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Abstract. Let m and r be natural numbers and let P r : Mfm → FM be the rth
order frame bundle functor. Let F : Mfm → FM and G : Mfk → FM be natural
bundles, where k = dim(P rRm). We describe all Mfm-natural operators A transforming
sections σ of FM →M and classical linear connections ∇ on M into sections A(σ,∇) of
G(P rM) → P rM . We apply this general classification result to many important natural
bundles F and G and obtain many particular classifications.

0. Introduction. We fix natural numbers m and r. Let P r : Mfm →
FM be the rth order frame bundle functor, k = dim(P rRm), and let F :
Mfm → FM and G :Mfk → FM be natural bundles, whereMfm is the
category of m-dimensional manifolds and their local diffeomorphisms and
FM is the category of fibred manifolds and their fibred maps.

In the present note, we study the problem how a section σ ∈ F (M) of
FM → M and a classical linear connection ∇ on M can induce a section
A(σ,∇) ∈ G(P rM) of G(P rM) → P rM . This problem is reflected in the
concept ofMfm-natural operators A : F ×Q GP r in the sense of [3]. We
describe allMfm-natural operators A : F ×Q GP r in question.

There are many “classical” examples ofMfm-natural operators A : F ×
Q→ GP r for particular F and G and r. For example, we know the so-called
horizontal lifts of vector fields, forms, tensor fields, connections, differenti-
ations from M to the linear frame bundle LM = P 1M (see e.g. [1], [6]).
In [10], using rather complicated computations in local coordinates, M. Sek-
izawa obtained an interesting classification of all first order Mfm-natural
operators A : Q  T (0,2)P 1 transforming classical linear connections ∇ on
m-manifolds M into tensor fields A(∇) of type (0, 2) on the linear frame
bundle LM = P 1M of M . A well-known example of an Mfm-natural op-
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erator A : Q  QP r is the so-called complete lift in the sense of A. Mori-
moto [8] (see also [2]) of classical linear connections to the rth order frame
bundle P rM (which is an open subbundle in the bundle T rmM of (m, r)-
velocities). In [7], using a normal coordinate technique, the second author
extended (in a very simple way) the classification of [10] to allMfm-natural
operators A : Q  T (p,q)P r, and in particular obtained a classification of
all Mfm-natural operators A : Q  QP r. In [4], adapting the technique
from [7], we classified allMfm-natural operators A : T (p,q)×Q T (p1,q1)P 1

transforming tensor fields τ of type (p, q) on M and classical linear connec-
tions ∇ on M into tensor fields A(τ,∇) of type (p1, q1) on LM . In [5], also
adapting the technique from [7], we described all Mfm-natural operators
A : Q RiemP r transforming classical linear connections ∇ onM into Rie-
mannian structures A(∇) on P rM . Thus the main result of the present paper
is a (maximal possible) generalization of the results mentioned above. To ob-
tain this general result, we once more adapt the technique from [7]. Thanks
to this technique, the proof of the main result seems to be almost obvious.

We apply the main result of the present note to many important F and G,
and obtain several interesting classifications (also different from those in [7],
[4], [5]). Namely, for F = idMfm and G = E(k) = (Jk(−, ·))∗ we obtain
a full classification of Mfm-natural operators A : Q  E(k)P r of kth or-
der linear differential operators A(∇) on P rM by means of classical lin-
ear connections ∇ on M . Similarly, for F = Riem : Mfm → FM and
G = Riem :Mfk → FM we obtain a full classification ofMfm-natural op-
erators A : Riem×Q→ RiemP r of Riemannian structures A(g,∇) on P rM
from Riemannian structures g onM by means of classical linear connections
∇ on M . And similarly, for F = Q :Mfm → FM and G :Mfk → FM we
obtain a full classification of Mfm-natural operators A : Q × Q → QP r of
classical linear connections A(∇1,∇) on P rM from classical linear connec-
tions ∇1 on M by means of classical linear connections ∇ on M .

All manifolds and maps are assumed to be smooth, i.e. of class C∞.

1. Natural bundles and natural operators. The concept of natural
bundles was introduced by A. Nijenhuis [9].

Definition 1 (see [3]). A natural bundle overm-manifolds is a covariant
functor F :Mfm → FM with the following properties:

(i) Base preservation. B ◦ F = idMfm , where B : FM → Mf is the
base functor.

(ii) Locality. Let U ⊂ M be an open subset of an m-manifold M and
let iU : U →M denote the inclusion map. Then FU = π−1

M (U) and
the induced map F (iU ) : FU → FM is the inclusion map of the
inclusion FU ⊂ FM .
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(iii) Regularity. F transforms smoothly parametrized families of local
diffeomorphisms into smoothly parametrized families of fibred maps.

Example 1. A simple example of a natural bundle over m-manifolds
is the tangent functor T : Mfm → FM transforming any m-manifold M
into its tangent bundle TM and any local diffeomorphism ψ : M → M1

into its tangent map Tψ : TM → TM1. Another example is the cotangent
functor T ∗ : Mfm → FM sending any m-manifold M into its cotangent
bundle T ∗M = (TM)∗ and any local diffeomorphism ψ : M → M1 into
its cotangent map T ∗ψ : T ∗M → T ∗M1. Or more generally, given non-
negative integers p and q, the functor T (p,q) : Mfm → FM sending any
m-manifold M into its bundle T (p,q)M =

⊗p TM ⊗
⊗q T ∗M of tensors of

type (p, q) and any local diffeomorphism ψ : M →M1 into its induced map
T (p,q)ψ =

⊗p Tψ ⊗
⊗q T ∗ψ : T (p,q)M → T (p,q)M1 is a natural bundle over

m-manifolds.

Example 2. For any m-manifold M we have the Riemannian bundle
Riem(M) =

⋃
x∈M Met(TxM) over M , where given a vector space V we

denote by Met(V ) the set of inner products G : V × V → R on V . (We
recall that G : V × V → R is an inner product if it is symmetric, bilinear
and positive definite.) Clearly, Riem(M) is an open subbundle in the vector
bundle T ∗M �T ∗M of symmetric tensors of type (0, 2) over M . Sections g :
M → Riem(M) are the so-called Riemannian structures on M . Every local
diffeomorphism ψ : M → M1 induces Riem(ψ) : Riem(M) → Riem(M1),
which is the restriction of T ∗ψ� T ∗ψ : T ∗M � T ∗M → T ∗M1 � T ∗M1. The
correspondence Riem :Mfm → FM is a natural bundle over m-manifolds.

Example 3. For any m-manifold M we have the extended sth order
vector tangent bundle E(s)M = (Js(M,R))∗ of M . Sections D : M →
E(s)M of E(s)M are in bijection with sth order linear differential operators
D̃ : C∞(M) → C∞(M). (More precisely, we put D̃(f)(x) := 〈D(x), jsxf〉,
f : M → R, x ∈ M .) Every Mfm-map ψ : M → M1 induces E(s)ψ :
E(s)M → E(s)M1, 〈E(s)ψ(ω), jsψ(x)g〉 = 〈ω, jsx(g◦ψ)〉 for ω ∈ E(r)

x M , x ∈M ,
g : M1 → R. The correspondence E(s) : Mfm → FM is a natural bundle
over m-manifolds.

Example 4. For any m-manifold M we have the bundle F (p,q,s)M =
(Js(

∧p T ∗M))∗ ⊗
∧q T ∗M over M . Sections D : M → F (p,q,s)M are in

bijection with sth order linear differential operators D̃ : Ωp(M) → Ωq(M)
from p-forms on M into q-forms on M . (More precisely, we put D̃(ω)(x) =
〈D(x), jsxω〉 for ω ∈ Ωp(M), x ∈M). EveryMfm-map ψ : M →M1 induces
F (p,q,s)ψ : F (p,q,s)M → F (p,q,s)M1 in an obvious way. The correspondence
F (p,q,s) :Mfm → FM is a natural bundle over m-manifolds.
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Example 5. For any m-manifoldM we have the rth order frame bundle
P rM = inv Jr0 (Rm,M) ofM . This is a principal bundle with the correspond-
ing Lie group Grm = Jr0 (Rm,Rm)0 acting on the right on P rM via composi-
tions of jets. EveryMfm-map ψ : M →M1 induces a principal bundle map
P rψ : P rM → P rM1 by P rψ(jr0ϕ) = jr0(ψ ◦ ϕ), where ϕ : Rm → M is an
Mfm-map. The correspondence P r :Mfm → FM is a natural bundle.

Example 6. For any m-manifold M we have the classical linear con-
nection bundle QM := (idT ∗M ⊗π1)−1(idTM ) ⊂ T ∗M ⊗J1TM of M , where
π1 : J1TM → TM is the projection of the first jet prolongation J1TM =
{j1xX | X ∈ X (M), x ∈ M} of the tangent bundle TM of M . Sections
∇̃ : M → QM correspond bijectively to classical linear connections on M .
Every local diffeomorphism ψ : M → M1 induces (in an obvious way) a
fibred map Qψ : QM → QM1 over ψ. The correspondence Q :Mfm → FM
is a natural bundle.

Remark 1. A classical linear connection on a manifold M is an R-
bilinear map ∇ : X (M) × X (M) → X (M) such that (1) ∇fXY = f∇XY
and (2) ∇XfY = XfY + f∇XY for any vector fields X,Y ∈ X (M) on M
and any map f : M → R. The classical linear connection ∇ corresponding to
a section ∇̃ : M → QM is defined by (∇XY )x = TY (Xx)−T (Yx, 〈∇̃, Xx〉) ∈
VYxTM = TxM , where T : TM×M J1TM → TTM is given by T (v, j1xZ) =
T (Z)v (here T (Z) means the flow lifting of Z ∈ X (M) to TM).

Remark 2. One can show (see e.g. [3]) that any natural bundle F :
Mfm → FM is associated with P r : Mfm → FM for some r. Namely,
FM = P rM ×Gr

m
S and Fψ = P rψ ×Gr

m
idS for some r and some action of

Grm on a manifold S.

A general concept of natural operators can be found in the fundamental
monograph [3]. We only need the following special case of the definition of
natural operators.

Definition 2. Let F :Mfm → FM and G :Mfk → FM be natural
bundles, where k = dim(P rRm). An Mfm-natural operator A : F × Q  
GP r is a family ofMfm-invariant regular operators (functions)

A = AM : F (M)×Q(M)→ G(P rM)

for anyMfm-object M , where F (M) is the set of all sections of FM→M ,
Q(M) is the set of all classical linear connections onM (sections of Q(M)→
M) and G(P rM) is the set of all sections of G(P rM) → P rM . The invari-
ance means that if (σ1,∇1) ∈ F (M1) × Q(M1) and (σ2,∇2) ∈ F (M2) ×
Q(M2) are related by an Mfm-map ψ : M1 → M2 (i.e. Fψ ◦ σ1 = σ2 ◦ ψ
and Qψ ◦ ∇1 = ∇2 ◦ ψ) then A(σ1,∇1) and A(σ2,∇2) are P rψ-related
(i.e. G(P rψ) ◦ A(σ1,∇1) = A(σ2,∇2) ◦ P rψ). The regularity means that A
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transforms smoothly parametrized families of pairs of sections into smoothly
parametrized families of sections.

2. A general example of natural operators A : F × Q  GP r.
Let F : Mfm → FM and G : Mfk → FM be natural bundles, where
k = dim(P rRm). We are going to present a general example ofMfm-natural
operators A : F ×Q GP r. We start with the following notations.

For s = 0, 1, . . . ,∞, let Zs be the set of all s-jets js0∇ ∈ Js0(Q(Rm)) of
classical linear connections ∇ on Rm with

m∑
j,k=1

∇ijk(x)xjxk = 0 for i = 1, . . . ,m.

We see that Zs is a finite-dimensional manifold (diffeomorphic to a finite-
dimensional vector space) if s is finite, and Z∞ is a topological space with
respect to the inverse limit topology given by the inverse system · · · →
Zs+1 → Zs → · · · → Z0 of jet projections.

Remark 3. It is known that the condition defining Zs is equivalent
to saying that the usual coordinates x1, . . . , xm on Rm are ∇-normal with
centre 0. To see this equivalence, apply the well-known system of partial
differential equations

d2γi

dt2
+∇ijk(γ)

dγj

dt

dγk

dt
= 0, i = 1, . . . ,m,

on ∇-geodesics and apply the well-known fact that the ∇-geodesics passing
through the centre of ∇-normal coordinates are straight lines.

Let θ := jr0(idRm) ∈ P rRm.
Let Hr

m := ker(Grm → GL(m)) be the kernel of the Lie group epimor-
phism Grm → GL(m), the jet projection.

Definition 3. We say that a function µ : J∞0 (FRm) × Z∞ × Hr
m →

Gθ(P rRm) has the local finite determination property if for any u1 ∈
J∞0 (FRm), u2 ∈ Z∞ and u3 ∈ Hr

m we can find an open neighbourhood
U1 ⊂ J∞0 (FRm) of u1, an open neighbourhood U2 ⊂ Z∞ of u2, an open
neighbourhood U3 ⊂ Hr

m of u3, a natural number s and a smooth map
f : π̃s(U1)×πs(U2)×U3 → Gθ(P rRm) such that µ = f ◦ (π̃s×πs× idU3) on
U1 × U2 × U3, where π̃s : J∞0 (FRm)→ Js0(FRm) and πs : Z∞ → Zs are the
jet projections.

For example, if s is finite and f : Js0(FRm) × Zs ×Hr
m → Gθ(P rRm) is

a smooth map, then µ = f ◦ (π̃s × πs × idW r) : J∞0 (FRm) × Z∞ × Hr
m →

Gθ(P rRm) has the local finite determination property.
Now, we are in a position to present the following general example of

Mfm-natural operators A : F ×Q GP r.
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Example 7. Let µ : J∞0 (FRm) × Z∞ × Hr
m → Gθ(P rRm) be a func-

tion with the local finite determination property. Let ∇ be a classical linear
connection on an m-manifold M and σ ∈ F (M) be a section of FM → M .
Define a section A(µ)(σ,∇) ∈ G(P rM) of G(P rM)→ P rM by

A(µ)(σ,∇)(%)

:= G(RJrψ(%))(G(P r(ψ−1))(µ(j∞0 (ψ∗σ), j∞0 (ψ∗∇), Jrψ(%))))

% ∈ (P rxM), x ∈ M , where ψ is a ∇-normal coordinate system on M with
centre x such that P 1ψ(πr1(%)) = j10(idRm) and Rξ : P rM → P rM is the
right translation by ξ ∈ Grm. Of course, ψ∗σ = Fψ ◦ σ ◦ σ−1 is the image of
σ under ψ. Similarly, ψ∗∇ = Qψ ◦ ∇ ◦ ψ−1.

The definition of A(µ)(σ,∇)(%) is correct because Jrψ(%) ∈ Hr
m ⊂ Grm =

P r0 Rm and germx(ψ) is uniquely determined by ∇ and πr1(%). The map
A(µ)(σ,∇) : P rM → G(P rM) is smooth by the local finite determination
property of µ. It is easy to see that A(σ,∇) is a section of G(P rM)→ P rM .
Because of the canonical character of the construction of A(µ)(σ,∇) we have
the following lemma.

Lemma 1. The family A(µ) : F ×Q GP r of operators

A
(µ)
M : F (M)×Q(M)→ G(P rM), A

(µ)
M (σ,∇) = A(µ)(σ,∇),

is anMfm-natural operator.

3. A classification of natural operators A : F × Q  GP r. The
main result of the present note is the following theorem.

Theorem 1. Let r and m be natural numbers and let F :Mfm → FM
and G : Mfk → FM be natural bundles, where k = dim(P rRm). Any
Mfm-natural operator A : F ×Q GP r is of the form

AM (σ,∇) = A(µ)(σ,∇), σ ∈ F (M), ∇ ∈ Q(M),

for some uniquely determined (by A) function µ : J∞0 (FRm)×Z∞ ×Hr
m →

Gθ(P rRm) with the local finite determination property.
In the special case F = idMfm , we see that J∞0 (FRm) is a one-point set,

and then any Mfm-natural operator A : Q  GP r transforming classical
linear connections ∇ on m-manifolds M into sections A(∇) of G(P rM)→
P rM is of the form

AM (∇) = A(µ)(∇), ∇ ∈ Q(M),

for some uniquely determined function µ : Z∞ ×Hr
m → Gθ(P rRm) with the

local finite determination property.
In the special case r = 1, we see that H1

m is the trivial group and P 1M =
LM is the linear frame bundle, and then any Mfm-natural operator A :
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F ×Q GL is of the form

AM (σ,∇) = A(µ)(σ,∇), σ ∈ F (M), ∇ ∈ Q(M),

for some function µ : J∞0 (FRm) × Z∞ → Gl0(LRm) with the local finite
determination property, where l0 ∈ LRm is the usual basis in T0Rm.

Proof. Let A : F × Q  GP r be an Mfm-natural operator. We must
define µ = µA : J∞0 (FRm)× Z∞ ×Hr

m → Gθ(P rRm) by

µ(j∞0 σ, j∞0 ∇, %) = G(R%−1)(A(σ,∇)(%)).

Then using the non-linear Peetre theorem and the Boman theorem (see
e.g. [3]), we easily see that µ has the local finite determination property.
Then by the definition of µ and Aµ we deduce that

A(σ,∇)(%) = A(µ)(σ,∇)(%)

for any section σ ∈ F (Rm), any classical linear connection ∇ on Rm such
that the identity map idRm is a ∇-normal coordinate system with centre 0,
and any % ∈ Hr

m. Then by the invariance of A and A(µ) with respect to
normal coordinates we deduce that A = A(µ).

4. Some important corollaries. We present some corollaries of The-
orem 1.

(a) The case of F = idMfm and G = Q :Mfk → FM. In this case we
recover (in another form) the following result of [7].

Corollary 1. The Mfm-natural operators A : Q  QP r transform-
ing classical linear connections ∇ on m-manifolds M into classical linear
connections A(∇) on P rM are in bijection with the functions µA : Z∞ ×
Hr
m → Rk∗ ⊗Rk∗ ⊗Rk having the local finite determination property, where

k = dim(P rRm).

Proof. We have Qθ(P rRm) = T ∗θ P
rRm ⊗ T ∗θ P rRm ⊗ TθP rRm = Rk∗ ⊗

Rk∗ ⊗ Rk.

(b) The case of r = 1 and F = T (p,q) :Mfm → FM and G = T (p1,q1) :
Mfk → FM. In this case we recover (in another form) the following result
of [4].

Corollary 2. TheMfm-natural operators A : T (p,q)×Q T (p1,q1)P 1

transforming tensor fields τ of type (p, q) on m-manifolds M and classi-
cal linear connections ∇ on M into tensor fields A(τ,∇) of type (p1, q1)
on the linear frame bundle LM = P 1M are in bijection with the functions
µA : J∞0 (T (p,q)Rm)×Z∞ →

⊗p1 Rk ⊗
⊗q1 Rk∗ having the local finite deter-

mination property, where k = m+m2 = dim(LRm).

Proof. We have T (p1,q1)

j10(idRm )
(P 1Rm) =

⊗p1 Rk ⊗
⊗q1 Rk∗.
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(c) The case of F = idMfm and G = Riem :Mfk → FM. In this case
we recover (in another form) the following result of [5].

Corollary 3. The Mfm-natural operators A : Q  RiemP r trans-
forming classical linear connections ∇ on m-manifolds M into Rieman-
nian structures A(∇) on P rM are in bijection with the functions µA :
Z∞ ×Hr

m → Met(Rk) having the local finite determination property, where
k = dim(P rRm).

Proof. We have Riemθ(P rRm) = Met(Rk).

(d) The case of F = Q : Mfm → FM and G = Q : Mfk → FM. In
this case we obtain the following corollary of Theorem 1.

Corollary 4. The Mfm-natural operators A : Q × Q → QP r trans-
forming pairs (∇1,∇) of classical linear connections on m-manifolds M into
classical linear connections A(∇1,∇) on P rM are in bijection with the func-
tions µA : J∞0 (QRm) × Z∞ ×Hr

m → Rk∗ ⊗ Rk∗ ⊗ Rk having the local finite
determination property, where k = dim(P rRm).

Proof. This is clear.

(e) The case of F = Riem :Mfm → FM and G = Riem :Mfk → FM.
In this case we have the following corollary of Theorem 1.

Corollary 5. The Mfm-natural operators A : Riem×Q → Riem(P r)
transforming Riemannian structures g on m-manifolds M and classical lin-
ear connections ∇ on M into Riemannian structures A(g,∇) on P rM are
in bijection with the functions µA : J∞0 (Riem(Rm))×Z∞ ×Hr

m → Met(Rk)
having the local finite determination property, where k = dim(P rRm).

Proof. This is clear.

(f) The case of F = idMfm and G = E(s) : Mfk → FM. In this case
we get the following corollary of Theorem 1.

Corollary 6. TheMfm-natural operators A : Q E(s)P r transform-
ing classical linear connections ∇ on m-manifolds M into sth order linear
differential operators A(∇) : C∞(P rM)→ C∞(P rM) on P rM are in bijec-
tion with the functions µA : Z∞ ×Hr

m →
⊕s

l=0 S
lRk having the local finite

determination property, where k = dim(P rRm).

Proof. We have E(s)
θ (P rRm) =

⊕s
l=0 S

lRk.

(g) The case of F = idMfm and G = F (p,q,s) :Mfk → FM. In this case
we have

Corollary 7. The Mfm-natural operators A : Q  F (p,q,s)P r trans-
forming classical linear connections ∇ on m-manifolds M into sth order
linear differential operators A(∇) : Ωp(P rM) → Ωq(P rM) are in bijection
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with the functions µA : Z∞ × Hr
m →

⊕s
l=0 S

lRk ⊗
∧p Rk ⊗

∧q Rk∗ having
the local finite determination property, where k = dim(PRm).

Proof. We have F (p,q,s)
θ (P rRm) =

⊕s
l=0 S

lRk ⊗
∧p Rk ⊗

∧q Rk∗.
Remark 4. The above list of corollaries of Theorem 1 is not complete.

Many other corollaries can be obtained in a similar way.
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