R
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such that for each x ∈ Rm and y ∈ R we have

f(x, y) = |y − θi(x)|qi · ci(x) · ui(x, y) for an i = 1, . . . , k.

Another consequence of the description of definable functions by L-terms
is a quasi-subanalytic version of Puiseux’s theorem with parameter (see [34]
for a classical version).

Theorem 6.5 (Puiseux’s theorem with parameter). Let E ⊂ Rm
x be a

definable subset and f : E × (0, 1) → R be a definable function. Then one
can find a cell decomposition of E into finitely many Q-cells C1, . . . , Cs (i.e.
Q-analytic cells; cf. [28]) for which either

• the function fx(t) := f(x, t) vanishes near zero for all x ∈ Ci, or
• there exist k ∈ N, p ∈ Q and a definable function F (x, t), Q-analytic
in a neighbourhood Ui of Ci × {0} ⊂ C × Rt, such that

(∗) f(x, t) = tp · F (x, t1/k) and F (x, 0) 6= 0 for all (x, t) ∈ Ui, x ∈ Ci.

We may, of course, assume that the function f(x, t) is given by an L-term
τ(x, t). Then the proof is by induction with respect to the complexity of the
term τ(x, t). The theorem is evident if τ(x, t) is a function symbol of L. So
assume that the term τ(x, t) is composed:

τ(x, t) = ϕ(τ1(x, t), . . . , τr(x, t)),

and that the terms τj(x, t), j = 1, . . . , r, satisfy condition (∗). The case where
ϕ is the multiplication function, reciprocal function or root function is easy.
What remains is to check the assertion when ϕ is the addition function or a
restricted Q-function. We shall only demonstrate how to check the assertion
for a restricted Q-function of two variables, because the remaining cases are
similar.

Suppose two definable functions g(x, t) and h(x, t) satisfy condition (∗).
After refining Q-cell decompositions, we can assume that condition (∗) is
satisfied in a common Q-cell decomposition for both f and g, so that

g(x, t) = tp ·G(x, t1/k), h(x, t) = tq ·H(x, t1/l) for all (x, t) ∈ Ui,

with obvious assumptions about the numbers p, q, k, l and the functions
G,H.

Since the problem is non-trivial only when p, q ≥ 0, we are reduced to
the case where

τ(x, t) = ϕ(G(x, t1/k), H(x, t1/k))

and G(x, 0), H(x, 0) ∈ [−1, 1] for all x ∈ Ci. Put

K(x, t) := ϕ(G(x, t), H(x, t))
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and

Vj :=
{
x ∈ Ci : 0 = K(x, 0) =

∂K

∂t
(x, 0) = · · · = ∂j−1K

∂tj−1
(x, 0)

}
.

Then the decreasing sequence of Q-analytic sets (Vj)j∈N stabilizes (see e.g.
[4, 27, 28]):

Ci = V0 ⊇ V1 ⊇ · · · ⊇ Vn = Vn+1 = · · · .

For each j, the Q-functions Kx(t) := K(x, t) are of constant rank j for all
x ∈ Vj \ Vj+1. Therefore, again after partitioning the Q-cell Ci into finer
Q-cells, we can assume that, for each finer new Q-cell C, we have

K(x, t) = tj · F (x, t) for all (x, t) ∈ U,

where U := Ui∩ (C×R) is a neighbourhood of C×{0} ⊂ C×Rt and F (x, t)
is a definable Q-function in U with F (x, 0) 6= 0 for all x ∈ C. Hence

ϕ(G(x, t1/k), H(x, t1/k)) = tj/k · F (x, t1/k),

which is the desired conclusion.

As a corollary, we immediately obtain

Theorem 6.6 (Piecewise uniform asymptotics). Under the assumptions
of Theorem 6.5, there exist finitely many rational numbers q1, . . . , qs ∈ Q
such that for each x ∈ E, either

• the function fx(t) := f(x, t) vanishes near zero, or
• fx(t) is asymptotic to ctqi for some i = 1, . . . , s and c ∈ R, c 6= 0, i.e.

lim
t→0+

f(x, t)
ctqi

= 1.

We conclude this article with the following comment. The fundamental
method applied in our paper is transformation to normal crossings by blow-
ing up. This method, developed in Zariski’s school of algebraic geometry as
one of the most powerful tools for the resolution of singularities, culminated
in the famous work of Hironaka [15]. The very concept of a normal crossing
had originated from ideas of the Italian school of algebraic geometry (see
e.g. [40, Chap. I] and [5]).
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