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Uniqueness of entire functions and fixed points

by X1A0-GUANG QI and LIAN-ZHONG YANG (Jinan)

Abstract. Let f and g be entire functions, n, k and m be positive integers, and A,
1 be complex numbers with |A| 4 || # 0. We prove that (f™(2)(Af™(2) + )™ must
have infinitely many fixed points if n > k + 2; furthermore, if (f™(z)(Af™(z) 4+ p))* and
(g™ (2)(Ag™(2) + 1)) have the same fixed points with the same multiplicities, then either
f = cg for a constant ¢, or f and g assume certain forms provided that n > 2k +m™ + 4,
where m”™ is an integer that depends only on .

1. Introduction and main results. In this paper, a meromorphic
function will mean meromorphic in the whole complex plane. We shall use
the standard notations of value distribution theory [10]: T'(r, f), m(r, f),
N(r, f), N(r, f), etc. We denote by S(r, f) any function that satisfies S(r, f)
=o(T(r, f)) as r — oo possibly outside a set of finite linear measure.

We say that two meromorphic functions f and g share a small function
a(z) IM (ignoring multiplicities) when f —a and g — a have the same zeros.
If f and g have the same zeros with the same multiplicities, then we say
that f and g share a(z) CM (counting multiplicities).

Let p be a positive integer and a € C. We denote by N(r,1/(f — a)) the
counting function of the zeros of f — a, where an m-fold zero is counted m
times if m < p and p times if m > p. We say that a finite value zq is a fized
point of f if f(z9) = 2o.

In 1959, Hayman [4] proved the following result.

THEOREM A. Let f be a transcendental entire function, and n > 1 be a
positive integer. Then f™f' — 1 has infinitely many zeros.

Wang [§] extended Theorem A, and proved the next result.

THEOREM B. Let f be a transcendental meromorphic function, and n, k
be positive integers with n > k + 1. Then (f”)(k) — 1 has infinitely many
ZET0S.
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It is of interest to establish uniqueness theorems corresponding to the
above results. Fang and Hua [2], Yang and Hua [9] obtained the following
results.

THEOREM C. Let f and g be nonconstant entire functions, and n > 6
be a positive integer. If f"f' and g"g share 1 CM, then either f(z) =
c1e, g(z) = cae™, where c1, co and c are constants satisfying (cico)"1c?
= —1, or f =tg for a constant t such that t"*1 = 1.

THEOREM D. Let f and g be nonconstant entire functions, and n and
k be positive integers with n > 2k + 4. If (f")*) and (¢g")*®) share 1 CM,
then either f(z) = c1e%*, g(z) = cae™*, where c1, co and ¢ are constants
satisfying (—1)¥(c1co)™(nc)?* = —1, or f = tg for a constant t such that
th =1.

In [I], Fang also obtained the following results.

THEOREM E. Let f be a transcendental entire function, and n and k be
positive integers with n > k+2. Then (f*(f —1))®) —1 has infinitely many
Zeros.

THEOREM F. Let f and g be nonconstant entire functions, and n, k be
positive integers with n > 2k 4+ 8. If (f*(f — 1))® and (¢"(g — 1)) share
1 CM, then f =g.

Corresponding to the above results, some authors considered unique-
ness of entire functions that have fixed points (see Fang and Qiu [3], Lin
and Yi [7]). In the present paper, we consider the existence of fixed points
of (f*(Af™ 4 1))® and the corresponding uniqueness theorems, where n,
m and k are positive integers, and we obtain the following results which
generalize the above theorems.

THEOREM 1. Let f(z) be a transcendental entire function, n, k and m
be positive integers, and X\, p be complex numbers satisfying || + |u| # 0.
Then

(n—k—1)T(r, ) §N<r, 1

(fr(2)Af™(2) + p)®) — 2
COROLLARY. Let f(z) be a transcendental entire function, n, k and m

be positive integers with n > k + 2, and A, p be complex numbers such that
Il + || # 0. Then (f*(2)(Af™(2) 4+ u))®) has infinitely many fived points.

)+ 505,

REMARK 1. It is easy to see that a polynomial P(z) with degree n > 1
has exactly n fixed points (counting multiplicities), but a transcendental
entire function may have no fixed points. For example, the function f =
¢®(*) 4 2 has no fixed points, where a(z) is an entire function.
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We define an integer m*, corresponding to the differential polynomials
(S () AS™(2) + ) ® and (g7 (2)(Ag™(2) + ) *) in Theofem by
. m, AF#DO0,
_{Q A=0.
THEOREM 2. Let f(z) and g(z) be transcendental entire functions, n,m
and k be positive integers, and X and p be constants that satisfy ||+ |p| # 0.
Suppose that n > 2k +m* +4. If (f*(2)(Af™(2)+p)® and (¢"(2)(Ag™(2)
+ 1)) *) share = CM, then the following conclusions hold:
() If \u # 0, then fU(2) = g%(2), where d = GCD(n,m); in particular,
f(z) =g(z) when d = 1.

(ii) If \u = 0, then either f = cg for a constant ¢ that satisfies "™ =1,
ork =1 and f(z) = b1e??*, g(2) = bae ¥ for some constants by,
by and b that satisfy 4(\ + p)2(b1b2)" ™ ((n + m*)b)? = —1.

2. Some lemmas

LeEMMA 1 ([I0]). Let f be a nonconstant meromorphic function, and ag,
ai, - ..,ay be finite compler numbers such that a, # 0. Then

T anf™ + an 1 f" + - +arf +ao) =nT(r, f) + S(r, f).

LEMMA 2 ([6]). Let f be a nonconstant meromorphic function, and p, k
be positive integers. Then

2.1) N, 1/f®) < T(r, fB) = T(r, f) + Npro(r, 1/£) + S(r, f),

(2:2) Ny(r, 1/ f ™) <EN(r, f) + Npir(r, 1/ f) + S(r, f).
LeEMMA 3 ([11]). Let
F// 2Fl Gl/ 2Gl
(23) HZ(F’_F—1>_<G’_G—1>’

where F' and G are nonconstant meromorphic functions. If F' and G share

1 CM and H # 0, then
(24) T(r,F)+T(r,G) <2(Na(r,1/F)+ No(r,1/G)
+ No(r, F) + No(r,G)) + S(r, F) + S(r, G).

LEMMA 4 ([I0]). Let f(2) be a nonconstant meromorphic function, and
a1(z), a2(z) and az(z) be distinct small functions of f(z). Then

T(r,f)<§zv<r, ! .>+S(r,f).

f_aj

LEMMA 5. Let f and g be nonconstant entire functions, n, m and k be
positive integers, and let

F= (") A" +m)W, Q= (g"(2)Ag" (=) +u)™,
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where A\ # 0. If there exist nonzero constants a; and ay such that

— 1 —( 1 — 1 —( 1
N<T,F_a1>—N<T,G>, N(r,G_a2>—N<T,F>,

then n <2k + 2+ m.

Proof. By the second fundamental theorem, we have

(2.5) T(r, F) < N(r, ;) +N<r, = ! a1> +S(r, F)
< N(r, ;) +N(r, é) + S(r, F)

1 1
<N — N — F).
= 1<r7 F) + 1<T7G> +S(r7 )
From Lemma [I] and Lemma [2| we obtain
T(r,F) <T(r, F) =T(r, [*(2)(Af"(2) + 1))

+ Nis1 <7‘v fn(z)()\f}"(z) + N))

1
e (1 g )+ S0 0+ S0
Hence
@6) k() < Mo ><Af71n< )
N () 450 ) + Sl

< (k+ 1)(N(r, 1/f)—|—N(r 1/9))

+m(T(r, f) +T(r,g)) + S, f) + 5(r,g9).
By a similar reasoning, we have
(2.7)  (n+m)T(r,9) < (k+1)(N(r,1/f) + N(r,1/9))

+m(T(r, f)+T(r,g)) + S(r, f) + S(r,g).
From and we have

(n =2k =2—=m)(T(r, f) + T(r,g)) < S(r, f) + 5(r, 9),

which implies that n < 2k 4 2 + m. Lemma [5| is thus proved.

LEMMA 6. Suppose that F' and G are given by Lemmal[p]. If n > 2k +m
and F = G, then f%(2) = g%(2), where d = GCD(n,m).

Proof. From F = G, we get
("N (2) + )P = (6" (2)Ag™ () + m)®.
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By integration, we have

() Af™(2) + )Y = (6" (2) A" (2) + )Y + aga,

where aj_; is a constant. If ay_; # 0, Lemma [f yields n < 2k 4+ m, which is
a contradiction. Hence a;_1 = 0. Repeating the same process k — 1 times,
we obtain

(2.8) fHRA(2) + p) = 9" (2)(Ag™ (2) + ).
Now we suppose that h = f/g. By we get
Ag™ (AT~ 1) = (1~ ),

When A" = 1, the above equation yields h® = 1, that is, f* = ¢" and
fm™ = g™, so fiz) = g%(2), where d = GCD(n,m). When h"*™ # 1, by
substituting f = gh into we have

g b Lthdea Tt p T (=)
A Tthag it A T (=)

where ¢; # 1, (" = 1, and n; # 1, /"™ = 1. Since g is an entire function,
we know that every zero of K™ — 1 has to be a zero of h™ — 1. Noting that
n > 2k +m, we deduce that h is a constant. Hence, ¢ is a constant, which

is a contradiction. Therefore, f%(z) = ¢g%(z), where d = GCD(n,m).

LEMMA 7. Let f and g be transcendental entire functions, n,m and k
be positive integers, and F = (f"(2)\f™(z) + p)®, G = (¢"(2)(\g™(2)
+ 1)) ®) where \u # 0. If FG = 22, then n < k + 2.

Proof. Suppose n > k + 2. From FG = 22, we have

(2.9) (" A=) + )P (g (2)(Ag™ (2) + ) ®) = 22,

Suppose that zg is a p-fold zero of f. Since Ay # 0, we know that zp must be
an (np — k)-fold zero of (f™(2)(Af™(z) + u))*). As g is an entire function
and n > k + 2, it follows from that z is a zero of 22 of order at least 3,
which is impossible. Thus f has no zeros. Let f(z) = €%, where §(z) is a
nonconstant entire function. Then

(2.10) (fm)® = (s ® = py(g, g7, ... gF)elm P,
(2.11) (fM® = ("B = (g, 8", ..., 8%))e,

where P; and P» are differential polynomials in 3/, 3", ..., 3% It is easy to
see that P, # 0, P» # 0, T'(r,P1) = S(r, f) and T'(r, P2) = S(r, f). From
and we obtain

1
N(r, NP b, +MP2> = S(r, f).
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By Lemmas [4 and [T}, we have
m(r, f) = T(r, ™) + S(r f)

— 1 — 1
<N|lr————— Nlr,——= S
< (7“7 )\Plem5+,uP2> + <r, Plemﬁ> +S(r, f)
=S5(r, f),
which is a contradiction. Thus n < k + 2. This completes the proof of Lem-
ma [7l

LEMMA 8. Let f and g be nonconstant entire functions, n,m and k be
positive integers, and F = (" (z)\f™(2)+) ¥, G = (g"(2) g™ (2)+1)®,
where |A| + |p| # 0, and A = 0. If there exist nonzero constants a1 and a
such that N(r,1/(F —a1)) = N(r,1/G) and N(r,1/(G — a2)) = N(r,1/F),
then n < 2k + 2 — m*.

Proof. Tf X\ # 0, by the same arguments as in the proof of Lemma [5] we
have

(n =2k =2+ m)(T(r,f) +T(r,g9)) < S(r, f) + S(r,9),

which implies that n < 2k 4+ 2 — m™.

If A =0, a similar argument gives
(2.12)  nT(r, f) < (k+1)(N(r,1/f) + N(r,1/g)) + S(r, f) + S(r, 9),
(2.13)  nT(r,g) < (k+1)(N(r,1/f) + N(r,1/g)) + S(r, f) + S(r, 9).
Hence

(n =2k =2)(T(r, f) + T(r,g)) < S(r, f) + 5(r,9),

and we deduce that n < 2k + 2.

By the arguments much similar to the proof of Lemma [6] we have the
following lemma.

LEMMA 9. Suppose that F' and G are given by Lemma[8 If n > 2k —m*
and F = G, then f = cg for a constant ¢ that satisfies "™ = 1.

Proof. Suppose that A # 0. By using the same arguments as in the proof
of Lemma [6] we have A\f™™ = Ag™*™ if n > 2k —m. If X = 0, then we have
pf™ = pg™. Thus we obtain the conclusion of Lemma [9]

LeEmMMA 10 ([5]). Suppose that f is a nonconstant meromorphic function,
and k > 2 is an integer. If

N(r,f)+ N(r,1/f) + N(r, 1/ f®) = S(r, '/ f),

then f = e***°, where a # 0, b are constants.
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3. Proofs of theorems
Proof of Theorem[]l Set F = f"(z)(Af™(z)+ ). By Lemmal[d] we have

1 — 1
(k) _ -
(3.1) T(r, F\"%) SN(T, F(k)> +N<r, F(k)—z) + S(r, f).
CASE 1: A # 0. By (3.1)) and Lemma [2] with p = 1, we obtain

1 — 1
(32) T(T‘,F(k)) g N1 <T, F‘(k)> + N(’I“, F'(k)—z> + S(T‘, f)

1 — 1
(k)y — il
<T(r,F'"™)—T(r,F) + N1 <r, F) + N(r, ) z> +S(r, f),
and so

1 — 1
T(r, F) SNkH(T’F) +N(T’F(k)—z> +S(r, f)

1 1 — 1
< N1 (7"7 f") +Nlc+1(7“7 W) +N<7"7 ﬁw—z)+8(r’ )

< (k+14+m)T(r,f) +N<r, F(k)l_z> + S(r, f).

Since T'(r, F) = (m +n)T(r, f) + S(r, ), we have

1
F<k>_z> 5 1)
Hence, the conclusion of Theorem [1| holds in this case.

CASE 2: A = 0. Since |A| + |p| # 0, we know that p # 0. By using the
same arguments as above, we have

T(Tv F) S Nk+l <7a7 ;) N<T7F1(k)1_z> +S(’I”, f)

_I_
< N, L N L S
< Ngga T,W + T’F(T—z +S(r, f)

< (k+1)T(r f) + N(r, F(k1> + S, f).

) —2

(n—k—-1T(rf) < N(r,

Noting that T'(r, F') = nT(r, f) + S(r, f), we obtain

(n—k—DT(r, f) < N(r, F(k)l_z> + S0, f).

Theorem [I] follows.
Proof of Theorem [ We consider the following two cases.

(i) A # 0. Let

33 r="EQAT@EmY L (0" @A) +m)®

z z
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Then F' and G are transcendental meromorphic functions that share 1 CM.
Let H be given by (2.3). If H # 0, by Lemma |3| we know that (2.4 holds.
From Lemma [2] we have

1

(3.4)  Ny(r,1/F) < Na (7‘, (k)) + S(r, f)

(PO + )
< T ("™ ) + )W) = (m+ )T, f)
1
#Nooa(n ey S0 )
=T(r,F) — (m+n)I(r. f)
1
ke ( [ A (@) + m) o)
Similarly, we have
(3.5) No(r,1/G) <T(r,G) — (m+n)T(r,g)
1
oo g )+ S0

From (3.4) and (3.5)), we obtain

38 Nl 1/F) < Nua(n e ) S0,
(3.7) Ny(r,1/G) < Ngio <7‘, g”(z)()\g}"(z) n M)) + S(r, 9).

Again, from and , we have
(m +n)(T(r, f) +T(r,g)) <T(r,F) + T(r,G) = Na(r,1/F) = Na(r,1/G)

ke < fn<z><Af}n<z> - u)) e ( g"(z><kg’1”<2> * M>>

+8(r, f) + 5(r,9).
Combining (3.6)), (3.7) and Lemma we get

(3.8)  (m+n)(T(r,f)+T(r,9)) < 2Ni42 <7“v fn(z)()\fin(z) T H))

) + S(r, f)+ S(r,g)

2Nk \ " 0 () )

< (2k+4)(N(r,1/f) + N(r,1/g)) + 2Np4o (7“7 )\fm(i)—i—/)
1 >+S(T,f)+5(7"79)-

+ 2N (P,
k+2( Ag"™(2) + 1
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Thus, we deduce that
(m+n —2k—4— Qm)(T(r, f) +T(Tag)) < S(r7f) + S(r7g)>
which contradicts the assumption that n > 2k 4+ 4 + m. Therefore H = 0.
Integrating twice, we deduce from ({2.3) that
1 A
Foi a1 P
where A (# 0) and B are constants. From (3.9) we have
(B+1)G+(A-B-1) G_(B—A)F+(A—B—1)
BG + (A - B) ’ N BF — (B+1)
We consider the following three cases.

CaSE 1: B # 0, —1. From (3.10) we have N (r, —%+) = N(r,G). From

» p_BIL
FB

(3.9)

(3.10) F =

the second fundamental theorem,

(3.11) T(r,F) < N(r,1/F) + N(r, F_lB+1> + S(r, F)
B
=N(r,1/F)+ N(r,G) + S(r,F) < N(r,1/F) + S(r, F).
By and the same reasoning as in the proof of , we obtain
T(r,F) < Ny(r,1/F)+ S(r, f)
1
L) A(2) )

<T@, F)—(m+n)T(r, f)+Nit1 <T‘ )+S(r, f)-

Hence

(m~+n)T(r, f) < (k+1)N(r,1/f) + Ng+1 <r, /\f”‘(i)ﬂi) +S(r, f)

<(k+m+0)T(r, f)+5(r, f),
which contradicts n > 2k 4+ 4 + m.
CASE 2: B =0. From (3.10) we have
G+ (A-1)
3.12 F=——"—""-
( ) A Y
If A +# 1, we infer from (3.12)) that
. 1 _ _ _ 1
N —— | = N(r,1/G N(r,1/F)=N{(r, ——— |.
(r ) = N0 Fom =N(r )
By Lemma [5] we have n < 2k 4+ 2 4+ m. This contradicts the assumption
that n > 2k +4 + m. Thus A = 1 and F = G. By Lemma [6] we have
f4(2) = g%(z), where d = GCD(n,m) in this case.
CASE 3: B = —1. From (3.10) we obtain
A (A+1)F-A

= arary ©° F

G=AF — (A-1).

(3.13) F
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If A+# —1, we deduce from (3.13) that

N(r, F—lAf‘H> —N(r1/G), N F)= N(r, G_1A_1>

By the same reasoning as in Cases 1 and 2, we get a contradiction. Hence
A = —1. From (3.13), we have FFG = 1, that is,

("N (2) + )P (g™ () (Ag™ (2) + w)*) = 22
by Lemma [7], which is impossible.
(ii) A = 0. Since || + |p| # 0, we distinguish two cases.

CASE A: = 0, A # 0. In this case, we have F = (Af"*™(2))*) and
G = (A\g"t"(2))®). Let

B AE)E L QgnE)®
z z
Then F; and G share 1 CM. By similar arguments to those in the proof
of (i), we have F} = Gy or F1G; = 1. If F} = G;, then Lemma |§| yields
f = cg, where c is a constant that satisfies ¢®™™ = 1. Now we assume that
PGy =1.
If £k =1, then

(3.14) (i (g = 22,

Since f and g are entire functions and n > 2k + m + 4, by using similar
arguments to the proof of Lemma 7| we deduce from that f and g¢
have no zeros. Let f = e*(?), g = €P*), where a(z), 3(z) are nonconstant
entire functions. Set

(3.15) hz) = ———;

we know that h(z) = €7*), where () is an entire function.

We claim that 7(z) is a constant. In fact, suppose y(z) is a nonconstant
entire function. Then h(z) is a transcendental entire function. From (3.14)),
we get

(316) (m + n)2)\2(fn+m—1)f/(gn+m—1)g/ _ 22.
From (3.15)) and (3.16), we have
/ 1H 2 1/ 2 2hm+n
(3.17) Th_2) =(2) - =221
g 2h 4\ h (m 4 n)2\2

/ /7

Let £ = % + %% Then (3.17) becomes

1(WN\?  2pmtn
1 2 () _ _Fh
(3:18) § 4 < h ) (m+mn)2X2
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If £ =0, from (3.18), we get

2
m+n _ (m + n)2)‘2 z’
(3.19) W = o)

Since h(z) = '), from (3.19) we obtain
(m+n)T'(r,h) = (m+n)m(r,h) + O(1)

1 I
Sm( ' 2>+2m< h)+0(1):S(r,h).
Hence h is a constant, which is a contradiction. Therefore £ # 0. Differenti-

ating (3.18]), we have

1 (R 2z 1
2 2c¢’ == pymtn____ - @ thJrnflh/
00 2% =35 (5) ~ () °

lh/ h/ 1 +n—1 AN
_ . - m-n 2 .
2h<h> )\2(m+n)2h (2zh 4 (m +n)z"h)

From (3.18)) and (3.20)), we obtain

(3.21) ! ) R <2z + (m +n)z? W 22> 5/>

A2(m +n)? h 13
_].h, h! / h/g/
(49

If 224+ (m )z2%l 2z 25 = 0, then we deduce from (3.21)) that either % = 0
/

(%) %% =0.If 2 7 =0, then h is a constant, which is a contradlctlon
(%) %% = 0, we have
€
3.22 — ==
(3:22) S
where d (# 0) is a constant. Thus from (3.18) and (3.22) we get
Z2pmtn 1 B

3.23 - — = d? :
52 v = (i) ()

Hence, (m + n)T'(r, h) = S(r,h), which is also a contradiction.
Now we assume that 2z + (m +n)z 2h—/ - 222%’ # 0. Since h = 7*) and
(=2 +1 h’ from (3.18) and (3.21]) we have

N(r,h'/h) = S(r,h), N(r,&) = S(r,h),
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and

(3.24)  (m+n)T(r,h) = (m +n)m(r,h)

1
Sm<r7 2k 25/)
224+ (m+n)z25 — 22 ¥

h b / hog
—i—m(r,h((h) — hi)) +0(1)
a5 K vt )

h/ !
+ N(T‘, 22 4 (m +n)z? . 222 §> +0(1)
< N(r,&/8) + S(r h) + S(r,€)
<T(r,§) +S(r,h) + 5(r, ).
Noting that i = €?(*) is a transcendental entire function, from (3.18) we get

(3.25)  2T(r, &) = T(r, &%) + S(r,€)
_ T(r,i(f;;)Q - T) + 50, 6)
(5 (5) )
nlr(5) ) s
< (m+n)m(r,h) + N(r, <Z>2> + S(r,h) + S(r,€)

< (m+n)T(r,h) + S(r,h) + S(r,§).
Combining this with (3.24)), we have
m-+n

T(r,h) = S(r,h),

which is a contradiction. Thus, v(z) is a constant, and so h(z) = €7(?) is also
a constant. From (3.15)), we obtain

(3.26) f(2)g(z) = e*Pef?) = C,
where C' (# 0) is a constant. So we have
(3.27) B(z) =—a(z)+

for a constant c;. Substituting f = e*®), g = 8 into (3.16)), we infer from
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B20) and (Z7) that
f(Z) = bleb227 g(Z) = b2e_b227
where by, by and b are constants that satisfy 4\%(b1be)" ™ ((m +n)b)? = —1.
If £ > 2, then

(3.28) )\2(fn+m)(k)(gn+m)(k) -2
Since f and g are entire functions and n > 2k+m+4, by using the arguments

similar to the proof of Lemma |7, we deduce from (3.14) that f and g have
no zeros. Let

(329) f = ea(z)7 g — 66(2)’
where «(z), B(z) are nonconstant entire functions. By (3.28)), we have
(3.30) N(r, 1/(f™™®) < N(r,1/2%) = O(log ).

Combining (3.29) and -, we obtain

( fm+") + N(r, 1/f™) + N(r, 1/(f™) ™) = O(log ).
By (3.29), T'(r, (f™*t") /™) = T(r,(m + n)a’). If « is transcendental,
we know from Lemma 0 that f = e® = e***® for some constants a # 0
and b. This is impossible. Hence o must be a polynomial, and so ( is also a
polynomial. Let deg(a) = p and deg(3) = q. If p = ¢ = 1, we have

(3.31) f=ePtB g =D

where A, B,C' and D are constants that satisfy AC' # 0. Substituting ((3.31))
into (3.28)), we obtain

)\2(m + n)2k(AC)ke(m+n)(A+C)z+(m+n)(B+D) — 22’

which is impossible. Thus max{p, ¢} > 1. We can assume that p > 1. Then
(frtmyk) = pelmtn)a where P is a polynomial of degree kp — k > k > 2.
From (3.28]), we have p = k = 2 and ¢ = 1. Suppose that

fm+n _ e(m+n)(Alz2+Blz+Cl) gm+n _ e(m+n)(D1z+E1)
> )

where A1, B1,C1, D1, E1 are constants such that A; D1 # 0. Then
(3.32) (f™™Y" = (m +n)(4(m +n)A32* + 4(m +n)A; By 2
+ (m + n) B2 + 2A;)elm (A= + B+
(3.33) (g™ = (m + n)’Dielm D1z,
Substituting (3.32)) and (3.33]) into (3.28)), we have
Q(z)e(m—i—n)(Alz?—i-(Bl+D1)z+Cl+E1) — 22

where Q(z) is a polynomial of degree 2. Since A; # 0, we get a contradiction.

CASE B: A =0, ¢ # 0. In this case, 2by similar argugnents to those in
Case A, f and g must satisfy f(z) = b1e?*", g(2) = bpe % or f = cg, where
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b1, ba, b and c are constants that satisfy 4u2(bibe)"(nb)? = —1 and " = 1.
This completes the proof of Theorem [2

Acknowledgements. The authors would like to thank the referee for
his/her helpful suggestions and comments.
This work was supported by the NNSF of China (No. 10671109).

References

[1] M. L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl.
44 (2002), 823-831.
[2] M. L. Fang and X. H. Hua, Entire functions that share one value, Nanjing Daxue
Xuebao Shuxue Bannian Kan 13 (1996), 44-48.
[3] M. L. Fang and H. L. Qiu, Meromorphic functions that share fized-points, J. Math.
Anal. Appl. 268 (2000), 426-439.
[4] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann.
of Math. 70 (1959), 9-42.
[6] —, Meromorphic Functions, Oxford Univ. Press, 1964.
[6] W. C. Lin and H. X. Yi, Uniqueness theorems for meromorphic functions, Indian
J. Pure Appl. Math. 35 (2004), 121-132.
[7] —, —, Uniqueness theorems for meromorphic functions concerning fized-points,
Complex Var. Theory Appl. 49 (2004), 793-806.
[8] Y.F.Wang, On Mues’ conjecture and Picard values, Sci. China 36 (1993), 28-35.
[9] C.C. Yang and X. H. Hua, Uniqueness and value-sharing of meromorphic functions,
Ann. Acad. Sci. Fenn. Math. 22 (1997), 395-406.
[10] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer,
2003.
[11] J. L. Zhang and L. Z. Yang, Some results related to a conjecture of R. Briick,
J. Inequal. Pure Appl. Math. 8 (2007), no. 1, art. 18, 11 pp.

Xiao-Guang Qi, Lian-Zhong Yang

School of Mathematics

Shandong University

Jinan, Shandong, 250100, P.R. China

E-mail: xiaogqi@mail.sdu.edu.cn
Izyang@sdu.edu.cn

Received 15.2.2009
and in final form 10.4.2009 (1979)


http://dx.doi.org/10.1016/S0898-1221(02)00194-3
http://dx.doi.org/10.2307/1969890

	Introduction and main results
	Some lemmas
	Proofs of theorems

