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On the extendability of quadratic polynomial mappings
of the plane

by Ewa Ligocka (Warszawa)

Abstract. We shall prove, using the result from our previous paper [Ann. Polon.
Math. 88 (2006)], that for a quadratic polynomial mapping Q of R2 only the geometric
shape of the critical set of Q determines whether the complexification of Q can be extended
to an endomorphism of CP2. At the end of the paper we describe some interesting classes
of quadratic polynomial mappings of R2 and give some examples.

1. Introduction. A quadratic polynomial mapping of the plane R2 into
itself is a map

Q(x, y) = (q1(x, y), q2(x, y)),

where q1 and q2 are polynomials and

max(deg q1,deg q2) = 2.

Sometimes it is convenient to identify R2 with the complex plane C, put
z = x+ iy and write Q in the form Q(z) = az2 + b|z|2 + cz + dz + ez + f =
Q2(z)+Q1(z)+Q0 where Q2(z) = az2+b|z|2+cz2, Q1(z) = dz+ez, Q0 = f .

Following [Li2] and [Li3] we shall call the mapping extendable if its com-
plexification f(z, w) extends to a polynomial endomorphism of the complex
projective space CP2. We shall say that Q is properly extendable if f(z, w)
acts on CP2 as a finite Blaschke product.

We shall consider the critical set of Q, equal to the zero set of the Jacobi
determinant JQ. We have

JQ = det

[
∂q1
∂x

∂q1
∂y

∂q2
∂x

∂q2
∂y

]
=
∣∣∣∣∂Q∂z

∣∣∣∣2 − ∣∣∣∣∂Q∂z
∣∣∣∣2.

Theorem 2.1 of [Li2] yields
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Theorem 0. A quadratic polynomial mapping Q is extendable iff one of
the following conditions holds:

(1) Q2(z) = α(z − pz)(z − qz) where α 6= 0, |p|2 6= 1, |q|2 6= 1, pq 6= 1,
(2) Q2(z) = αz(z − pz), α 6= 0, |p| 6= 0, 1,
(3) Q2(z) = αz2, α 6= 0.

From the results of [Li3] we also have

Proposition 0. A quadratic polynomial mapping Q is properly extend-
able iff

Q2(z) = α(z − pz)(z − qz), α 6= 0, |p| < 1, |q| < 1.

The aim of the present note is to show that for quadratic polynomial
map Q the extendability of Q depends only on the geometric shape of the
critical set of Q.

We shall also describe some important classes of such mappings and give
some examples.

2. The critical set and affine conjugations. If Q is a quadratic
polynomial map then JQ is a polynomial of degree 2, 1 or 0. Hence the zero
set of JQ can be equal to

(1) one point,
(2) an ellipse,
(3) a hyperbola,
(4) a pair of intersecting lines,
(5) a parabola,
(6) a pair of parallel lines,
(7) a single line,
(8) an empty set,
(9) the whole plane.

We name the zero set of JQ the critical set of Q.
We shall prove that if the critical set of Q is a single point then either Q

or Q is quasiregular (Q is quasiregular iff
∣∣∂Q
∂z /

∂Q
∂z

∣∣ < δ < 1 a.e. on C). The
paper [Li1] was devoted to studying such quadratic mappings.

When dealing with cases (2)–(7) we shall use the following algebraic fact:

(∗) Let k be any field, f ∈ k[x, y] a prime polynomial, g ∈ k[x, y] any
polynomial. If f does not divide g then the equations f(x, y) = 0
and g(x, y) = 0 can have only a finite number of common solutions
(see [Sha, Ch. 1, p. 1]).

Suppose now that we are in case (2) and let C denote the critical ellipse
of Q. There exists a nondegenerate affine map h : R2 → R2 which maps the
unit circle onto C. Let us consider the map Q0 = h−1 ◦Q ◦ h.
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The critical set of Q0 is equal to the unit circle T = {z ∈ C : |z|2−1 = 0}.
The algebraic fact (∗) implies that

JQ0(z) = γ(|z|2 − 1), γ 6= 0, γ ∈ R.

The polynomial Q0 can be written as

Q0(z) = az2 + b|z|2 + cz2 + dz + ez + f.

Simple calculations show that b = 0, |a| 6= |c|, |e| = 2|a|, |α| = 2|c| and
ad = ce. Hence Q0 is a harmonic polynomial

The above calculations are based on the following formula:

(∗∗) If P (z) = az2 + b|z|2 + cz2 + dz + ez + f then

JP (z) = z2(2ab− 2cb) + |z|2(4|a|2 − 4|c|2)
+ z2(2ab− 2cb) + z(2ad+ db− be− 2ce)
+ z(2ad+ db− be− 2ce) + |d|2 − |e|2.

In case (3), Q is affinely conjugate to Q0 with

JQ0(z) = γ(z2 + z2 − 1), γ ∈ R, γ 6= 0.

In case (4), Q is affinely conjugate to Q0 with

JQ0(z) = γ(z2 + z2), γ ∈ R, γ 6= 0.

In both cases we have, by (∗∗),

|a| = |c| and 2ab− 2cb = γ.

In case (6), Q is affinely conjugate to Q0 for which

JQ0(z) = γ((z + z)2 + z + z), γ ∈ R, γ 6= 0.

In case (5), Q is affinely conjugate to Q0 with

JQ0(z) = γ

(
(z + z)2 − z − z

2i

)
, γ ∈ R, γ 6= 0.

In case (7), there are two possibilities:

(7i) Q is affinely conjugate to Q0 with

JQ0(z) = γ1x
2 = γ1

(
z + z

2

)2

,

(7ii) Q is affinely conjugate to Q0 with

JQ0(z) = γx = γ

(
z + z

2

)
.

All the above statements can be proved in the same way as in case (2).
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3. The extendability. The aim of the present paper to prove the fol-
lowing

Theorem 1. A quadratic polynomial mapping Q is extendable iff its
critical set is equal to one of the following sets:

(1) a single point ,
(2) an ellipse,
(3) a hyperbola,
(4) a pair of intersecting lines.

Theorem 2. If the critical set of a quadratic polynomial mapping Q is
bounded (i.e. it is either a point or an ellipse) then either Q or Q is properly
extendable.

In order to prove Theorem 1 we shall show

Proposition 1. If the critical set of a quadratic polynomial map Q is
a single point then either Q or Q is quasiregular.

Proposition 1 can be formulated in a slightly different way:

Proposition 1′. A quadratic polynomial mapping Q is quasiregular iff
the critical set of Q consists of a single point and there exists z0 ∈ C such
that JQ(z0) > 0.

Remark 1. Theorem 1 is not valid for polynomial mappings of degree
greater than two. If, for example, Q(z) = z|z|2 then the critical set of Q is
{0} but Q is not extendable.

Remark 2. A C1-version of the argument principle shows that if Q or
Q is properly extendable then Q maps C onto C. This is not true for Q
extendable but not properly extendable. For example, the mapping Q(z) =
z(2z+ z) = z2 + 2|z|2 is extendable by Theorem 0, but does not have values
in the left half-plane {z : Re z < 0}. Note that if the critical set of Q is
a hyperbola or a pair of intersecting lines then Q is extendable but not
properly extendable (Q is not properly extendable either).

Remark 3. It is obvious that Q is extendable iff Q is extendable. How-
ever, if one wants to study the dynamics of Q and Q under iteration then one
observes the great difference betwen them. It suffices to compare the Man-
delbar set for the family {z2 + c}c∈C (see [CHRS] and [N]) with the classical
Mandelbrot set (further information on the dynamics of antiholomorphic
mappings can be found in [NS]).

4. Proofs

Proof of Proposition 1. By conjugating Q via a shift we can assume that
the critical set is {0}. By taking, if needed, Q instead of Q we can assume
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that JQ > 0 on C \ {0}. We have JQ = JQ2 + l(z), where l(z) is a linear
map from C into R.

If l(z) 6≡ 0 then there exists a ∈ C \ {0} for which l(a) = −δ < 0 and
JQ2(a) = ε > 0. Since JQ2 is a quadratic form, we have

JQ(ta) = t2JQ2(a) + tl(a) = t2ε− tδ < 0

for 0 < t < δ/ε. This contradiction implies that l(z) ≡ 0 and JQ = JQ2.
There exists γ > 0 such that

JQ =
∣∣∣∣∂Q∂z

∣∣∣∣2 − ∣∣∣∣∂Q∂z
∣∣∣∣2 > γ > 0 on T = {z : |z| = 1}.

Hence ∣∣∂Q
∂z

∣∣2∣∣∂Q
∂z

∣∣2 <
∣∣∂Q
∂z

∣∣2
γ +

∣∣∂Q
∂z

∣∣2 < k < 1 on T.

Since JQ = JQ2 the same inequality holds for Q2; since Q2 is homogeneous,
it is valid on C and Q2 is quasiregular. Let Q = az2+b|z|2+cz2+dz+ez+f .
By formula (∗∗), |α|2 − |e|2 = 0 and

l(z) = Re (2ad+ db− be− 2ce)z ≡ 0,

which implies that 2ad + db − be − 2ce = 0. We have already proved that
Q2(z) = az2 + b|z|2 + cz2 is quasiregular. This implies that Q∗2(z) = az2 −
b|z|2 + cz2 is also quasiregular (see [Li1]).

We have 2ad− be = 2ce− db and if d 6= 0 and e 6= 0 then

d

(
2a− b e

d

)
=
(

2c
e

d
− b
)
d since |d| = |e|.

We can put e/d = eiθ to obtain

|2a− beiθ| = |2c · eiθ − b|.

However, Q∗2(z) is quasiregular and∣∣∣∣∣
∂Q∗

2
∂z
∂Q∗

2
∂z

∣∣∣∣∣ =
∣∣∣∣ 2cz − bz2az − bz

∣∣∣∣ =
∣∣∣∣ 2c zz − b2a− b zz

∣∣∣∣ < m < 1.

Thus we have reached a contradiction. Hence either |d| = |e| = 0 or 2a −
beiθ = 2ceiθ − b = 0. The second possibility leads to Q∗2(z) = a(z − e−iθz)2,
which is not quasiregular. This implies that |e| = |d| = 0 and Q(z) =
Q2(z) + f is regular.

Proof of Theorem 1. (i) Proposition 1 shows that if the critical set of Q
is a single point then Q or Q is properly extendable since by results of [Li1]
each quasiregular quadratic polynomial map is properly extendable.



288 E. Ligocka

(ii) We have already proved that if a critical set of Q is an ellipse then
Q is affinely conjugate to Q0 for which

b = 0, |a| 6= |c|, |e| = 2|a|, |f | = 2|c|

and ad = ce. Hence Q0 or Q0 can be written as Q∗(z) = α(z−pz)(z+pz) +
dz + ez + f . In the first case we have

α = a, c = αp2, which implies |p|2 6= 1;

in the second case

α = c, αp2 = a, and |p|2 6= 1.

Thus by Theorem 0, Q0 is extendable. The complexification of an affine
nondegenerate map of R2 is a nondegenerate affine map of C2 which extends
to an automorphism of CP2 (which acts on CP2 \ C2 as a fractional-linear
map).

This implies that the conjugate map Q is also extendable.
(iii) Assume now that the critical set of Q is a hyperbola or a pair of

intersecting lines.
In this case Q is affinely conjugate to Q0 for which |a| = |c| and 2ab −

2cb = γ, γ ∈ R, γ 6= 0. By taking Q0 instead of Q0 if necessary, we can write
Q0 = α(z − pz)(z − qz) + lower order terms. We have a = α, b = −α(p+ q)
and c = αpq. Hence

|α| = |c| ⇒ |pq| = 1, 2ab− 2cb = γ

⇒ |α|2(pq(p+ q)− p− q) = γ ⇒ p(|q|2 − 1) + q(|p|2 − 1) =
γ

|α|2
.

If |p| = 1 or |q| = 1 or pq = 1 then the left side of the last equality is zero
because |pq| = 1. This contradicts the fact that γ 6= 0 and α 6= 0. Hence by
Theorem 0, Q0 is extendable and hence so is Q, being affinely conjugate to
Q0. Note that we have either |q| < 1 and |p| > 1, or |p| < 1 and |q| > 1.
Hence neither Q nor Q can be properly extendable.

(iv) Let us assume now that the critical set of Q is a parabola or a pair
of parallel lines, or that the critical set of Q is a single line and Q is affinely
conjugate to Q0 with JQ0 = γ1x

2 = γ1

(
z+z
2

)2 (case (7i)). In each of these
cases, Q affinely conjugate to Q0 with JQ0

2 = γ(z + z)2, γ ∈ R, γ 6= 0. As
before, we can assume that

Q0
2 = α(z − pz)(z − qz) = az2 + b|z|2 + cz2.

We have 2ab− 2cb = γ and 4(|a|2 − |c|2) = 2γ. This implies that

p(|q|2 − 1) + q(|p|2 − 1) = 1− |pq|2 6= 0.



Extendability of quadratic mappings 289

That means

− Im p(|q|2 − 1)− Im q(|p|2 − 1) = 0,

Re p(|q|2 − 1) + Re q(|p|2 − 1) = 1− |p|2|q|2.
Let us assume that |p| 6= 1 and |q| 6= 1. Then

Im p =
− Im q(|p|2 − 1)
|q|2 − 1

,

Re p =
1− |p|2|q|2 − Re q(|p|2 − 1)

|q|2 − 1
,

|p|2 =
(Im q)2(|p|2 − 1)2 + (1− |p|2|q|2 − Re q(|p|2 − 1))2

(|q|2 − 1)2
.

Put s = |p|2. We have

s(|q|2 − 1)2 = (Im q)2(s− 1)2 + (1− s|q|2 − Re q(s− 1))2

= (Im q)2(s− 1)2 + 1 + s2|q|4 + (Re q)2(s− 1)2 + 2s(s− 1) Re q

− 2s|q|2 − 2(s− 1) Re q.

Hence

(s− 1)(1− s|q|4) = (s− 1)(|q|2(s− 1) + 2s|q|2 Re q − 2 Re q),

1− s|q|4 = (s− 1)|q|2 + 2s|q|2 Re q − 2 Re q,

2 Re q + 1 + |q|2 = s|q|2(2 Re q + 1 + |q|2).

This implies that s|q|2 = 1 and |p|2|q|2 = 1. This contradiction shows that
either |q| = 1 or |p| = 1, and by Theorem 0, Q0 and Q are not extendable.

(v) Suppose now that JQ is a linear map from C into R or vanishes
identically on C (cases (7ii) and (9)). Then JQ2 vanishes on the whole
plane and |a|2 − |c|2 = 0 and 2ab− 2cb = 0. Hence, as before,

p(|q|2 − 1) + q(|p|2 − 1) = 0 and |pq| = 1.

If |p| 6= 1 then p(1/|p|2 − 1) + q(|p|2 − 1) = 0, so 1/p = q and pq = 1. Hence
Q is not extendable by Theorem 0.

(vi) There remains the case when the critical set of Q is empty. Then
Q must be a polynomial automorphism, since it has degree two. A proof of
this fact can be found in [She, Chapter 3, 3.1.6]. By Proposition 2.7 of [Li2],
Q cannot be extendable.

Our Theorem 1 is proved.

Proof of Theorem 2. If the critical set of Q is bounded then it must be a
single point or an ellipse. We have already proved in the proof of Theorem
1 that in this case either Q or Q is properly extendable. Conversely, if Q
or Q is properly extendable then Q2 or Q2 is quasiregular. By the results
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of [Li1] this implies that JQ2 6= 0 in the neighborhood of infinity. As a
result, JQ 6= 0 in the neighborhood of infinity and therefore the critical set
of Q is bounded.

5. Some classes of quadratic polynomial mappings
(i) Quasiregular mappings. Quasiregular quadratic polynomial mappings

were described in [Li1]. We only recall here that each such map is conjugate
via an affine holomorphic map to a mapping Q(z) = (z − pz)(z − qz) + c,
|p| < 1, |q| < 1, c ∈ C. Each such Q is properly extendable and its critical
set is {0}. A special subclass of quasiregular quadratic polynomial maps
is formed by the well-known holomorphic quadratic maps {z2 + c}c∈C (see
e.g. [CG, Chapter 8]).

(ii) Harmonic mappings. The general form of a quadratic polynomial
harmonic map is Q(z) = az2 + cz2 + dz + ez + f , and we have JQ(z) =
(|a|2 − |c|2)|z|2 + l(z) where l(z) is an affine map from C into R. By conju-
gating Q via a shift we can assume that l(z) is linear.

This simple fact yields immediately:

Proposition 2. Let Q be a quadratic polynomial and a harmonic map-
ping.

(a) Q is extendable iff |a| 6= |c|.
(b) If Q is extendable then either Q or Q is properly extendable and its

critical set is either a single point or a circle.
(c) If Q is not extendable then the critical set of Q is a single line or

the whole plane.

The class of harmonic quadratic polynomial maps is important because,
as already proved, every quadratic polynomial map whose critical set is an
ellipse is affinely conjugate to a harmonic map.

An interesting class of mappings is the class of quasiregular quadratic
harmonic maps. Each such map is conjugate to Q(z) = (z− pz)(z+ pz) + c,
|p| < 1, c ∈ C. There is also the class of antiholomorphic quadratic maps
{z2+c} studied in [CHRS], [N], [NS]. We also mention the class {z2−cz}c∈C
considered by Uchimura [U].

(iii) Mappings with invariant triangles. We shall say that a quadratic
polynomial mapping Q has an invariant closed triangle 4 if Q(4) ⊂ 4. We
shall assume that the triangle 4 is nondegenerate, that is, has nonempty
interior.

This class of mappings is interesting because such mappings are conju-
gate on 4 to simplex mappings given by quadratic homogeneous mappings
of R3 which map the simplex 42 = {(x1, x2, x3) ∈ R3 : x1 ≥ 0, x2 ≥ 0,
x3 ≥ 0, x1 + x2 + x3 = 1} into itself.
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Simplex mappings play an important role in the theory of population ge-
netics (see [Ly, Chapter 8]). (Simplex mappings can be considered on 4n−1

in Rn for any n, but we are now interested in the two-dimensional case.)
Let F (x1, x2, x3) = (F1(x1, x2, x3), F2(x1, x2, x3), F3(x1, x2, x3)) be such

that F (42) ⊂ 42 and each Fj , j = 1, 2, 3, is a quadratic homogeneous form
on R3 with values in R. Denote by π : R3 → R2 the projection π(x1, x2, x3) =
(x1, x2). We have π(42) = 40 = {(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}.
Define now

Q(x1, x2) = (F1(x1, x2, 1− x1 − x2), F2(x1, x2, 1− x1 − x2)).

We obtain a quadratic polynomial mapping Q such that Q(40) ⊂ 40.
If we have a quadratic polynomial mapping Q for which Q(40) ⊂ 40,

we first take the mapping

Q(x, y) = (Q1(x1, x2), Q2(x1, x2), 1−Q1(x1, x2)−Q2(x1, x2))

and multiply each term of degree 0 in each Qi, i = 1, 2, 3, by (x1 +x2 +x3)2

and each term of degree 1 in each Qi, i = 1, 2, 3, by x1 + x2 + x3. This
gives homogeneous forms Fi(x1, x2, x3), i = 1, 2, 3. This procedure gives us
a conjugation between Q acting on 40 and F acting on 42. (This conjugacy
extends to a conjugacy between Q on R2 and F on the affine hyperplane
{(x1, x2, x3) : x1 + x2 + x3 = 1} ⊂ R3.)

Let Q be a quadratic polynomial map with an invariant triangle 4. Let
h be a nondegenerate affine map R2 onto R2 such that h(4) = 40. Let
Q1 = h−1 ◦Q ◦ h. Then Q1(40) ⊂ 40 and Q1 is conjugate to some simplex
map F (on 4). Hence Q is also conjugate to F (on 4).

We have thus proved the following

Proposition 3. A quadratic polynomial mapping Q with an invariant
triangle 4 is conjugate on 4 to some simplex map F on 42.

Among the quadratic polynomial maps with an invariant triangle there
are both extendable and nonextendable maps.

Example 1 (the Ulam map, see [MSU] and also [Ly, Chapter 8, Ex.
8.3.1]). Let

F (x1, x2, x3) = (x2
1 + 2x1x2, x

2
2 + x2x3, x

2
3 + 2x3, x1)

and
Q(x1, x2) = (x2

1 + 2x1x2, x
2
2 + 2x2(1− x1 − x2)).

We have Q(40) = 40 and

JQ(x1, x2) = det

[
2(x1 + x2) 2x1

−2x2 2(1− x1 − x2)

]
= 4(x1 + x2)(1− (x1 + x2)) + x1x2.
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The critical set of Q is the ellipse

C =
{

(x1, x2) :
3
4

(
(x1 + x2)− 2

3

)2

+
1
4

(x1 − x2)2 =
1
3

}
.

All vertices of 40 lie on this ellipse. In complex coordinates

Q(z) = −1 + i

4
(z2 + 2i|z|2 − 3z3 − 2(1− i)(z − z))

= −1 + i

4
((z + (

√
2 + i)z)(z − (

√
2− i)z)− 2(1− i)(z − z)).

Hence Q is properly extendable.

Moreover since the critical set of Q is an ellipse, Q is affinely conjugate to
a harmonic quadratic polynomial map. Hence we have obtained an example
of a harmonic quadratic polynomial map with an invariant triangle.

Example 2 (the Lotka–Volterra map; see [Św], [BGLL], [GL]). The
Lotka–Volterra map is

Q0(x1, x2) = (x1(4− x1 − x2), x1x2).

Let 4 = {(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 4}. We have Q0(4) ⊂ 4. Let
h(x1, x2) = (4x1, 4x2). Put

Q(x1, x2) = h−1 ◦Q0 ◦ h(x1, x2) = (4x1(1− x1 − x2), 4x1x2).

Then Q(40) ⊂ 40.
The mapping Q is conjugate to the simplex map

F (x1, x2, x3) = (4x1x3, 4x1x2, (x1 − x2 − x3)2).

It is clear that Q cannot be extendable since Q = 0 on the line {(x1, x2) = x1

= 0}. The critical set ofQ is the union of two parallel lines {(x1, x2) : x1 = 0}
∪ {(x1, x2) : x1 = 1/2}.

Example 3 (holomorphic quadratic polynomial maps). The mapping
Q0(z) = z2 maps the closed triangle 40 with vertices 1, (−1 +

√
3i)/2,

(−1−
√

3i)/2 into itself.
The proof of this fact is very elementary:
We have

40 =
{
z = x+ iy : −1

2
≤ x ≤ 1, |y| ≤ 1− x√

3

}
.

Hence z2 ∈ 40 iff −1
2 ≤ x2 − y2 ≤ 1 and |2xy| ≤ (1− (x2 − y2))/

√
3. If

z ∈ 40 then

x2 − y2 ≥ x2 − (1− x)2

3
=

2
3
x2 +

2
3
x− 1

3
≥ −1

2
.
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We have the following equivalence:

2|x| |y| ≤ 1− |x|2 + |y|2√
3

⇔ |y|2 − 2
√

3|x| |y|+ 1− |x|2 ≥ 0.

Taking |x| as a parameter we see that the discriminant δ is equal to

12|x|2 − 4(1− |x|2) = 16|x|2 − 4.

If |x| ≤ 1
2 then δ ≤ 0 and so the last displayed inequality holds. If 1

2 ≤ x ≤ 1
then our inequality is true for

|y| ≤ 2
√

3x− 2
√

4x2 − 1
2

=
√

3x−
√

4x2 − 1.

This is true for z = x+ iy ∈ 40 because
1− x√

3
≤
√

3x−
√

4x2 − 1 for 1/2 ≤ x ≤ 1.

The dynamics of Q0 on 40 under iteration is the following:
All points of 40 except the vertices are attracted to 0, the vertex 1 is a

repelling fixed point and the vertices (−1 +
√

3 i)/2 and (−1−
√

3 i)/2 form
a repelling cycle of period 2.

Let Qλ(z) = z2 +λz, λ ∈ C. If |λ| < 1/2 then for sufficiently small ε > 0,
Qλ maps the disc B(0, ε) into B(0, ε/2). Hence it maps ε40 into itself. In
this case the whole triangle ε40 is attracted to 0 under iterations of Q0

λ.
Hence, for λ = 0 we have two different invariant triangles 40 and ε40 with
different dynamics.

The simplex maps corresponding to Q0|40 and Q0|ε40 cannot be conju-
gate.

There are many holomorphic quadratic polynomial which do not have
invariant triangles. A necessary condition for Q to have such a triangle is
that Q must have a bounded invariant component of the Fatou set.
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[Św] G. Świrszcz, On a certain map of a triangle, Fund. Math. 155 (1998), 45–57.
[U] K. Uchimura, Dynamics of symmetric polynomial endomorphisms of C2, Michi-

gan Math. J. 55 (2007), 483–511.

Pasteura 4/6 m. 31
02-093 Warszawa, Poland
E-mail: elig@mimuw.edu.pl

Received 6.1.2009
and in final form 27.1.2009 (1966)


