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Lower bounds for Jung constants of Orlicz sequence spaces

by Z. D. REN (Riverside, CA)

Abstract. A new lower bound for the Jung constant JC'(I(®)) of the Orlicz sequence
space I‘?) defined by an N-function @ is found. It is proved that if {(?®) is reflexive and the
function ¢’ (t)/P(t) is increasing on (0, &1 (1)], then
271(1/2)

(1)
Examples in Section 3 show that the above estimate is better than in Zhang’s paper (2003)
in some cases and that the results given in Yan’s paper (2004) are not accurate.

Jo®) >

1. Introduction. We begin by recalling some definitions.

DEFINITION 1 (Jung [6]). Let X be a normed linear sqace. The number
JC(X) of X, called the Jung constant, is defined by

(A, X)
X) = sup{ ~o=
JC(X) sup{ A
where r(A, X) = inf{sup(||z — z|| : © € A) : z € X} is the absolute Cheby-
shev radius of A and d(A) = sup{||z — y|| : z,y € A}, the diameter of A.
Clearly, 1/2 < JC(X) < 1. Note that in Amir [I] and Franchetti [5],
2JC(X) is called the Jung constant of X and denoted by J(X). Historical

notes on the Jung constant can be found in Appell, Franchetti and Seme-
nov [2] as well as in Rao and Ren [10, Ch. 4].

DEFINITION 2 (Bynum [3]). The normal structure coefficient of a Ba-
nach space X is defined as

: A C X bounded and d(A) > 0},

N(X) = inf{dgji : A C X bounded, closed and convex, d(A) > 0},
r

where r(A) = inf{sup(||z—y| : = € A) : y € c6(A)} is the relative Chebyshev
radius of A with respect to co6(A), and ¢6(A) is the closure of the convex
hull of A.
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It can be seen that 1 < N(X) < 2. We say that X has the uniform
normal structure provided N(X) > 1. If X is infinite-dimensional, then
N(X) < V2 (cf. Maluta [8]). If X is nonreflexive, then N(X) = 1.

DEFINITION 3 (Maluta [§]). For a Banach space X, the self-Jung con-
stant N(X) is defined by N(X) = sup{r(A)/d(A) : A C X is as in the
definition of N(X)}.

In [1], 2N (X) is called the self-Jung constant of X and denoted by Js(X).
Since N(X) =1/N(X) and JC(X) < N(X), for every Banach space X we
have

(1) 1/2 < JO(X) < 1/N(X) < 1,

which is used in Sections 4 and 5.
Now we turn to N-functions and the corresponding Orlicz sequence
spaces.

DEFINITION 4. A function @ : R — [0,00) is termed an N-function if
(i) @ is even and convex; (ii) ¢(u) = 0 < w = 0, (iii) limy—oP(u)/u = 0
and (iv) limy—co @(u)/u = 0o (cf. Krasnosel’skil and Rutickii [7, pp. 6-9] as
well as Rao and Ren [10] p. 1]).

An N-function @(u) is said to satisfy the Ag-condition for small u [for
large u], in symbols @ € Az(0) [@ € Aa(oc0)], if there exist K > 2 and ug > 0
such that @(2u) < K& (u) for 0 < u < ug [for u > wup|. (u) is said to satisfy
the Va-condition for small u [for large u|, written @ € V5(0) [@ € Va(00)],
if there are C' > 1 and up > 0 such that 20®(u) < @(Cu) for 0 < u < ug
[for u > wyg).

If @ is an N-function, its complementary function ¥ is given by ¥(v) =
sup{u|v| — @(u) : w > 0}, which is also an N-function.

It is known that @ € V3(0) [ € Va(0)] & ¥ € Ag(0) [¥ € Ay(c0)],
where ¥ is complementary to @. For a pair (@,¥) of complementary N-
functions the Orlicz sequence space [? is defined as

12 = {x = (z(1),x(2),...) : ps(A\z) Z@ (Az (7)) < oo for some A > 0},

on which the gauge norm (also called the Luxemburg norm in [7], [4] and
[2]) and the Orlicz norm are given respectively by

2) lallia) = inf{e > 0 pa(a/c) < 1}

and

(3) lalle = sup{>" lz0)y(i)| : puly) < 1.
1=1
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These norms are equivalent: [|z[/g) < [|zlle < 2|z|(s). We set 1®) =
(1%,] - ll@)) and 1T = (I%,] - ||¢). Of course, 1®) and I? are Banach spaces.
It is known that for an N-function @, I(®) and [? are reflexive < & €
A(0) N V3(0). The Jung constants of 1(?) and I? have been studied before
by Zhang [I5]. The main results in [I5] can be summarized in the following

two propositions.
PropPOSITION 1. Let @ be an N-function. Then

(i) @ ¢ As(0) N V3(0) = JCIP) = JC(1%) = 1;

(ii) @ € Ax(0) N V2 (0) = max(JC(1P), JC(1I%)) < 1.

The first part of Proposition 1 is nontrivial and the second part is a
consequence of (1) and Theorem 3.1 in Chen [4, p. 107] (cf. [12] and [13]).

PROPOSITION 2. Let &(u) = Sl)u‘ o(t)dt and ¥(v) = Sl)vl (s) ds denote a
pair of complementary N-functions and let @ € A9(0) N Va(0). Then

1
(4) JO) = max<2ao,ﬁ2),
o
where
-1 -1
0 _ i (u) 0 _ 1 P (u)
(5) ap =lmipl g,y Pe = Imsup 2755
and
1
(6) JC’([¢) > max (,33, %)7

where o, and By are defined similarly to (5).

COROLLARY 1. Let (®,%) be as in Proposition 2. If the limit C§ =
limy o tp(t)/P(t) exists, then (4) and (6) reduce to

(7) min(JC(I?), JC (1)) > max(2"/%%~1 271/C3),

Proof. Note that 1 < C9 < oo because ® € Ay(0)NV2(0) (cf. Theorem 2
in [10, p. 3]). Hence (7) follows from Theorem 15 in [10}, p. 11] and Corollary
9 in [I0, p. 8]. =

We often use (7) in concrete examples, e.g. in [10} p. 144, Example 7] it is
proved that JC(IP) = max(2'/7~1,271/?) for 1 < p < oo; see also Example 4
in Section 3.

2. Results. We start by introducing spaces having a symmetric norm.

DEFINITION 5. A basis {z;} of a real Banach space X is called symmetric
if it is equivalent to the basis {x(;} for every rearrangement 7 of the set of
natural numbers. An infinite-dimensional Banach space X with a symmetric



26 Z. D. Ren

basis {x;}°, is said to have a symmetric norm if for every real sequence

{a;}$°, with Y% ajz; € X,

o
H § aiTi|| = H E 010z ()
=1 =1

for all choices of signs #; = £1 and all permulations 7 of the natural numbers.

The following lemma will be used.

LEMMA 1 (Franchetti [5, Lemma 2]). Let X be an infinite-dimensional
Banach space with symmetric basis {e;}5°, and symmetric norm. Define

foN={1,2,..} > R" by f(k,X) = || X, el|x. Then

£k, )
®) JOX) 2o ok )

THEOREM 1. Let ®(u) = S'u‘ o(t)dt and (v SMw ds denote a

pair of complementary N -functions and let @ € AQ(_) N V(0 ) Define

;o —H(1/2k) / v(1/2k)
Y hmmEEam e
Then
(10) JOUD) = By,

1
@

(11) JC(I%) > 20l

Proof. Let e; = (1,0,0,...),e2 = (0,1,0,...), etc. The canonical basis
{ei}22, is symmetric in 1(®) as well as in I? since & € Ay(0) (cf. [4 p. 47]).
The norms (2) and (3) are symmetric. It can be seen from (2) that

1

k
@) =[S L
1) 1) = [Ler, Ty

Thus (10) follows from (8), (12) and (9). Let Ao satisfy the equation

1= py [90 ()\0 Zk: ei)} = k¥[p(Xo)]-

i=1
Then ¢(\g) = ¥~ 1(1/k). By Proposition 14 in [9] p. 70] we have

(13) f(k,1?) = HZ@ - < e,,ap()\ozk:ei)> — kp(Xo) = k& L(1/k).

i=1 i=1
Finally, (11) follows from (8), (13) and (9). =

=inf{c > 0: kP(1/c) <1} =
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THEOREM 2. Let &(u) = S|0“| o(t)dt and ¥(v) = Sg”w(s) ds be as in
Theorem 1 and let Fp(t) = to(t)/P(t), t > 0. Assume that ¢ is continuous

and strictly increasing on [0, max{®~1(1), [T~ 1(1)]}].
(i) If Fy(t) is increasing on (0,9~ 1(1)], then

o1 P71(1/2)
(14) JOI®) > max<21/0 L @_1(1)>,
where
(15) Y = lim Fp t).
(ii) If Fp(t) is increasing on (0,9[@~1(1)]], then
oy TN
(16) JO(1%) > max<21/0 Y Mlﬂ/?))

Proof. (i) Since Fp(t) is increasing on (0, ®~1(1)] and & € A(0)NV2(0),
the limit C’g exists and 1 < Cg < 00 as noted before. Further, the function
Go(u) = @ H(u) /P71 (2u) for u > 0 is increasing on (0,1/2] (cf. [10, p. 93])
and 79 = lim, o Go(u) exists. It follows from (9) and Corollary 9 in [0,
p. 8] that

)
S0
which proves (14) by (10) and (7).

(ii) Recall that the Young inequality |uv| < @(u) + ¥(v) becomes an
equality when |v] = p(Ju]) or |u| = ¥(|v]) (see [9, p. 10]). Note that ¢(t)
is strictly increasing on (0, [¥~1(1)]] if and only of 9(s) is continuous on
(0,71(1)]. By letting s = @(t), 0 < t < [¥~1(1)], we see that t = 9(s)

and
Fols) = sp(s)  te(t)  Fa(l)
T () T te(t) —e(t)  Fa(t) - 1
(17) F;(t) - F;(S) =1, 0<s=pt) < (1),
which implies
(18) LI S
Co Cy

where C9 = lim,_,o Fiy(s). By the assumption on Fg(t) and (17), Fy(s) is

decreasing on (0,7 ~1(1)] so that Gy (v) = ¥~1(v)/¥~1(20) is decreasing on

(0,1/2] and 79 = lim,_0 Gy(v) exists. Finally,

20-1(1/2)
w=i(1)

so that (16) follows from (11), (7) and (18). =

20, = = 2Gy(1/2) < 209 = 299 = 21-1/C0
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3. Examples. To illustrate Theorems 1 and 2 we present some ex-
amples, that were considered by Zhang [15] and Yan [14], except Example 4.

ExaMPLE 1. Consider the following pair of complementary N-functions:
Bu) = el —Ju| =1, W(v) = (1+ o)) In(1 + [v]) = [0].

In [10} p. 9] it was proved that Fg(t) (= t®'(t)/P(t)) is increasing on (0, 00)
and C9 = lim_o Fp(t) = 2, so that & € Ay(0) N V2(0). By Theorem 2 we
obtain
1(1/2) v-(1)
19y > Z— 22 1074 9y > —
TOUD) 2 =gy~ 0TI88, IO 2 s
which refine the inequalities JC(I(®), JC(I*) > 1/v/2 in [I5, Example
2.12]. In fact, Franchetti [5] proved that JC(X) > 1/+/2 for any infinite-
dimensional Banach space X with a symmetric norm (see also [2, Theo-
rem 1]).

~ (0.7435,

EXAMPLE 2. For the space {(?») generated by the N-function

(19) Py(u) =€’ —1, 1 <p<oo,
we have
In3—In2\ "
(20) JC (1P > <”312n) > max(21/P~1 271/p)
n
if 1 +a < p < oo, where
1 In2
21 =—Inl— | =0. .
(21) ‘T2 n<ln31n2> 07736

Proof. The function Fg (t) = ptPe’” /(e — 1) is increasing on (0,00)
and Cgp = limy_¢ Fp,(t) = p, so that &, € A3(0) N V2(0). We first consider
2 < p < o0. Since @, ! (u) = [In(1 + )]/ for u > 0, from (14) in Theorem 2
we have

o1(1/2
JC@1@r)) > #
P, (1)
which proves (20) when 2 < p < oo. Next we consider 1 < p < 2. It can be
seen that @,1(1/2)/¢,1(1) > 21/~ if and only if 1 +a < p < 2, where a is
given by (21). Thus,

> 2 P > ol/p=1 9 <y < oo,

—1
@, (1/2)
o' (1)
which completes the proof of (20). =

(22)  JC(U®)) > > o/l s 97 lr 1 4a<p<?,

REMARK 1. The estimate (20) improves the estimate in [I5, Ex-
ample 2.11] when 1+ a < p < co. The estimate (22) shows that the exact
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value for JC(1(®»)) given in [14, Example 2.7], JC(1(%»)) = 21/P=1 1 < p < 2,
is impossible at least when 1.7736 ~ 1 +a < p < 2.

EXAMPLE 3. Consider the N-function

(23) M,y(u) = [ul* +2JulP, 1<p< 0.
Then
_ 1/p
(24) JCO(IMp)y > <‘f_\/\§> > max(21/P71, 271/P)
if 14+b6<p< oo, where
1 2 -2

Proof. Fip,(t) is increasing on (0, co) from p to 2p and C&p = p, so that
M, € Ay(0)NV3(0). The inverse of My, is M, (u) = (VI+u— DYP u > 0.
Thus, the proof is similar to that of Example 2. m

REMARK 2. The estimate (24) and (25) show that the exact value for
JC(IM»)) in [14, Example 2.6] is not true when 1 +b < p < 2.

Let us make a comparison between Corollary 1 and Theorem 2 when
CY exists to estimate the lower bounds of JC(I/®)) and JC(I%). If Fy(t)
is increasing on (0,971(1)] or on (0,9[¥~1(1)]], then Theorem 2 is an im-
provement of Corollary 1, as shown by Examples 1-3. On the other hand,
Theorem 1 is not better than Proposition 2 if Fi(t) is decreasing.

EXAMPLE 4. Let M, (u) = |u[P[In(1 + |u])]” with 1 < p < oo and
0 < A < oo, which is considered in [2, p. 184] when p = 2 and A > 0.
The function Fiy, , (t) = p + {At/[(1 +t) In(1 + ¢)]} is decreasing on (0, o0)
and C'J?/l,p’A = p+ A > 1, so that M, € Ay(0) N V2(0). It can be seen
that ﬂf\/fm < limy—0 G, , (u) = B9, K Therefore, Proposition 2 improves
Theorem 1. Finally, from Corollary 1 we obtain

min(JC(IMp2)) JO(IMr)) > max (2P 271/PHA) — Jo(1P+)
(see the end of Section 1 for JC(IP)).

4. Intermediate Orlicz sequence spaces. Now we turn to certain in-
termediate N-functions and the corresponding intermediate Orlicz sequence
spaces.

DEFINITION 6. Let @ be an N-function and let ®¢(u) = u®. For each
0 < s <1 we define an intermediate N-function @, between @ and &g at s
to be the inverse of

(200 @;'w) = [27 ()] (B (W) = [ (W) (V) u 0.

s
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The corresponding Orlicz sequence space [(?s) [1%5] is called an intermediate
space between 1(®) [I?] and 1% at s € (0,1] in the sense of Calderén (cf. [9]
p. 223)).

The author [II] proved that &5 € Aa N Va if 0 < s < 1, where Ay =
A2(0) N Ag(co) and Vo = Va(0) N Va(00), that is, @s(u) satisfies both the
Ag- and Va-conditions for all w > 0 (cf. [10, p. 40]).

The following result enables us to find the exact values of JC(1(%s)) and
JC(1%) as well as the normal structure coefficients N (1(%)) and N (1%+).

LEMMA 2 (Ren [11]). Let @ be an N-function and let $5 be the inverse
of (26). Then for every s € (0,1] we have

(27) 2%/2 < min(N (1(%2)), N (1%)).

The proof of (27) can be found also in [10, p. 85]. The main result of this
section is given by:

THEOREM 3. Let @ and @5 be as in Lemma 2. Then

(28) max(ﬁ,fps, —10 ,ﬁ23> < JC ) <2792,
2a¢s
1 1 0 Dy —s/2
(29) max 2l 20 B, | < JC(I7) <2 ,
W;" bs

where W is complementary to @s. In particular, if ® € A2(0) N V2(0), then
JO(U(®s)) = 275/2 = JO(1%).

Proof. (28) and (29) follow from (27), (1), Proposition 2, Theorem 1
and the fact that 2()‘855/8;; =1= 2043;@)53 (cf. [10} p. 15]). The proof of the
second part is the same as that of Theorem 9 in [10, p. 145]. =

REMARK 3. Theorem 3 partly refines Theorem 6 in [10] p. 144].

For computing the exact value of the Jung constant in a special Banach
space we now present a simple example. Consider the N-function

My(u) = JufPe™ 1M 1 <p < .
Its inverse M, L on [0, 00) is not obtained explicitly. Note that

Cly, = m EM (£)/My (1) = lim(p +1/t) = ox,

so that M, ¢ As(0). Let &5 be the inverse of the function &;!(u) =

[M, ! (u)]'5(y/u)*,u > 0 and 0 < s < 1. By the second part of Theorem 3

we obtain the exact values JO(I(%)) = 275/2 = JCO(1%).

For the upper bounds of the normal structure coefficients N(I(#)) and
N(I?) we have the following.
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PROPOSITION 3. Let (@,¥) be a pair of complementary N -functions with
NS AQ(O) N VQ(O) Then

11
30 NP <min<2a0,,>,
(30) () < A
(31) N(1%) < min <2ag, i, 2%),
Ps

where o, 3%, B and ol are as in (5) and (9).
Proof. In [10, p. 108] it was proved that
(32) max(N(I?)), N(1%)) < min <2ag, 610>
P
It should be noted that (32) can also be deduced immediately from Propo-
sition 2 and (1). By Theorem 1 we get
(33) NI®PY <1/85  N(I%) < 2.
Finally, (30) and (31) follow from (32) and (33). =

COROLLARY 2. Let (P,¥) and Fg(t) be as in Theorem 2.
(i) If Fy(t) is increasing on (0,0 1(1)], then

. _1/00 @_1(1)
(34) NPy < mm<21 1/C¢’¢1(1/2)>'
(ii) If Fp(t) is increasing on (0,9[@~1(1)]], then
. _1/00 2@‘1(1/2)
(35) N(I%) < min (21 1/Cq M)

By Lemma 2 and Proposition 3 we get the desired result.

THEOREM 4. Let @ and @5 be as in Lemma 2. Then

(36) 272 < N(I*)) < min (20‘%5’ R }>’
ﬂqss 6453

1
2%/2 < N(1%*) < min (2@255, 5,20@).
b °

In particular, if & & Ay(0) N Vo(0), we get N(1(P)) = 25/2 = N (1),
REMARK 4. Theorem 4 partly refines Theorem 8 in [10, p. 114].

5. Supplements to examples. Now we apply Corollary 2, Theorems
3 and 4 to Examples 1-3 in Section 3.
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EXAMPLE 5. Let (©,¥%) be as in Example 1. By (34) and (35) we obtain

(1)
V= g

Before studying the next two examples we have to prove the following.

20-1(1/2)
~1.3364, N(I?) < ——=""7 ~1.3450.
3364, (1%) < 71(1) 3450

LEMMA 3. Let M(u) = SM p(t)dt be an N-function and let @g(u

) =
Sg” s(t)dt be the inverse ofsi5 Yu) = MY (w)]* =3 (Vu)*, u > 0 and 0 <
s < 1. Consider Fp(t) = tp(t)/M(t), t > 0, and Fp, (t) = tps(t)/Ps(t),
t > 0. Then Fy(t) is increasing on (0, M_l(l)] if and only if Fg (ts)

increasing on (0,®;1(1)].

Proof. Since In®;(u) = (1 —s)In M~ (u) + (s/2) Inu for u > 0 we get
by differentiation

18

1 1-—s S
&3 (wpslds ()] M (wpMT(w)] 2’
so that
ol ()] (A= sMMT ()] s
&, (w)ps[@5 ()] ML (u)p[M— w) © '

)] = M (H]? in the

By letting u = M (t) and ts = &, (u) M(t
] §Z5 H1)ifo <t < M~*(1) and

above, we see that 0 < t, < [M~1(1)]}~*
that

1 1-s s
37 = + =,
(37) Fg, (ts) Fy(t) 2

which proves the lemma.

EXAMPLE 6. Let @, be given by (19) in Example 2
(i) It follows from (34) in Corollary 2 that

In3—In2

if 1 +a < p < oo, where a is in (21).
(ii) Let @5(u) be the intermediate N-function between @,(u) and u? at
€ (0,1], i.e

(39) & () = (1 +w) P (Vay, w0,
1(1)] and

1/p
N(1®)) < (th) < min(2'71/P 21/7)

By Lemma 3, Fg_(t) is increasing on (0, P

H(1/2)

ﬁéﬁs—m (Bp,)'~ <\}§>8
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From Theorem 3 and Theorem 2 for 1 +a < p < oo with a being from (21),
we have

In2
> maX(Q(lfS)/p+8/271’ 2(571)/;)75/2)'

_ (1=s)/p
(39) 2752 > JO(1(%9)) > B, = 9—58/2 <1n31n2>

(iii) Let @ be the inverse of (38). By Theorem 4 we have 25/2 < N(1(%s))
<1/Bp, if 14+a <p<oo.

REMARK 5. (39) shows that the exact value for JC(I(%+)) in [14, Ex-
ample 2.7, equality (20)] is not valid when 1 +a < p < 2.

Also, (39) is an improvement of Example 8 in [10, p. 144].

(iii) in Example 6 refines Example 9 in [10} p. 115].

EXAMPLE 7. Let M, be given by (23) of Example 3. Similarly to Ex-
ample 6, we have the following assertions:

(i) Let 1+b < p < oo with b as in (25). Then
1 22 \'"
N(IMp)y < = ( > < min(2!71/7 21/P),
B \V3-v2
(ii) Let M, be the inverse of M, '(u) = (VI +u—1)1=9)/P(\/u)* u >0
and 0 < s < 1. Then note that
(1 5/2 [ V3—V2 (1-s)/p
= ()" (52)
P 2 9 _ \/5
and that (37) implies

1 71—3 71—3 s
cg@_cg@ N

+2 +
2 P 2

Moreover, it follows from Theorems 2 and 3 that for 1 +b < p < oo,
(40) 2792 > Je(IM)) > Bar, > max(21/cg43*1,2*1/0245).

(ifi) Let M, be as in (ii). Then 2%/2 < N(I(M2)) < 1/8), whenever
1+b<p<oo.

REMARK 6. (40) shows that the exact value in [14, Example 2.6] is not
true when 1.8821 ~ 1+b < p < 2. Also, (40) is an improvement of Example
3.7 in [15] p. 43].
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