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Uniqueness of entire functions and fixed points

by Xiao-Guang Qi and Lian-Zhong Yang (Jinan)

Abstract. Let f and g be entire functions, n, k and m be positive integers, and λ,
µ be complex numbers with |λ| + |µ| 6= 0. We prove that (fn(z)(λfm(z) + µ))(k) must
have infinitely many fixed points if n ≥ k+ 2; furthermore, if (fn(z)(λfm(z) + µ))(k) and
(gn(z)(λgm(z)+µ))(k) have the same fixed points with the same multiplicities, then either
f ≡ cg for a constant c, or f and g assume certain forms provided that n > 2k +m∗ + 4,
where m∗ is an integer that depends only on λ.

1. Introduction and main results. In this paper, a meromorphic
function will mean meromorphic in the whole complex plane. We shall use
the standard notations of value distribution theory [10]: T (r, f),m(r, f),
N(r, f), N(r, f), etc. We denote by S(r, f) any function that satisfies S(r, f)
= o(T (r, f)) as r →∞ possibly outside a set of finite linear measure.

We say that two meromorphic functions f and g share a small function
a(z) IM (ignoring multiplicities) when f − a and g− a have the same zeros.
If f and g have the same zeros with the same multiplicities, then we say
that f and g share a(z) CM (counting multiplicities).

Let p be a positive integer and a ∈ C. We denote by Np(r, 1/(f − a)) the
counting function of the zeros of f − a, where an m-fold zero is counted m
times if m ≤ p and p times if m > p. We say that a finite value z0 is a fixed
point of f if f(z0) = z0.

In 1959, Hayman [4] proved the following result.

Theorem A. Let f be a transcendental entire function, and n ≥ 1 be a
positive integer. Then fnf ′ − 1 has infinitely many zeros.

Wang [8] extended Theorem A, and proved the next result.

Theorem B. Let f be a transcendental meromorphic function, and n, k
be positive integers with n ≥ k + 1. Then (fn)(k) − 1 has infinitely many
zeros.
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It is of interest to establish uniqueness theorems corresponding to the
above results. Fang and Hua [2], Yang and Hua [9] obtained the following
results.

Theorem C. Let f and g be nonconstant entire functions, and n≥ 6
be a positive integer. If fnf ′ and gng′ share 1 CM, then either f(z) =
c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are constants satisfying (c1c2)n+1c2

= −1, or f = tg for a constant t such that tn+1 = 1.

Theorem D. Let f and g be nonconstant entire functions, and n and
k be positive integers with n > 2k + 4. If (fn)(k) and (gn)(k) share 1 CM,
then either f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are constants

satisfying (−1)k(c1c2)n(nc)2k = −1, or f = tg for a constant t such that
tn = 1.

In [1], Fang also obtained the following results.

Theorem E. Let f be a transcendental entire function, and n and k be
positive integers with n ≥ k+ 2. Then (fn(f − 1))(k)− 1 has infinitely many
zeros.

Theorem F. Let f and g be nonconstant entire functions, and n, k be
positive integers with n ≥ 2k + 8. If (fn(f − 1))(k) and (gn(g − 1))(k) share
1 CM, then f = g.

Corresponding to the above results, some authors considered unique-
ness of entire functions that have fixed points (see Fang and Qiu [3], Lin
and Yi [7]). In the present paper, we consider the existence of fixed points
of (fn(λfm + µ))(k) and the corresponding uniqueness theorems, where n,
m and k are positive integers, and we obtain the following results which
generalize the above theorems.

Theorem 1. Let f(z) be a transcendental entire function, n, k and m
be positive integers, and λ, µ be complex numbers satisfying |λ| + |µ| 6= 0.
Then

(n− k − 1)T (r, f) ≤ N
(
r,

1
(fn(z)(λfm(z) + µ))(k) − z

)
+ S(r, f).

Corollary. Let f(z) be a transcendental entire function, n, k and m
be positive integers with n ≥ k + 2, and λ, µ be complex numbers such that
|λ|+ |µ| 6= 0. Then (fn(z)(λfm(z) + µ))(k) has infinitely many fixed points.

Remark 1. It is easy to see that a polynomial P (z) with degree n ≥ 1
has exactly n fixed points (counting multiplicities), but a transcendental
entire function may have no fixed points. For example, the function f =
eα(z) + z has no fixed points, where α(z) is an entire function.
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We define an integer m∗, corresponding to the differential polynomials
(fn(z)(λfm(z) + µ))(k) and (gn(z)(λgm(z) + µ))(k) in Theorem 2, by

m∗ =
{
m, λ 6= 0,
0, λ = 0.

Theorem 2. Let f(z) and g(z) be transcendental entire functions, n,m
and k be positive integers, and λ and µ be constants that satisfy |λ|+ |µ| 6= 0.
Suppose that n > 2k+m∗+4. If (fn(z)(λfm(z)+µ))(k) and (gn(z)(λgm(z)
+ µ))(k) share z CM, then the following conclusions hold:

(i) If λµ 6= 0, then fd(z) ≡ gd(z), where d = GCD(n,m); in particular,
f(z) ≡ g(z) when d = 1.

(ii) If λµ = 0, then either f = cg for a constant c that satisfies cn+m∗=1,
or k = 1 and f(z) = b1e

bz2, g(z) = b2e
−bz2 for some constants b1,

b2 and b that satisfy 4(λ+ µ)2(b1b2)n+m∗((n+m∗)b)2 = −1.

2. Some lemmas

Lemma 1 ([10]). Let f be a nonconstant meromorphic function, and a0,
a1, . . . , an be finite complex numbers such that an 6= 0. Then

T (r, anfn + an−1f
n−1 + · · ·+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2 ([6]). Let f be a nonconstant meromorphic function, and p, k
be positive integers. Then

Np(r, 1/f (k)) ≤ T (r, f (k))− T (r, f) +Np+k(r, 1/f) + S(r, f),(2.1)

Np(r, 1/f (k)) ≤ kN(r, f) +Np+k(r, 1/f) + S(r, f).(2.2)

Lemma 3 ([11]). Let

(2.3) H =
(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
,

where F and G are nonconstant meromorphic functions. If F and G share
1 CM and H 6≡ 0, then

T (r, F ) + T (r,G) ≤ 2(N2(r, 1/F ) +N2(r, 1/G)(2.4)
+N2(r, F ) +N2(r,G)) + S(r, F ) + S(r,G).

Lemma 4 ([10]). Let f(z) be a nonconstant meromorphic function, and
a1(z), a2(z) and a3(z) be distinct small functions of f(z). Then

T (r, f) <
3∑
j=1

N

(
r,

1
f − aj

)
+ S(r, f).

Lemma 5. Let f and g be nonconstant entire functions, n, m and k be
positive integers, and let

F = (fn(z)(λfm(z) + µ))(k), G = (gn(z)(λgm(z) + µ))(k),
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where λµ 6= 0. If there exist nonzero constants a1 and a2 such that

N

(
r,

1
F − a1

)
= N

(
r,

1
G

)
, N

(
r,

1
G− a2

)
= N

(
r,

1
F

)
,

then n ≤ 2k + 2 +m.

Proof. By the second fundamental theorem, we have

T (r, F ) ≤ N
(
r,

1
F

)
+N

(
r,

1
F − a1

)
+ S(r, F )(2.5)

≤ N
(
r,

1
F

)
+N

(
r,

1
G

)
+ S(r, F )

≤ N1

(
r,

1
F

)
+N1

(
r,

1
G

)
+ S(r, F ).

From 2.5, Lemma 1 and Lemma 2, we obtain

T (r, F ) ≤ T (r, F )− T (r, fn(z)(λfm(z) + µ))

+Nk+1

(
r,

1
fn(z)(λfm(z) + µ)

)
+Nk+1

(
r,

1
gn(z)(λgm(z) + µ)

)
+ S(r, f) + S(r, g).

Hence

(n+m)T (r, f) ≤ Nk+1

(
r,

1
fn(z)(λfm(z) + µ)

)
(2.6)

+Nk+1

(
r,

1
gn(z)(λgm(z) + µ)

)
+ S(r, f) + S(r, g)

≤ (k + 1)(N(r, 1/f) +N(r, 1/g))
+m(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

By a similar reasoning, we have

(n+m)T (r, g) ≤ (k + 1)(N(r, 1/f) +N(r, 1/g))(2.7)
+m(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

From 2.6 and 2.7, we have

(n− 2k − 2−m)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which implies that n ≤ 2k + 2 +m. Lemma 5 is thus proved.

Lemma 6. Suppose that F and G are given by Lemma 5. If n > 2k+m
and F = G, then fd(z) ≡ gd(z), where d = GCD(n,m).

Proof. From F = G, we get

(fn(z)(λfm(z) + µ))(k) = (gn(z)(λgm(z) + µ))(k).



Uniqueness of entire functions and fixed points 91

By integration, we have

(fn(z)(λfm(z) + µ))(k−1) = (gn(z)(λgm(z) + µ))(k−1) + ak−1,

where ak−1 is a constant. If ak−1 6= 0, Lemma 5 yields n ≤ 2k+m, which is
a contradiction. Hence ak−1 = 0. Repeating the same process k − 1 times,
we obtain

(2.8) fn(z)(λfm(z) + µ) = gn(z)(λgm(z) + µ).

Now we suppose that h = f/g. By 2.8, we get

λgm(hn+m − 1) = µ(1− hn).

When hn+m = 1, the above equation yields hn = 1, that is, fn = gn and
fm = gm, so fd(z) ≡ gd(z), where d = GCD(n,m). When hn+m 6≡ 1, by
substituting f = gh into 2.8, we have

gm = −µ
λ
· 1 + h+ · · ·+ hn−1

1 + h+ · · ·+ hn+m−1
= −µ

λ
·
∏n−1
i=1 (h− ζi)∏n+m−1

i=1 (h− ηi)
,

where ζi 6= 1, ζni = 1, and ηi 6= 1, ηn+m
i = 1. Since g is an entire function,

we know that every zero of hn+m− 1 has to be a zero of hn− 1. Noting that
n > 2k + m, we deduce that h is a constant. Hence, g is a constant, which
is a contradiction. Therefore, fd(z) ≡ gd(z), where d = GCD(n,m).

Lemma 7. Let f and g be transcendental entire functions, n,m and k
be positive integers, and F = (fn(z)(λfm(z) + µ))(k), G = (gn(z)(λgm(z)
+ µ))(k), where λµ 6= 0. If FG = z2, then n ≤ k + 2.

Proof. Suppose n > k + 2. From FG = z2, we have

(2.9) (fn(z)(λfm(z) + µ))(k)(gn(z)(λgm(z) + µ))(k) = z2.

Suppose that z0 is a p-fold zero of f. Since λµ 6= 0, we know that z0 must be
an (np − k)-fold zero of (fn(z)(λfm(z) + µ))(k). As g is an entire function
and n > k + 2, it follows from 2.9 that z0 is a zero of z2 of order at least 3,
which is impossible. Thus f has no zeros. Let f(z) = eβ(z), where β(z) is a
nonconstant entire function. Then

(fm+n)(k) = (e(m+n)β)(k) = P1(β′, β′′, . . . , β(k))e(m+n)β,(2.10)

(fn)(k) = (enβ)(k) = P2(β′, β′′, . . . , β(k))enβ,(2.11)

where P1 and P2 are differential polynomials in β′, β′′, . . . , β(k). It is easy to
see that P1 6≡ 0, P2 6≡ 0, T (r, P1) = S(r, f) and T (r, P2) = S(r, f). From
2.9, 2.10 and 2.11 we obtain

N

(
r,

1
λP1emβ + µP2

)
= S(r, f).
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By Lemmas 4 and 1, we have

mT (r, f) = T (r, P1e
mβ) + S(r, f)

≤ N
(
r,

1
λP1emβ + µP2

)
+N

(
r,

1
P1emβ

)
+ S(r, f)

= S(r, f),

which is a contradiction. Thus n ≤ k+ 2. This completes the proof of Lem-
ma 7.

Lemma 8. Let f and g be nonconstant entire functions, n,m and k be
positive integers, and F =(fn(z)(λfm(z)+µ))(k), G=(gn(z)(λgm(z)+µ))(k),
where |λ|+ |µ| 6= 0, and λµ = 0. If there exist nonzero constants a1 and a2

such that N(r, 1/(F − a1)) = N(r, 1/G) and N(r, 1/(G− a2)) = N(r, 1/F ),
then n ≤ 2k + 2−m∗.

Proof. If λ 6= 0, by the same arguments as in the proof of Lemma 5, we
have

(n− 2k − 2 +m)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which implies that n ≤ 2k + 2−m∗.
If λ = 0, a similar argument gives

nT (r, f) ≤ (k + 1)(N(r, 1/f) +N(r, 1/g)) + S(r, f) + S(r, g),(2.12)

nT (r, g) ≤ (k + 1)(N(r, 1/f) +N(r, 1/g)) + S(r, f) + S(r, g).(2.13)

Hence
(n− 2k − 2)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

and we deduce that n ≤ 2k + 2.

By the arguments much similar to the proof of Lemma 6, we have the
following lemma.

Lemma 9. Suppose that F and G are given by Lemma 8. If n > 2k−m∗
and F = G, then f = cg for a constant c that satisfies cn+m∗ = 1.

Proof. Suppose that λ 6= 0. By using the same arguments as in the proof
of Lemma 6, we have λfm+n = λgm+n if n > 2k−m. If λ = 0, then we have
µfn = µgn. Thus we obtain the conclusion of Lemma 9.

Lemma 10 ([5]). Suppose that f is a nonconstant meromorphic function,
and k ≥ 2 is an integer. If

N(r, f) +N(r, 1/f) +N(r, 1/f (k)) = S(r, f ′/f),

then f = eaz+b, where a 6= 0, b are constants.
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3. Proofs of theorems

Proof of Theorem 1. Set F = fn(z)(λfm(z) +µ). By Lemma 4, we have

(3.1) T (r, F (k)) ≤ N
(
r,

1
F (k)

)
+N

(
r,

1
F (k) − z

)
+ S(r, f).

Case 1: λ 6= 0. By (3.1) and Lemma 2 with p = 1, we obtain

(3.2) T (r, F (k)) ≤ N1

(
r,

1
F (k)

)
+N

(
r,

1
F (k) − z

)
+ S(r, f)

≤ T (r, F (k))− T (r, F ) +Nk+1

(
r,

1
F

)
+N

(
r,

1
F (k) − z

)
+ S(r, f),

and so

T (r, F ) ≤ Nk+1

(
r,

1
F

)
+N

(
r,

1
F (k) − z

)
+ S(r, f)

≤ Nk+1

(
r,

1
fn

)
+Nk+1

(
r,

1
λfm(z) + µ

)
+N

(
r,

1
F (k) − z

)
+S(r, f)

≤ (k + 1 +m)T (r, f) +N

(
r,

1
F (k) − z

)
+ S(r, f).

Since T (r, F ) = (m+ n)T (r, f) + S(r, f), we have

(n− k − 1)T (r, f) ≤ N
(
r,

1
F (k) − z

)
+ S(r, f).

Hence, the conclusion of Theorem 1 holds in this case.

Case 2: λ = 0. Since |λ| + |µ| 6= 0, we know that µ 6= 0. By using the
same arguments as above, we have

T (r, F ) ≤ Nk+1

(
r,

1
F

)
+N

(
r,

1
F (k) − z

)
+ S(r, f)

≤ Nk+1

(
r,

1
µfn

)
+N

(
r,

1
F (k) − z

)
+ S(r, f)

≤ (k + 1)T (r, f) +N

(
r,

1
F (k) − z

)
+ S(r, f).

Noting that T (r, F ) = nT (r, f) + S(r, f), we obtain

(n− k − 1)T (r, f) ≤ N
(
r,

1
F (k) − z

)
+ S(r, f).

Theorem 1 follows.

Proof of Theorem 2. We consider the following two cases.

(i) λµ 6= 0. Let

(3.3) F =
(fn(z)(λfm(z) + µ))(k)

z
, G =

(gn(z)(λgm(z) + µ))(k)

z
.
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Then F and G are transcendental meromorphic functions that share 1 CM.
Let H be given by (2.3). If H 6≡ 0, by Lemma 3 we know that (2.4) holds.
From Lemma 2, we have

N2(r, 1/F ) ≤ N2

(
r,

1
(fn(z)(λfm(z) + µ))(k)

)
+ S(r, f)(3.4)

≤ T (r, (fn(z)(λfm(z) + µ))(k))− (m+ n)T (r, f)

+Nk+2

(
r,

1
fn(z)(λfm(z) + µ)

)
+ S(r, f)

= T (r, F )− (m+ n)T (r, f)

+Nk+2

(
r,

1
fn(z)(λfm(z) + µ)

)
+ S(r, f).

Similarly, we have

N2(r, 1/G) ≤ T (r,G)− (m+ n)T (r, g)(3.5)

+Nk+2

(
r,

1
gn(z)(λgm(z) + µ)

)
+ S(r, g).

From (3.4) and (3.5), we obtain

N2(r, 1/F ) ≤ Nk+2

(
r,

1
fn(z)(λfm(z) + µ)

)
+ S(r, f),(3.6)

N2(r, 1/G) ≤ Nk+2

(
r,

1
gn(z)(λgm(z) + µ)

)
+ S(r, g).(3.7)

Again, from (3.4) and (3.5), we have

(m+ n)(T (r, f) + T (r, g)) ≤ T (r, F ) + T (r,G)−N2(r, 1/F )−N2(r, 1/G)

+Nk+2

(
r,

1
fn(z)(λfm(z) + µ)

)
+Nk+2

(
r,

1
gn(z)(λgm(z) + µ)

)
+ S(r, f) + S(r, g).

Combining (3.6), (3.7) and Lemma 3, we get

(3.8) (m+ n)(T (r, f) + T (r, g)) ≤ 2Nk+2

(
r,

1
fn(z)(λfm(z) + µ)

)
+ 2Nk+2

(
r,

1
gn(z)(λgm(z) + µ)

)
+ S(r, f) + S(r, g)

≤ (2k + 4)(N(r, 1/f) +N(r, 1/g)) + 2Nk+2

(
r,

1
λfm(z) + µ

)
+ 2Nk+2

(
r,

1
λgm(z) + µ

)
+ S(r, f) + S(r, g).
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Thus, we deduce that

(m+ n− 2k − 4− 2m)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which contradicts the assumption that n > 2k + 4 + m. Therefore H ≡ 0.
Integrating twice, we deduce from (2.3) that

(3.9)
1

F − 1
=

A

G− 1
+B,

where A ( 6= 0) and B are constants. From (3.9) we have

(3.10) F =
(B + 1)G+ (A−B − 1)

BG+ (A−B)
, G =

(B −A)F + (A−B − 1)
BF − (B + 1)

.

We consider the following three cases.

Case 1: B 6= 0,−1. From (3.10) we have N
(
r, 1
F−B+1

B

)
= N(r,G). From

the second fundamental theorem,

T (r, F ) ≤ N(r, 1/F ) +N

(
r,

1
F − B+1

B

)
+ S(r, F )(3.11)

= N(r, 1/F ) +N(r,G) + S(r, F ) ≤ N(r, 1/F ) + S(r, F ).

By (3.11) and the same reasoning as in the proof of (3.4), we obtain

T (r, F ) ≤ N1(r, 1/F ) + S(r, f)

≤ T (r, F )−(m+ n)T (r, f)+Nk+1

(
r,

1
fn(z)(λfm(z)+µ)

)
+S(r, f).

Hence

(m+ n)T (r, f) ≤ (k + 1)N(r, 1/f) +Nk+1

(
r,

1
λfm(z) + µ

)
+ S(r, f)

≤ (k +m+ 1)T (r, f) + S(r, f),

which contradicts n > 2k + 4 +m.

Case 2: B = 0. From (3.10) we have

(3.12) F =
G+ (A− 1)

A
, G = AF − (A− 1).

If A 6= 1, we infer from (3.12) that

N

(
r,

1
F − A−1

A

)
= N(r, 1/G), N(r, 1/F ) = N

(
r,

1
G+ (A− 1)

)
.

By Lemma 5, we have n ≤ 2k + 2 + m. This contradicts the assumption
that n > 2k + 4 + m. Thus A = 1 and F = G. By Lemma 6, we have
fd(z) ≡ gd(z), where d = GCD(n,m) in this case.

Case 3: B = −1. From (3.10) we obtain

(3.13) F =
A

−G+ (A+ 1)
, G =

(A+ 1)F −A
F

.
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If A 6= −1, we deduce from (3.13) that

N

(
r,

1
F − A

A+1

)
= N(r, 1/G), N(r, F ) = N

(
r,

1
G−A− 1

)
.

By the same reasoning as in Cases 1 and 2, we get a contradiction. Hence
A = −1. From (3.13), we have FG = 1, that is,

(fn(z)(λfm(z) + µ))(k)(gn(z)(λgm(z) + µ))(k) = z2

by Lemma 7, which is impossible.

(ii) λµ = 0. Since |λ|+ |µ| 6= 0, we distinguish two cases.

Case A: µ = 0, λ 6= 0. In this case, we have F = (λfn+m(z))(k) and
G = (λgn+m(z))(k). Let

F1 =
(λfn+m(z))(k)

z
, G1 =

(λgn+m(z))(k)

z
.

Then F1 and G1 share 1 CM. By similar arguments to those in the proof
of (i), we have F1 ≡ G1 or F1G1 ≡ 1. If F1 ≡ G1, then Lemma 9 yields
f ≡ cg, where c is a constant that satisfies cn+m = 1. Now we assume that
F1G1 = 1.

If k = 1, then

(3.14) λ2(fn+m)′(gn+m)′ = z2.

Since f and g are entire functions and n > 2k + m + 4, by using similar
arguments to the proof of Lemma 7 we deduce from (3.14) that f and g
have no zeros. Let f = eα(z), g = eβ(z), where α(z), β(z) are nonconstant
entire functions. Set

(3.15) h(z) =
1

f(z)g(z)
;

we know that h(z) = eγ(z), where γ(z) is an entire function.
We claim that γ(z) is a constant. In fact, suppose γ(z) is a nonconstant

entire function. Then h(z) is a transcendental entire function. From (3.14),
we get

(3.16) (m+ n)2λ2(fn+m−1)f ′(gn+m−1)g′ = z2.

From (3.15) and (3.16), we have

(3.17)
(
g′

g
+

1
2
h′

h

)2

=
1
4

(
h′

h

)2

− z2hm+n

(m+ n)2λ2
.

Let ξ = g′

g + 1
2
h′

h . Then (3.17) becomes

(3.18) ξ2 =
1
4

(
h′

h

)2

− z2hm+n

(m+ n)2λ2
.
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If ξ ≡ 0, from (3.18), we get

(3.19) hm+n =
(m+ n)2λ2

4z2

(
h′

h

)2

.

Since h(z) = eγ(z), from (3.19) we obtain

(m+ n)T (r, h) = (m+ n)m(r, h) +O(1)

≤ m
(
r,

1
4z2

)
+ 2m

(
r,
h′

h

)
+O(1) = S(r, h).

Hence h is a constant, which is a contradiction. Therefore ξ 6≡ 0. Differenti-
ating (3.18), we have

2ξξ′ =
1
2
h′

h

(
h′

h

)′
− 2z
λ2(m+ n)2

hm+n − 1
λ2(m+ n)

z2hm+n−1h′(3.20)

=
1
2
h′

h

(
h′

h

)′
− 1
λ2(m+ n)2

hm+n−1(2zh+ (m+ n)z2h′).

From (3.18) and (3.20), we obtain

(3.21)
1

λ2(m+ n)2
hm+n

(
2z + (m+ n)z2 h

′

h
− 2z2 ξ

′

ξ

)
=

1
2
h′

h

((
h′

h

)′
− h′

h

ξ′

ξ

)
.

If 2z+(m+n)z2 h′

h −2z2 ξ′

ξ ≡ 0, then we deduce from (3.21) that either h′

h ≡ 0

or (h
′

h )′ − h′

h
ξ′

ξ ≡ 0. If h′

h ≡ 0, then h is a constant, which is a contradiction.

If
(
h′

h

)′ − h′

h
ξ′

ξ ≡ 0, we have

(3.22)
h′

h
=
ξ

d
,

where d (6= 0) is a constant. Thus from (3.18) and (3.22) we get

(3.23)
z2hm+n

λ2(m+ n)2
=
(

1
4
− d2

)(
h′

h

)2

.

Hence, (m+ n)T (r, h) = S(r, h), which is also a contradiction.

Now we assume that 2z + (m+ n)z2 h′

h − 2z2 ξ′

ξ 6≡ 0. Since h = eγ(z) and

ξ = g′

g + 1
2
h′

h , from (3.18) and (3.21) we have

N(r, h′/h) = S(r, h), N(r, ξ) = S(r, h),
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and

(3.24) (m+ n)T (r, h) = (m+ n)m(r, h)

≤ m
(
r,

1

2z + (m+ n)z2 h′

h − 2z2 ξ
′

ξ

)

+m

(
r,
h′

h

((
h′

h

)′
− h′

h

ξ′

ξ

))
+O(1)

≤ m
(
r,
h′

h

((
h′

h

)′
− h′

h

ξ′

ξ

))
+m

(
r, 2z + (m+ n)z2 h

′

h
− 2z2 ξ

′

ξ

)
+N

(
r, 2z + (m+ n)z2 h

′

h
− 2z2 ξ

′

ξ

)
+O(1)

≤ N(r, ξ′/ξ) + S(r, h) + S(r, ξ)

≤ T (r, ξ) + S(r, h) + S(r, ξ).

Noting that h = eγ(z) is a transcendental entire function, from (3.18) we get

2T (r, ξ) = T (r, ξ2) + S(r, ξ)(3.25)

= T

(
r,

1
4

(
h′

h

)2

− z2hm+n

λ2

)
+ S(r, ξ)

= N

(
r,

1
4

(
h′

h

)2

− z2hm+n

λ2(m+ n)2

)
+m

(
r,

1
4

(
h′

h

)2

− z2hm+n

λ2(m+ n)2

)
+ S(r, ξ)

≤ (m+ n)m(r, h) +N

(
r,

(
h′

h

)2)
+ S(r, h) + S(r, ξ)

≤ (m+ n)T (r, h) + S(r, h) + S(r, ξ).

Combining this with (3.24), we have
m+ n

2
T (r, h) = S(r, h),

which is a contradiction. Thus, γ(z) is a constant, and so h(z) = eγ(z) is also
a constant. From (3.15), we obtain

(3.26) f(z)g(z) = eα(z)eβ(z) = C,

where C (6= 0) is a constant. So we have

(3.27) β(z) = −α(z) + c1

for a constant c1. Substituting f = eα(z), g = eβ(z) into (3.16), we infer from



Uniqueness of entire functions and fixed points 99

(3.26) and (3.27) that

f(z) = b1e
bz2 , g(z) = b2e

−bz2 ,

where b1, b2 and b are constants that satisfy 4λ2(b1b2)n+m((m+n)b)2 = −1.
If k ≥ 2, then

(3.28) λ2(fn+m)(k)(gn+m)(k) = z2.

Since f and g are entire functions and n > 2k+m+4, by using the arguments
similar to the proof of Lemma 7, we deduce from (3.14) that f and g have
no zeros. Let

(3.29) f = eα(z), g = eβ(z),

where α(z), β(z) are nonconstant entire functions. By (3.28), we have

(3.30) N(r, 1/(fm+n)(k)) ≤ N(r, 1/z2) = O(log r).

Combining (3.29) and (3.30), we obtain

N(r, fm+n) +N(r, 1/fm+n) +N(r, 1/(fm+n)(k)) = O(log r).

By (3.29), T (r, (fm+n)′/fm+n) = T (r, (m + n)α′). If α is transcendental,
we know from Lemma 10 that f = eα = eaz+b for some constants a 6= 0
and b. This is impossible. Hence α must be a polynomial, and so β is also a
polynomial. Let deg(α) = p and deg(β) = q. If p = q = 1, we have

(3.31) f = eAz+B, g = eCz+D,

where A,B,C and D are constants that satisfy AC 6= 0. Substituting (3.31)
into (3.28), we obtain

λ2(m+ n)2k(AC)ke(m+n)(A+C)z+(m+n)(B+D) = z2,

which is impossible. Thus max{p, q} > 1. We can assume that p > 1. Then
(fm+n)(k) = Pe(m+n)α, where P is a polynomial of degree kp − k ≥ k ≥ 2.
From (3.28), we have p = k = 2 and q = 1. Suppose that

fm+n = e(m+n)(A1z2+B1z+C1), gm+n = e(m+n)(D1z+E1),

where A1, B1, C1, D1, E1 are constants such that A1D1 6= 0. Then

(fm+n)′′ = (m+ n)(4(m+ n)A2
1z

2 + 4(m+ n)A1B1z(3.32)

+ (m+ n)B2
1 + 2A1)e(m+n)(A1z2+B1z+C1),

(gm+n)′′ = (m+ n)2D2
1e

(m+n)(D1z+E1).(3.33)

Substituting (3.32) and (3.33) into (3.28), we have

Q(z)e(m+n)(A1z2+(B1+D1)z+C1+E1) = z2,

where Q(z) is a polynomial of degree 2. Since A1 6= 0, we get a contradiction.

Case B: λ = 0, µ 6= 0. In this case, by similar arguments to those in
Case A, f and g must satisfy f(z) = b1e

bz2 , g(z) = b2e
−bz2 or f = cg, where



100 X. G. Qi and L. Z. Yang

b1, b2, b and c are constants that satisfy 4µ2(b1b2)n(nb)2 = −1 and cn = 1.
This completes the proof of Theorem 2.

Acknowledgements. The authors would like to thank the referee for
his/her helpful suggestions and comments.

This work was supported by the NNSF of China (No. 10671109).

References

[1] M. L. Fang, Uniqueness and value-sharing of entire functions, Comput. Math. Appl.
44 (2002), 823–831.

[2] M. L. Fang and X. H. Hua, Entire functions that share one value, Nanjing Daxue
Xuebao Shuxue Bannian Kan 13 (1996), 44–48.

[3] M. L. Fang and H. L. Qiu, Meromorphic functions that share fixed-points, J. Math.
Anal. Appl. 268 (2000), 426–439.

[4] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann.
of Math. 70 (1959), 9–42.

[5] —, Meromorphic Functions, Oxford Univ. Press, 1964.
[6] W. C. Lin and H. X. Yi, Uniqueness theorems for meromorphic functions, Indian

J. Pure Appl. Math. 35 (2004), 121–132.
[7] —, —, Uniqueness theorems for meromorphic functions concerning fixed-points,

Complex Var. Theory Appl. 49 (2004), 793–806.
[8] Y. F. Wang, On Mues’ conjecture and Picard values, Sci. China 36 (1993), 28–35.
[9] C. C. Yang and X. H. Hua, Uniqueness and value-sharing of meromorphic functions,

Ann. Acad. Sci. Fenn. Math. 22 (1997), 395–406.
[10] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer,

2003.
[11] J. L. Zhang and L. Z. Yang, Some results related to a conjecture of R. Brück,

J. Inequal. Pure Appl. Math. 8 (2007), no. 1, art. 18, 11 pp.

Xiao-Guang Qi, Lian-Zhong Yang
School of Mathematics
Shandong University
Jinan, Shandong, 250100, P.R. China
E-mail: xiaogqi@mail.sdu.edu.cn

lzyang@sdu.edu.cn

Received 15.2.2009
and in final form 10.4.2009 (1979)

http://dx.doi.org/10.1016/S0898-1221(02)00194-3
http://dx.doi.org/10.2307/1969890

	Introduction and main results
	Some lemmas
	Proofs of theorems

