On the geometry of tangent bundles with the metric $I I+I I I$

by A. Gezer (Erzurum), O. Tarakci (Erzurum) and A. A. Salimov (Baku)

Abstract

The main purpose of this paper is to investigate some relations between the flatness or locally symmetric property on the tangent bundle $T M$ equipped with the metric $I I+I I I$ and the same property on the base manifold M and study geodesics by means of the adapted frame on $T M$.

1. Introduction. Let M be an n-dimensional manifold and $T M$ its tangent bundle. We denote by $\Im_{s}^{r}(M)$ the set of all tensor fields of type (r, s) on M. Similarly, we denote by $\Im_{s}^{r}(T M)$ the corresponding set on $T M$.

Tangent bundles of differentiable manifolds are of great importance in many areas of mathematics and physics. The geometry of tangent bundles goes back to the fundamental paper [11] of Sasaki published in 1958. He uses a given Riemannian metric g on a differentiable manifold M to construct a metric \tilde{g} on the tangent bundle $T M$ of M. Today this metric is a standard notion in the differential geometry called the Sasaki metric (or the metric $I+I I I)$. Its construction is based on a natural splitting of the tangent bundle TTM of $T M$ into its vertical and horizontal subbundles by means of the Levi-Civita connection ∇ on (M, g). The Sasaki metric is defined by

$$
\begin{aligned}
& \tilde{g}\left(X^{H}, Y^{H}\right)=g_{x}(X, Y), \\
& \tilde{g}\left(X^{H}, Y^{V}\right)=\tilde{g}\left(X^{V}, Y^{H}\right)=0, \\
& \tilde{g}\left(X^{V}, Y^{V}\right)=g_{x}(X, Y),
\end{aligned}
$$

for all $X, Y \in \Im_{0}^{1}(M)$ and $x \in M$. The Sasaki metric has been extensively studied by several authors, including Yano and Davies [12], Kowalski [9], Musso and Tricerri [10], and Aso [1]. Kowalski [9] calculated the Levi-Civita connection $\tilde{\nabla}$ of the Sasaki metric on $T M$ and its Riemannian curvature

[^0]tensor \tilde{R}. With this in hand Kowalski, Aso [1], Musso and Tricerri [10] derived interesting connections between the geometric properties of (M, g) and $(T M, \tilde{g})$.

Given a Riemannian metric g on a differentiable manifold M, other well known classical Riemannian metrics on $T M$, which are not necessarily positive definite, are as follows.
(a) The metric $I I$ is defined by

$$
\begin{aligned}
\tilde{g}\left(X^{H}, Y^{H}\right) & =0 \\
\tilde{g}\left(X^{H}, Y^{V}\right) & =\tilde{g}\left(X^{V}, Y^{H}\right)=g_{x}(X, Y) \\
\tilde{g}\left(X^{V}, Y^{V}\right) & =0
\end{aligned}
$$

for all $X, Y \in \Im_{0}^{1}(M)$ and $x \in M$.
(b) The metric $I+I I$ is defined by

$$
\begin{aligned}
\tilde{g}\left(X^{H}, Y^{H}\right) & =g_{x}(X, Y) \\
\tilde{g}\left(X^{H}, Y^{V}\right) & =\tilde{g}\left(X^{V}, Y^{H}\right)=g_{x}(X, Y) \\
\tilde{g}\left(X^{V}, Y^{V}\right) & =0
\end{aligned}
$$

for all $X, Y \in \Im_{0}^{1}(M)$ and $x \in M$. The metric $I+I I$ was introduced by Yano and Ishihara [13, pp. 147-155]. Also, they proved that the tangent bundle $T M$ with the metric $I+I I$ or the metric $I I$ has vanishing scalar curvature. In [4], Eni considered a pseudo-Riemannian metric on the tangent bundle over a Riemannian manifold, which is a generalization of the metric $I+I I$, depending on a symmetric tensor field on the base manifold and on four real-valued smooth functions defined on $[0, \infty]$ and studied the conditions under which the pseudo-Riemannian manifold has constant sectional curvature.
(c) The metric $I I+I I I$ is defined by

$$
\begin{aligned}
\tilde{g}\left(X^{H}, Y^{H}\right) & =0 \\
\tilde{g}\left(X^{H}, Y^{V}\right) & =\tilde{g}\left(X^{V}, Y^{H}\right)=g_{x}(X, Y) \\
\tilde{g}\left(X^{V}, Y^{V}\right) & =g_{x}(X, Y)
\end{aligned}
$$

for all $X, Y \in \Im_{0}^{1}(M)$ and $x \in M$ [13, p. 138]. Hasegawa and Yamauchi [6, 7] investigated infinitesimal projective transformations on the tangent bundle $T M$ with the metric $I I+I I I$. In this paper, we study some properties of the curvature tensor of the metric $I I+I I I$ and geodesics by means of the adapted frame on $T M$.
2. Basic formulas on the tangent bundle. Let ∇ be the Levi-Civita connection of g. Then the tangent space of $T M$ at any point $(x, u) \in$ $T M$ splits into the horizontal and vertical subspaces with respect to ∇ : $(T M)_{(x, u)}=H_{(x, u)} \oplus V_{(x, u)}$.

If $(x, u) \in T M$ is given, then for any vector $X \in \Im_{0}^{1}(M)$ there exists a unique vector $X^{H} \in H_{(x, u)}$ such that $\pi_{*} X^{H}=X$, where $\pi: T M \rightarrow M$ is the natural projection. We call X^{H} the horizontal lift of X to the point $(x, u) \in T M$. The vertical lift of a vector $X \in \Im_{0}^{1}(M)$ to $(x, u) \in T M$ is a vector $X^{V} \in V_{(x, u)}$ such that $X^{V}(d f)=X f$ for all functions f on M. Here we consider 1-forms $d f$ on M as functions on $T M$ (i.e. $d f(x, u)=u f$). Note that the map $X \mapsto X^{H}$ is an isomorphism between the vector spaces M_{x} and $H_{(x, u)}$. Similarly, the map $X \rightarrow X^{V}$ is an isomorphism between the vector spaces M_{x} and $V_{(x, u)}$. Obviously each tangent vector $\tilde{Z} \in(T M)_{(x, u)}$ can be written in the form $\tilde{Z}=X^{H}+Y^{V}$, where $X, Y \in M_{x}$ are uniquely determined vectors.

If ϕ is a smooth function on M, then

$$
\begin{equation*}
X^{H}(\phi \circ \pi)=(X \phi) \circ \pi \quad \text { and } \quad X^{V}(\phi \circ \pi)=0 \tag{2.1}
\end{equation*}
$$

for every vector field X on M.
A system of local coordinates $\left\{\left(U ; x^{i}, i=1, \ldots, n\right)\right\}$ in M induces on $T M$ a system of local coordinates $\left\{\left(\pi^{-1}(U) ; x^{i}, u^{i}, i=1, \ldots, n\right)\right\}$. Let $X=$ $\sum X^{i} \frac{\partial}{\partial x^{i}}$ be the local expression in U of a vector field X on M. Then the horizontal lift X^{H} and the vertical lift X^{V} of X are given, in the induced coordinates, by

$$
\begin{equation*}
X^{H}=\sum X^{i} \frac{\partial}{\partial x^{i}}-\sum \Gamma_{j k}^{i} u^{j} X^{k} \frac{\partial}{\partial u^{i}} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
X^{V}=\sum X^{i} \frac{\partial}{\partial u^{i}} \tag{2.3}
\end{equation*}
$$

respectively, where $\Gamma_{j k}^{i}$ denote the Christoffel symbols of ∇.
Now, let r be the norm of a vector u. Then, for any smooth function f from \mathbb{R} to \mathbb{R}, we have

$$
\begin{align*}
& X_{(x, u)}^{H}\left(f\left(r^{2}\right)\right)=0 \tag{2.4}\\
& X_{(x, u)}^{V}\left(f\left(r^{2}\right)\right)=2 f^{\prime}\left(r^{2}\right) g_{x}\left(X_{x}, u\right) \tag{2.5}
\end{align*}
$$

and in particular,

$$
\begin{align*}
& X_{(x, u)}^{H}\left(r^{2}\right)=0 \tag{2.6}\\
& X_{(x, u)}^{V}\left(r^{2}\right)=2 g_{x}\left(X_{x}, u\right) \tag{2.7}
\end{align*}
$$

Let X, Y and Z be any vector fields on M. If F_{Y} is the function on $T M$ defined by $F_{Y}(x, u)=g_{x}\left(Y_{x}, u\right)$ for all $(x, u) \in T M$, then

$$
\begin{align*}
X_{(x, u)}^{H}\left(F_{Y}\right) & =g_{x}\left(\left(\nabla_{X} Y\right)_{x}, u\right)=F_{\nabla_{X} Y}(x, u), \tag{2.8}\\
X_{(x, u)}^{V}\left(F_{Y}\right) & =g_{x}(X, Y), \tag{2.9}\\
X_{(x, u)}^{H}(g(Y, Z) \circ \pi) & =X_{x}(g(Y, Z)), \tag{2.10}\\
X_{(x, u)}^{V}(g(Y, Z) \circ \pi) & =0 . \tag{2.11}
\end{align*}
$$

The formulas (2.4)-(2.9) follow from (2.1) and

$$
X^{H} u^{i}=-\sum X^{\lambda} u^{\mu} \Gamma_{\lambda \mu}^{i} \quad \text { and } \quad X^{V} u^{i}=X^{i}
$$

and the relations (2.10) and (2.11) follow from (2.1) [2].
Suppose that $F \in \Im_{1}^{1}(M)$. Using (2.2) and (2.3), we define vector fields $(F(u))^{V}$ and $(F(u))^{H}$ on the tangent bundle $T M$ by

$$
\begin{aligned}
(F(u))^{V} & =\sum F_{m}^{i} u^{m} \frac{\partial}{\partial u^{i}} \\
(F(u))^{H} & =\sum F_{m}^{i} u^{m} \frac{\partial}{\partial x^{i}}-\sum \Gamma_{j k}^{i} u^{j} F_{m}^{k} u^{m} \frac{\partial}{\partial u^{i}},
\end{aligned}
$$

for any $u \in T M$.
Explicit expressions for the Lie bracket [,] of the tangent bundle $T M$ are given by Dombrowski in [3]. The bracket operation of vertical and horizontal vector fields is given by the formulas

$$
\left\{\begin{array}{l}
{\left[X^{H}, Y^{H}\right]_{(x, u)}=[X, Y]_{(x, u)}^{H}-\left(R\left(X_{x}, Y_{x}\right) u\right)^{V}} \tag{2.12}\\
{\left[X^{H}, Y^{V}\right]_{(x, u)}=\left(\nabla_{X} Y\right)_{(x, u)}^{V}} \\
{\left[X^{H}, Y^{V}\right]_{(x, u)}=0}
\end{array}\right.
$$

for all vector fields X and Y on M, where R is the Riemannian curvature of g defined by

$$
R(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]} .
$$

Finally, the following Koszul formula holds:

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & X(g(Y, Z))+Y(g(Z, X))-Z(g(X, Y))-g(X,[Y, Z]) \\
& +g(Y,[Z, X])+g(Z,[X, Y])
\end{aligned}
$$

for all vector fields X, Y and Z on M [8, p. 160].
3. Levi-Civita connection on $T M$. Let (M, g) be a Riemannian manifold. The metric $I I+I I I$ is a well defined Riemannian metric on the tangent bundle $T M$ of M by the identities:

$$
\begin{aligned}
& \tilde{g}_{(x, u)}\left(X^{H}, Y^{H}\right)=0 \\
& \tilde{g}_{(x, u)}\left(X^{H}, Y^{V}\right)=\tilde{g}_{(x, u)}\left(X^{V}, Y^{H}\right)=g_{x}(X, Y) \\
& \tilde{g}_{(x, u)}\left(X^{V}, Y^{V}\right)=g_{x}(X, Y)
\end{aligned}
$$

for all vector fields $X, Y \in \Im_{0}^{1}(T M)$ and $x \in M$.

Theorem 3.1. Let (M, g) be a Riemannian manifold and $\tilde{\nabla}$ be the LeviCivita connection of the tangent bundle $(T M, \tilde{g})$ equipped with the metric $I I+I I I$. Then

$$
\begin{align*}
\left(\tilde{\nabla}_{X^{H}} Y^{H}\right)_{(x, u)}= & \left(\nabla_{X} Y\right)_{(x, u)}^{H}-\frac{1}{2}\left(R_{x}(u, X) Y+R_{x}(u, Y) X\right)^{H} \tag{i}\\
& +\left(R_{x}(u, X) Y\right)^{V}
\end{align*}
$$

$$
\begin{align*}
\left(\tilde{\nabla}_{X^{H}} Y^{V}\right)_{(x, u)}= & -\frac{1}{2}\left(R_{x}(u, Y) X\right)^{H}+\left(\nabla_{X} Y\right)_{(x, u)}^{V} \tag{ii}\\
& +\frac{1}{2}\left(R_{x}(u, Y) X\right)^{V}
\end{align*}
$$

$$
\begin{equation*}
\left(\tilde{\nabla}_{X^{V}} Y^{H}\right)_{(x, u)}=-\frac{1}{2}\left(R_{x}(u, X) Y\right)^{H}+\frac{1}{2}\left(R_{x}(u, X) Y\right)^{V} \tag{iii}
\end{equation*}
$$

for all vector fields $X, Y \in \Im_{0}^{1}(M)$, where R is the Riemannian curvature of ∇.

Since the horizontal and the vertical lifts to $T M$ of vector fields on M generate the $C^{\infty}(T M, \mathbb{R})$-module of vector fields on $T M$, formulas (i)-(iv) above completely determine the Levi-Civita connection $\tilde{\nabla}$ of the metric $I I+I I I$ on $T M$.

Proof. The statement is a direct consequence of usual calculations using the Koszul formula.
4. Curvature tensor on $T M$. Let G be a tensor field of type $(1,2)$ on M. Then we define vector fields $(G(u, v))^{V}$ and $(G(u, v))^{H}$ on the tangent bundle $T M$ by

$$
\begin{aligned}
(G(u, v))^{V} & =\sum G_{i j}^{k} u^{i} v^{j} \frac{\partial}{\partial u^{k}} \\
(G(u, v))^{H} & =\sum G_{i j}^{k} u^{i} v^{j} \frac{\partial}{\partial x^{k}}-\sum \Gamma_{s l}^{k} u^{s} G_{i j}^{l} u^{i} v^{j} \frac{\partial}{\partial u^{k}}
\end{aligned}
$$

for any $u, v \in T M$.
We now turn to the Riemannian curvature tensor \tilde{R} of the tangent bundle $T M$ equipped with the metric $I I+I I I$. For this we need the following useful lemma:

LEMMA 4.1. Let (M, g) be a Riemannian manifold and $\tilde{\nabla}$ be the LeviCivita connection of the tangent bundle $(T M, \tilde{g})$ with the metric $I I+I I I$. Let $F: T M \rightarrow T M$ be a smooth bundle endomorphism. Then

$$
\begin{aligned}
& \tilde{\nabla}_{X^{V}}(F(u))^{V}=F(X)^{V} \\
& \tilde{\nabla}_{X^{V}}(F(u))^{H}=F(X)^{H}-\frac{1}{2}(R(u, X) F(u))^{H}+\frac{1}{2}(R(u, X) F(u))^{V}
\end{aligned}
$$

$$
\begin{aligned}
\tilde{\nabla}_{X^{H}}(F(u))^{V}= & \left(\left(\nabla_{X} F\right)(u)\right)^{V}+\frac{1}{2}(R(u, F(u)) X)^{V}-\frac{1}{2}(R(u, F(u)) X)^{H} \\
\tilde{\nabla}_{X^{H}}(F(u))^{H}= & (R(u, X) F(u))^{V}+\left(\left(\nabla_{X} F\right)(u)\right)^{H} \\
& -\frac{1}{2}(R(u, X) F(u)+R(u, F(u)) X)^{H} \\
\tilde{\nabla}_{(F(u))^{V}} X^{V}= & 0 \\
\tilde{\nabla}_{(F(u))^{V}} X^{H}= & \frac{1}{2}(R(u, F(u)) X)^{V}-\frac{1}{2}(R(u, F(u)) X)^{H}
\end{aligned}
$$

for any $X \in \Im_{0}^{1}(M)$ and $u \in T M$ (for natural metrics, see [5]).
Proof. The statement is a direct consequence of Theorem 3.1.
Theorem 4.2. Let (M, g) be a Riemannian manifold and \tilde{R} be the Riemannian curvature tensor of the tangent bundle $(T M, \tilde{g})$ equipped with the metric $I I+I I I$. Then

$$
\begin{equation*}
\tilde{R}_{(x, u)}\left(X^{V}, Y^{V}\right) Z^{V}=0 \tag{i}
\end{equation*}
$$

(ii) $\quad \tilde{R}_{(x, u)}\left(X^{V}, Y^{V}\right) Z^{H}=$

$$
\begin{aligned}
& {\left[R(X, Y) Z+\frac{1}{4} R(u, Y)(R(u, X) Z)-\frac{1}{4} R(u, X)(R(u, Y) Z)\right]_{x}^{V}} \\
& +\left[-R(X, Y) Z+\frac{1}{4} R(u, X)(R(u, Y) Z)-\frac{1}{4} R(u, Y)(R(u, X) Z)\right]_{x}^{H}
\end{aligned}
$$

(iii) $\quad \tilde{R}_{(x, u)}\left(X^{H}, Y^{V}\right) Z^{V}=\left[-\frac{1}{2} R(Y, Z) X+\frac{1}{4} R(u, Y)(R(u, Z) X)\right]_{x}^{V}$

$$
+\left[\frac{1}{2} R(Y, Z) X-\frac{1}{4} R(u, Y)(R(u, Z) X)\right]_{x}^{H}
$$

(iv) $\tilde{R}_{(x, u)}\left(X^{H}, Y^{V}\right) Z^{H}=\left[R(X, Y) Z+\frac{1}{2}\left(\nabla_{x} R\right)(u, Y) Z\right.$

$$
\begin{aligned}
& +\frac{1}{4} R(u, Y)(R(u, X) Z)+\frac{1}{4} R(u, Y)(R(u, Z) X) \\
& \left.+\frac{1}{4} R(u, R(u, Y) Z) X-\frac{1}{2} R(u, X)(R(u, Y) Z)\right]_{x}^{V} \\
& +\left[\frac{1}{2} R(Y, X) Z+\frac{1}{2} R(Y, Z) X\right. \\
& -\frac{1}{2}\left(\nabla_{X} R\right)(u, Y) Z+\frac{1}{4} R(u, X)(R(u, Y) Z)-\frac{1}{4} R(u, Y)(R(u, X) Z) \\
& \left.-\frac{1}{4} R(u, Y)(R(u, Z) X)\right]_{x}^{H}
\end{aligned}
$$

(v) $\tilde{R}_{(x, u)}\left(X^{H}, Y^{H}\right) Z^{V}=$

$$
\left[R(X, Y) Z+\frac{1}{2}\left(\nabla_{X} R\right)(u, Z) Y-\frac{1}{2}\left(\nabla_{Y} R\right)(u, Z) X\right.
$$

$$
+\frac{1}{4} R(u, R(u, Z) Y) X-\frac{1}{4} R(u, R(u, Z) X) Y+\frac{1}{2} R(u, Y)(R(u, Z) X)
$$

$$
\left.-\frac{1}{2} R(u, X)(R(u, Z) Y)\right]_{x}^{V}+\left[\frac{1}{2}\left(\nabla_{Y} R\right)(u, Z) X-\frac{1}{2}\left(\nabla_{X} R\right)(u, Z) Y\right.
$$

$$
\left.+\frac{1}{4} R(u, X)(R(u, Z) Y)-\frac{1}{4} R(u, Y)(R(u, Z) X)\right]_{x}^{H}
$$

(vi) $\quad \tilde{R}_{(x, u)}\left(X^{H}, Y^{H}\right) Z^{H}=$

$$
\begin{aligned}
& {\left[\left(\nabla_{X} R\right)(u, Y) Z-\left(\nabla_{Y} R\right)(u, X) Z+\frac{1}{2} R(u, Y)(R(u, X) Z)\right.} \\
& +\frac{1}{2} R(u, Y)(R(u, Z) X)-\frac{1}{2} R(u, X)(R(u, Y) Z)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{2} R(u, X)(R(u, Z) Y)+\frac{1}{2} R(u, R(u, Y) Z) X \\
& \left.+\frac{1}{2} R(u, R(X, Y) u) Z-\frac{1}{2} R(u, R(u, X) Z) Y\right]_{x}^{V} \\
& +\left[R(X, Y) Z+\frac{1}{2}\left(\nabla_{Y} R\right)(u, X) Z+\frac{1}{2}\left(\nabla_{Y} R\right)(u, Z) X\right. \\
& -\frac{1}{2}\left(\nabla_{X} R\right)(u, Y) Z-\frac{1}{2}\left(\nabla_{X} R\right)(u, Z) Y+\frac{1}{4} R(u, X)(R(u, Y) Z) \\
& +\frac{1}{4} R(u, X)(R(u, Z) Y)-\frac{1}{4} R(u, Y)(R(u, X) Z) \\
& -\frac{1}{4} R(u, Y)(R(u, Z) X)+\frac{1}{4} R(u, R(u, Z) Y) X \\
& +\frac{1}{4} R(u, R(u, X) Z) Y-\frac{1}{4} R(u, R(u, Y) Z) X \\
& \left.-\frac{1}{4} R(u, R(u, Z) X) Y-\frac{1}{2} R(u, R(X, Y) u) Z\right]_{x}^{H},
\end{aligned}
$$

for vectors $X, Y, Z \in \Im_{0}^{1}(M)$.
Proof. (i) The result follows directly from Theorem 3.1 and (2.12).
(iii) Let $F: T M \rightarrow T M$ be the bundle endomorphism given by

$$
F: u \mapsto \frac{1}{2} R(u, Z) X .
$$

Applying Theorem 3.1 and Lemma 4.1 we see that

$$
\tilde{\nabla}_{Y^{V}}(F(u))^{H}=F(Y)^{H}-\frac{1}{2}(R(u, Y) F(u))^{H}+\frac{1}{2}(R(u, Y) F(u))^{V} .
$$

This implies that

$$
\begin{aligned}
\tilde{R}\left(X^{H},\right. & \left.Y^{V}\right) Z^{V}=\tilde{\nabla}_{X^{H}} \tilde{\nabla}_{Y^{V}} Z^{V}-\tilde{\nabla}_{Y^{V}} \tilde{\nabla}_{X^{H}} Z^{V}-\tilde{\nabla}_{\left[X^{H}, Y^{V}\right]} Z^{V} \\
\quad= & -\tilde{\nabla}_{Y^{V}}\left(\left(\nabla_{X} Z\right)^{V}+\frac{1}{2}(R(u, Z) X)^{V}-\frac{1}{2}(R(u, Z) X)^{H}\right)-\tilde{\nabla}_{\left(\nabla_{X} Y\right)^{V}} Z^{V} \\
= & -\tilde{\nabla}_{Y^{V}}(F(u))^{V}+\tilde{\nabla}_{Y^{V}}(F(u))^{H} \\
= & -F(Y)^{V}+F(Y)^{H}-\frac{1}{2}(R(u, Y) F(u))^{H}+\frac{1}{2}(R(u, Y) F(u))^{V} \\
= & {\left[-\frac{1}{2} R(Y, Z) X+\frac{1}{4} R(u, Y)(R(u, Z) X)\right]^{V} } \\
\quad & +\left[\frac{1}{2} R(Y, Z) X-\frac{1}{4} R(u, Y)(R(u, Z) X)\right]^{H} .
\end{aligned}
$$

By the calculations similar to those in (i) and (iii), the proofs of (ii) and (iv)-(vi) are obtained easily.

We shall now compare the geometries of the manifold (M, g) and its tangent bundle $(T M, \tilde{g})$ with the metric $I I+I I I$.

Theorem 4.3. Let (M, g) be a Riemannian manifold and $(T M, \tilde{g})$ be its tangent bundle with the metric $I I+I I I$. Then $T M$ is flat if and only if M is flat.

Proof. From Theorem 4.2 it is clear that (M, g) is flat, then $(T M, \tilde{g})$ is also flat. Conversely, if we assume $\tilde{R}=0$ and calculate the Riemannian curvature tensor for three horizontal vector fields at $(x, 0)$ we get

$$
R_{x}(X, Y) Z=\tilde{R}_{(x, 0)}\left(X^{H}, Y^{H}\right) Z^{H}=0 .
$$

Hence (M, g) is flat.

Theorem 4.4. Let (M, g) be a Riemannian manifold and $(T M, \tilde{g})$ be its tangent bundle with the metric $I I+I I I$. If $(T M, \tilde{g})$ is locally symmetric, then (M, g) is also locally symmetric.

Proof. We begin by calculating $\left(\tilde{\nabla}_{W^{H}} \tilde{R}\right)\left(X^{H}, Y^{H}\right) Z^{H}$ for all $X, Y, Z \in$ $\Im_{0}^{1}(M)$. If we extend X, Y, Z to vectors on $T M$, then we can write

$$
\begin{aligned}
\left(\tilde{\nabla}_{W^{H}} \tilde{R}\right)\left(X^{H}, Y^{H}\right) Z^{H}= & \tilde{\nabla}_{W^{H}}\left(\tilde{R}\left(X^{H}, Y^{H}\right) Z^{H}\right)-\tilde{R}\left(\tilde{\nabla}_{W^{H}} X^{H}, Y^{H}\right) Z^{H} \\
& -\tilde{R}\left(X^{H}, \tilde{\nabla}_{W^{H}} Y^{H}\right) Z^{H}-\tilde{R}\left(X^{H}, Y^{H}\right) \tilde{\nabla}_{W^{H}} Z^{H} .
\end{aligned}
$$

Using Theorems 3.1(i) and 4.2(vi), we deduce that

$$
\begin{equation*}
\left(\tilde{\nabla}_{W^{H}} \tilde{R}\right)\left(X^{H}, Y^{H}\right) Z^{H}=\tilde{\nabla}_{W^{H}}\left[\left(\left(\nabla_{X} R\right)(u, Y) Z-\left(\nabla_{Y} R\right)(u, X) Z\right.\right. \tag{4.1}
\end{equation*}
$$

$$
+\frac{1}{2} R(u, Y)(R(u, X) Z)+\frac{1}{2} R(u, Y)(R(u, Z) X)-\frac{1}{2} R(u, X)(R(u, Y) Z)
$$

$$
-\frac{1}{2} R(u, X)(R(u, Z) Y)+\frac{1}{2} R(u, R(u, Y) Z) X+\frac{1}{2} R(u, R(X, Y) u) Z
$$

$$
\left.-\frac{1}{2} R(u, R(u, X) Z) Y\right)_{x}^{V}+\left(R(X, Y) Z+\frac{1}{2}\left(\nabla_{Y} R\right)(u, X) Z+\frac{1}{2}\left(\nabla_{Y} R\right)(u, Z) X\right.
$$

$$
-\frac{1}{2}\left(\nabla_{X} R\right)(u, Y) Z-\frac{1}{2}\left(\nabla_{X} R\right)(u, Z) Y+\frac{1}{4} R(u, X)(R(u, Y) Z)
$$

$$
+\frac{1}{4} R(u, X)(R(u, Z) Y)-\frac{1}{4} R(u, Y)(R(u, X) Z)-\frac{1}{4} R(u, Y)(R(u, Z) X)
$$

$$
+\frac{1}{4} R(u, R(u, Z) Y) X+\frac{1}{4} R(u, R(u, X) Z) Y-\frac{1}{4} R(u, R(u, Y) Z) X
$$

$$
\left.\left.-\frac{1}{4} R(u, R(u, Z) X) Y-\frac{1}{2} R(u, R(X, Y) u) Z\right)_{x}^{H}\right]-\tilde{R}\left(\left(\nabla_{W} X\right)_{(x, u)}^{H}, Y^{H}\right) Z^{H}
$$

$$
+\tilde{R}\left(\frac{1}{2}\left(R_{x}(u, W) X+R_{x}(u, X) W\right)^{H}, Y^{H}\right) Z^{H}-\tilde{R}\left(\left(R_{x}(u, W) X\right)^{V}, Y^{H}\right) Z^{H}
$$

$$
-\tilde{R}\left(X^{H},\left(\nabla_{W} Y\right)_{(x, u)}^{H}\right) Z^{H}+\tilde{R}\left(X^{H}, \frac{1}{2}\left(R_{x}(u, W) Y+R_{x}(u, Y) W\right)^{H}\right) Z^{H}
$$

$$
-\tilde{R}\left(X^{H},\left(R_{x}(u, W) Y\right)^{V}\right) Z^{H}-\tilde{R}\left(X^{H}, Y^{H}\right)\left(\nabla_{W} Z\right)_{(x, u)}^{H}
$$

$$
-\tilde{R}\left(X^{H}, Y^{H}\right)\left(R_{x}(u, W) Z\right)^{V}+\frac{1}{2} \tilde{R}\left(X^{H}, Y^{H}\right)\left(R_{x}(u, W) Z+R_{x}(u, Z) W\right)^{H}
$$

If we restrict ourselves to the zero section of $T M$ which is the base manifold M, then from (4.1) we can write

$$
\begin{aligned}
{\left[\left(\tilde{\nabla}_{W^{H}} \tilde{R}\right)(\right.} & \left.\left.X^{H}, Y^{H}\right) Z^{H}\right]_{(x, 0)} \\
= & \tilde{\nabla}_{W^{H}}[R(X, Y) Z]_{(x, 0)}^{H}-\tilde{R}_{(x, 0)}\left(\left(\nabla_{W} X\right)^{H}, Y^{H}\right) Z^{H} \\
& \quad-\tilde{R}_{(x, 0)}\left(X^{H},\left(\nabla_{W} Y\right)^{H}\right) Z^{H}-\tilde{R}_{(x, 0)}\left(X^{H}, Y^{H}\right)\left(\nabla_{W} Z\right)^{H}
\end{aligned}
$$

By Theorem 3.1(i), we have

$$
\begin{align*}
\tilde{\nabla}_{W^{H}}[R(X, Y) Z]_{(x, 0)}^{H} & =\left[\nabla_{W}(R(X, Y) Z)\right]_{(x, 0)}^{H}, \tag{4.2}\\
\tilde{R}_{(x, 0)}\left(\left(\nabla_{W} X\right)^{H}, Y^{H}\right) Z^{H} & =\left[R\left(\nabla_{W} X, Y\right) Z\right]_{(x, 0)}^{H}, \tag{4.3}\\
\tilde{R}_{(x, 0)}\left(X^{H},\left(\nabla_{W} Y\right)^{H}\right) Z^{H} & =\left[R\left(X, \nabla_{W} Y\right) Z\right]_{(x, 0)}^{H}, \tag{4.4}\\
\tilde{R}_{(x, 0)}\left(X^{H}, Y^{H}\right)\left(\nabla_{W} Z\right)^{H} & =\left[R(X, Y) \nabla_{W} Z\right]_{(x, 0)}^{H} . \tag{4.5}
\end{align*}
$$

By substituting (4.2)-(4.5) to the above formula, we conclude that

$$
\begin{aligned}
{\left[\left(\tilde{\nabla}_{W^{H}} \tilde{R}\right)\left(X^{H}, Y^{H}\right) Z^{H}\right]_{(x, 0)}=} & {\left[\nabla_{W}(R(X, Y) Z)\right]_{(x, 0)}^{H}-\left[R\left(\nabla_{W} X, Y\right) Z\right]_{(x, 0)}^{H} } \\
& -\left[R\left(X, \nabla_{W} Y\right) Z\right]_{(x, 0)}^{H}-\left[R(X, Y) \nabla_{W} Z\right]_{(x, 0)}^{H}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\left[\left(\tilde{\nabla}_{W^{H}} \tilde{R}\right)\left(X^{H}, Y^{H}\right) Z^{H}\right]_{(x, 0)}=\left[\left(\nabla_{W} R\right)(X, Y) Z\right]_{(x, 0)}^{H} \tag{4.6}
\end{equation*}
$$

for all $X, Y, Z, W \in \Im_{0}^{1}(M)$. Hence, if we suppose that $(T M, \tilde{g})$ is locally symmetric, i.e. $\tilde{\nabla} \tilde{R}=0$ identically, then by (4.6), $\nabla R=0$ identically.
5. Geodesics on the tangent bundle with the metric $I I+I I I$. Let (M, g) be a Riemannian manifold, ∇ the Riemannian connection of g, and $\Gamma_{j i}^{a}$ the coefficients of ∇, i.e. $\nabla_{\partial_{j}} \partial_{i}=\Gamma_{j i}^{a} \partial_{a}$ with respect to the natural frame $\left\{\partial_{h}\right\}$. The curvature tensor R of ∇ has components $R_{k j i}^{h}$. The indices i, j, h, \ldots range in $\{1, \ldots, n\}$ while the indices $\alpha, \beta, \lambda, \ldots$ range in $\{1, \ldots, n ; n+1, \ldots, 2 n\}$. We put $\bar{i}=n+i$. Summation over repeated indices is always implied.

With the Riemannian connection ∇ given on M, we can introduce on each induced coordinate neighbourhood $\pi^{-1}(U)$ of $T M$ a frame field which is very useful in our computation. In each local chart $U\left(x^{h}\right)$ of M, we put

$$
X_{(j)}=\frac{\partial}{\partial x^{j}}=\delta_{j}^{h} \frac{\partial}{\partial x^{h}} \in \Im_{0}^{1}(M)
$$

We now define $2 n$ local vector fields $X_{(j)}^{H}$ and $X_{(j)}^{V}$ which form a basis of the tangent space $T_{\tilde{p}} T M$ at each point $\tilde{P} \in \pi^{-1}(P)$. Their components are given respectively by

$$
X_{(j)}^{H}=\delta_{j}^{h} \partial_{h}-y^{s} \Gamma_{s j}^{h} \partial_{\bar{h}}, \quad X_{(j)}^{V}=\delta_{j}^{h} \partial_{\bar{h}}
$$

with respect to the natural frame $\left\{\partial / \partial x^{H}\right\}=\left\{\partial / \partial x^{h}, \partial / \partial x^{h}\right\}$ on $T M$, where δ_{i}^{J} is the Kronecker delta and $y^{s}=x^{\bar{s}}$. These $2 n$ vector fields are linearly independent and generate, respectively, the horizontal distribution of ∇ and the vertical distribution of $T M$. We call the set $\left\{X_{(j)}^{H}, X_{(j)}^{V}\right\}$ the frame adapted to the affine connection ∇ in $\pi^{-1}(U) \subset T M$. On putting $e_{(j)}=X_{(j)}^{H}, e_{(\bar{j})}=X_{(j)}^{V}$, we write the adapted frame as $\left\{e_{\beta}\right\}=\left\{e_{(j)}, e_{(\bar{j})}\right\}$.

We now consider local 1-forms ω^{α} defined by

$$
\omega^{\alpha}=\tilde{A}^{\alpha}{ }_{B} d x^{B}
$$

in $\pi^{-1}(U)$, where

$$
\tilde{A}^{\alpha}{ }_{B}=\left(\begin{array}{cc}
\tilde{A}^{h}{ }_{j} & \tilde{A}^{h_{\bar{j}}} \\
\tilde{A}^{\bar{h}} & \tilde{A}^{\bar{h}} \\
\bar{j}
\end{array}\right)=\left(\begin{array}{cc}
\delta_{j}^{h} & 0 \\
y^{s} \Gamma_{s j}^{h} & \delta_{j}^{h}
\end{array}\right)
$$

is the inverse matrix of the matrix

$$
A_{\beta}{ }^{A}=\left(\begin{array}{cc}
A_{j}{ }^{h} & A_{\bar{j}}{ }^{h} \\
A_{j}{ }^{\bar{h}} & A_{\bar{j}}^{\bar{h}}
\end{array}\right)=\left(\begin{array}{cc}
\delta_{j}^{h} & 0 \\
-y^{s} \Gamma_{s j}^{h} & \delta_{j}^{h}
\end{array}\right)
$$

of frame changes $e_{\beta}=A_{\beta}{ }^{A} \partial_{A}$. These $2 n 1$-forms ω^{α} are linearly independent on $T M$. We call the set $\left\{\omega^{\alpha}\right\}$ the dual adapted co-frame.

For various types of indices, we have

$$
\left\{\begin{array}{l}
e_{j}=A_{j}^{A} \partial_{A}=\partial_{j}-y^{s} \Gamma_{s j}^{h} \partial_{\bar{h}}, \\
e_{\bar{j}}=A_{\bar{j}}^{A} \partial_{A}=\partial_{\bar{j}},
\end{array}\right.
$$

and

$$
\left\{\begin{array}{c}
\omega^{j}=\tilde{A}^{j}{ }_{B} d x^{B}=d x^{j}, \tag{5.1}\\
\omega^{\bar{j}}=\tilde{A}^{\bar{j}}{ }_{B} d x^{B}=\delta y^{h},
\end{array}\right.
$$

where $\delta y^{h}=d y^{h}+y^{b} \Gamma_{b a}^{h} d x^{a}$.
Let $\tilde{\Gamma}_{\alpha \beta}^{\gamma}$ denote the components of the Riemannian connection $\tilde{\nabla}$ determined by the metric $I I+I I I$. If we take e_{j} and $e_{\bar{j}}$ instead of X^{H} and X^{V} in Theorem 3.1, then we get

$$
\left\{\begin{array}{l}
\tilde{\Gamma}_{j i}^{h}=\Gamma_{j i}^{h}-\frac{1}{2} y^{b}\left(R_{b j i}^{h}+R_{b i j}^{h}\right), \quad \tilde{\Gamma}_{j i}^{h}=y^{b} R_{b j i}^{h}, \quad \tilde{\Gamma}_{\bar{j}}^{h}=0, \tag{5.2}\\
\tilde{\Gamma}_{j i}^{h}=0, \quad \tilde{\Gamma}_{j \bar{i}}^{h}=\Gamma_{j i}^{h}+\frac{1}{2} y^{b} \Gamma_{b i j}^{h}, \quad \tilde{\Gamma}_{j \bar{i}}^{h}=-\frac{1}{2} y^{b} R_{b i j}^{h}, \\
\tilde{\Gamma}_{\bar{j} i}^{h}=\frac{1}{2} y^{b} R_{b j i}^{h}, \quad \tilde{\Gamma}_{\bar{j} i}^{h}=-\frac{1}{2} y^{b} R_{b j i}^{h},
\end{array}\right.
$$

with respect to the adapted frame, where $\Gamma_{j i}^{h}$ denote the Levi-Civita connection components constructed with g on M with respect to the natural frame $\left\{\partial_{i}\right\}$ (see also $[6,7]$).

Let $\tilde{\gamma}=\tilde{\gamma}(t)$ be a curve on $T M$ and suppose that $\tilde{\gamma}$ is locally expressed by $x^{R}=x^{R}(t)$, i.e. $x^{r}=x_{-}^{r}(t), y^{r}=X^{r}(t)$ with respect to the natural frame $\left\{\partial / \partial x^{I}\right\}=\left\{\partial / \partial x^{i}, \partial / \partial x^{\bar{i}}\right\}, t$ being the arc length of $\tilde{\gamma}$. Then the curve $\gamma=\pi \circ \tilde{\gamma}$ on M is called the projection of the curve $\tilde{\gamma}$ and denoted by $\pi \tilde{\gamma}$; it is expressed locally by $x^{r}=x^{r}(t)$.

Let ∇ be a Riemannian connection on M. Then a curve $\tilde{\gamma}$ is, by definition, a geodesic on $T M$ with respect to $\tilde{\nabla}$ if and only if it satisfies the differential equations

$$
\begin{equation*}
\frac{\delta^{2} x^{R}}{d t^{2}}=\frac{d^{2} x^{R}}{d t^{2}}+\tilde{\Gamma}_{C B}^{R} \frac{d x^{C}}{d t} \frac{d x^{B}}{d t}=0 . \tag{5.3}
\end{equation*}
$$

We find it more convenient to refer equations (5.3) to the adapted frame. Using (5.1), we now put

$$
\begin{equation*}
\frac{\omega^{r}}{d t}=\frac{d x^{r}}{d t}, \quad \frac{\omega^{\bar{r}}}{d t}=\frac{\delta y^{r}}{d t} \tag{5.4}
\end{equation*}
$$

along a curve $\tilde{\gamma}$. The equation (5.3) can be transformed, using (5.4), into

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\omega^{\varepsilon}}{d t}\right)+\tilde{\Gamma}_{\alpha \beta}^{\varepsilon} \frac{\omega^{\alpha}}{d t} \frac{\omega^{\beta}}{d t}=0 \tag{5.5}
\end{equation*}
$$

with respect to the adapted frame.
By means of (5.2), (5.5) reduces to

$$
\begin{align*}
& \frac{d^{2} x^{r}}{d t^{2}}+\Gamma_{j i}^{r} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}-\frac{1}{2} y^{b}\left(R_{b j i}^{r}+R_{b i j}^{r}\right) \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}-y^{b} R_{b j i}^{r} \frac{d x^{i}}{d t} \frac{\delta y^{j}}{d t}=0, \tag{5.6}\\
& \frac{d}{d t}\left(\frac{\delta y^{r}}{d t}\right)+\Gamma_{i j}^{r} \frac{d x^{i}}{d t} \frac{\delta y^{j}}{d t}+y^{b} R_{b j i}^{r} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}+y^{b} R_{b j i}^{r} \frac{d x^{i}}{d t} \frac{\delta y^{j}}{d t}=0 .
\end{align*}
$$

Let now $\tilde{\gamma}$ be a geodesic of $\tilde{\nabla}$. If $\tilde{\gamma}$ lies on a fibre $\pi^{-1}(P)=T(P)$, $P=P\left(x^{h}\right)$ given by $x^{h}=c^{h}=$ const, then (5.7) reduces to

$$
\frac{d^{2} y^{r}}{d t^{2}}=0 \quad\left(\frac{d x^{h}}{d t}=0\right)
$$

from which we have

$$
x^{\bar{r}}=a^{\bar{r}} t+b^{\bar{r}}, \quad \bar{r}=n+1, \ldots, 2 n
$$

$a^{\bar{r}}$ and $b^{\bar{r}}$ being constant. Hence we have
Theorem 5.1. If a geodesic $\tilde{\gamma}$ lies on a fibre of TM with respect to the metric II +III, then the geodesic is expressed by linear equations

$$
\left\{\begin{array}{l}
x^{h}=c^{h}, \\
x^{\bar{h}}=a^{\bar{h}} t+b^{\bar{h}},
\end{array}\right.
$$

with respect to the natural frame, where $c^{h}, a^{\bar{h}}$ and $b^{\bar{h}}$ are constant.
Next, let γ be a curve on M expressed locally by $x^{h}=x^{h}(t)$ and $X^{h}(t)$ be a vector field along γ. Then, on the tangent bundle $T M$ over the Riemannian manifold M, we define a curve γ^{H} by

$$
\left\{\begin{array}{l}
x^{h}=x^{h}(t), \\
x^{\bar{h}}=X^{h}(t) .
\end{array}\right.
$$

If the curve γ^{H} satisfies at all points the relation

$$
\frac{\delta X^{h}}{d t}=0,
$$

i.e. $X^{h}(t)$ is a parallel vector field along γ, then the curve γ^{H} is said to be a horizontal lift of γ. From (5.6) and (5.7), we easily deduce

Theorem 5.2. The horizontal lift of a geodesic on M need not be a geodesic on $T M$ with respect to the connection $\tilde{\nabla}$.

The natural lift of the curve γ having the local expression $x^{h}=x^{h}(t)$ is defined by

$$
\tilde{\gamma}:\left\{\begin{array}{l}
x^{h}=x^{h}(t), \\
x^{\bar{h}}=\frac{d x^{h}}{d t}(t) .
\end{array}\right.
$$

For the natural lift of the curve γ, from (5.6) and (5.7), we obtain

$$
\begin{align*}
& \frac{\delta^{2} x^{r}}{d t^{2}}-R_{b j i}^{r} \frac{d x^{i}}{d t} \frac{\delta^{2} x^{j}}{d t^{2}} \frac{d x^{b}}{d t}=0 \tag{5.8}\\
& \frac{\delta^{3} x^{r}}{d t^{3}}+R_{b j i}^{r} \frac{d x^{i}}{d t} \frac{\delta^{2} x^{j}}{d t^{2}} \frac{d x^{b}}{d t}=0 \tag{5.9}
\end{align*}
$$

which shows that the natural lift of the curve γ is a geodesic if and only if the equations (5.8) and (5.9) hold.

Let now γ be a geodesic on M. Then

$$
\begin{equation*}
\frac{\delta^{2} x^{r}}{d t^{2}}=\frac{d^{2} x^{r}}{d t^{2}}+\Gamma_{j i}^{r} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}=0 . \tag{5.10}
\end{equation*}
$$

Substituting (5.10) into (5.8) and (5.9), we have
Theorem 5.3. The natural lift of any geodesic on M is a geodesic on $T M$ with the metric $I I+I I I$.

Acknowledgements. The authors express their gratitude to the anonymous referee for his (her) helpful suggestions and detailed comments.

References

[2] M. T. K. Abbassi and M. Sarih, On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno) 41 (2005), 71-92.
[1] K. Aso, Notes on some properties of the sectional curvature of the tangent bundle, Yokohama Math. J. 29 (1981), 1-5.
[3] P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73-88.
[4] C. Eni, A pseudo-Riemannian metric on the tangent bundle of a Riemannian manifold, Balkan J. Geom. Appl. 13 (2008), 35-42.
[5] S. Gudmundsson and E. Kappos, On the geometry of the tangent bundles, Expo. Math. 20 (2002), 1-41.
[6] I. Hasegawa and K. Yamauchi, Infinitesimal projective transformations on the tangent bundles with lift connections, Sci. Math. Japon. 57 (2003), 489-503.
[7] -, 一, Infinitesimal projective transformations on tangent bundles, in: M. Anastasiei and P. L. Antonelli (eds.), Finsler and Lagrange Geometries, Kluwer, Dordrecht, 2003, 91-98.
[8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Wiley-Interscience, New York, 1963.
[9] O. Kowalski, Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971), 124-129.
[10] E. Musso and F. Tricerri, Riemannian metrics on tangent bundles, Ann. Mat. Pura Appl. (4) 150 (1988), 1-19.
[11] S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. 10 (1958), 338-358.
[12] K. Yano and E. T. Davies, On the tangent bundles of Finsler and Riemannian manifolds, Rend. Circ. Mat. Palermo (2) 12 (1963), 211-228.
[13] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Dekker, New York, 1973.
A. Gezer, O. Tarakci

Department of Mathematics Faculty of Science
Ataturk University
25240 Erzurum, Turkey
E-mail: agezer@atauni.edu.tr
tarakci@atauni.edu.tr
A. A. Salimov

Department of Geometry
Baku State University
370145 Baku, Azerbaijan
E-mail: asalimov@atauni.edu.tr

Received 26.1.2009
and in final form 17.2.2009

[^0]: 2000 Mathematics Subject Classification: Primary 53C25; Secondary 53C22.
 Key words and phrases: Riemannian manifold, metric II + III, Riemannian curvature, geodesic.

