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On prolongation of connections

by Włodzimierz M. Mikulski (Kraków)

Abstract. Let Y →M be a fibred manifold with m-dimensional base and n-dimen-
sional fibres. Let r,m, n be positive integers. We present a construction Br of rth order
holonomic connections Br(Γ,∇) : Y → JrY on Y → M from general connections Γ :
Y → J1Y on Y →M by means of torsion free classical linear connections ∇ on M . Then
we prove that any construction B of rth order holonomic connections B(Γ,∇) : Y → JrY
on Y → M from general connections Γ : Y → J1Y on Y → M by means of torsion
free classical linear connections ∇ on M is equal to Br. Applying Br, for any bundle
functor F : FMm,n → FM on fibred (m,n)-manifolds we present a construction Fr

q

of rth order holonomic connections Fr
q (Θ,∇) : FY → Jr(FY ) on FY → M from qth

order holonomic connections Θ : Y → JqY on Y → M by means of torsion free classical
linear connections ∇ on M (for q = r = 1 we have a well-known classical construction
F(Γ,∇) : FY → J1(FY )). Applying Br we also construct a so-called (Γ,∇)-lift of a
wider class of geometric objects. In Appendix, we present a direct proof of a (recent)
result saying that for r ≥ 3 and m ≥ 2 there is no construction A of rth order holonomic
connections A(Γ ) : Y → JrY on Y → M from general connections Γ : Y → J1Y on
Y →M .

0. Introduction. Higher order connections were first introduced on
groupoids by C. Ehresmann [7]. Then I. Kolář extended this concept to
fibred manifolds [10]. It is well-known that higher order connections are
a powerful tool in the theory of higher order absolute differentiation [10].
Some other applications of such connections can be found e.g. in [1], [3],
[13], [14]. Roughly speaking, higher order connections are sections of bundles
of higher order jets. The latter were introduced by C. Ehresmann [6], and
they are a powerful tool in differential geometry and in many areas of math-
ematical physics. Indeed, they globalize the theory of differential systems
and play an important role in the calculus of variations and in the theory of
partial differential systems (see [24], [25]). The theory of jets and (principal)
connections constitutes the geometrical background for field theories and
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theoretical physics (see [16], [23], [15]). The theory of jets and connections
is closely connected to the theory of natural operations [12]. Some results
devoted to the prolongation of connections can be found e.g. in [3], [4], [5],
[8], [9], [11], [13], [18], [19], [22].

Let p : Y → M be a fibred manifold with m-dimensional base and
n-dimensional fibres. We recall that a holonomic rth order connection on
p : Y → M is a section Θ : Y → JrY of the rth jet prolongation JrY → Y
of p : Y → M . For r = 1 we obtain the concept of general connections Γ :
Y → J1Y on p : Y →M . For any general connection Γ : Y → J1Y one can
(equivalently) consider the corresponding lifting map Γ : Y ×M TM → TY ,
Γ (y, v) = Txσ(v), y ∈ Yx, v ∈ TxM , x ∈ M , Γ (y) = j1xσ. If p : Y → M
is a vector bundle and Θ : Y → JrY is a vector bundle map, then Θ is
called a linear rth order connection on p : Y → M . A linear connection
λ : TM → JrTM on the tangent bundle p : TM → M of M is called a
linear rth order connection on M . For r = 1, we have the concept of classical
linear connection λ : TM → J1TM on M ; equivalently, we can consider the
corresponding covariant derivative ∇ = ∇(λ) : X (M) × X (M) → X (M).
A classical linear connection ∇ on M is called torsion free if its torsion
tensor T (X,Y ) = ∇XY −∇Y Y − [X,Y ] is equal to zero.

In Section 1, given a general connection Γ : Y → J1Y on p : Y → M
(as above) and a torsion free classical linear connection ∇ on M we con-
struct (for any r) an rth order holonomic connection Br(Γ,∇) : Y → JrY
on p : Y → M . In other words, we obtain an FMm,n-natural opera-
tor Br in the sense of [12] (see also below), where FMm,n is the cate-
gory of all fibred manifolds with m-dimensional bases and n-dimensional
fibres and their local fibred embeddings. We remark (see Remark 3) that
Br(Γ,∇) can be used in the theory of fields of higher order geometric ob-
jects. The main result of Section 1 can be stated as follows. Any canon-
ical construction B of rth order holonomic connections B(Γ,∇) : Y →
JrY on Y → M from general connections Γ : Y → J1Y on Y → M
by means of torsion free classical linear connections ∇ on M is equal
to Br.

In Section 2, applying Br (where r is arbitrary), given a qth order holo-
nomic connection Θ : Y → JqY on p : Y → M and a torsion free classical
linear connection ∇ on M we construct an rth order holonomic connec-
tion Frq (Θ,∇) : FY → Jr(FY ) on FY → M , where F : FMm,n → FM
is an arbitrary bundle functor. Thus for r = q = 1 and ord(F ) = 1 we
recover the classical construction (see Definition 45.4 in [12]) of a gen-
eral connection F(Γ,∇) : FY → J1(FY ) on FY → M from a general
connection Γ : Y → J1Y on Y → M by means of a torsion free clas-
sical linear connection ∇ on M . We also study (Proposition 4) the exis-
tence of rth order holonomic connections B(Θ,∇) : FY → Jr(FY → Y )
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on FY → Y coming from qth order holonomic connections Θ : Y →
JqY on Y → M by means of torsion free classical linear connections ∇
on M .

In Section 3, applying Br we construct a so-called (Γ,∇)-lift of a wider
class of geometric objects. In particular, we construct a (Γ,∇)-lift of lin-
ear rth order differential operators C∞(M) → C∞(M) to rth order linear
differential operators C∞(Y )→ C∞(Y ).

In Appendix, we present a direct proof of a result from [3] saying that for
r ≥ 3 and m ≥ 2 there is no canonical construction A of rth order holonomic
connections A(Γ ) : Y → JrY on Y →M from general connections Γ : Y →
J1Y on Y →M .

In what follows we use the terminology and notation from the book [12].
In particular, we denote byMfm the category of m-dimensional manifolds
and their local diffeomorphisms and by FMm,n the category of fibred man-
ifolds with m-dimensional bases and n-dimensional fibres and local fibred
diffeomorphisms. All canonical constructions are identified with their corre-
sponding natural operators in the sense of [12].

A general concept of natural operators can be found in [12]. In particular,
an FMm,n-natural operator B transforming general connections Γ : Y →
J1Y on Y → M and torsion free classical linear connections ∇ on M into
rth order holonomic connections B(Γ,∇) : Y → JrY on Y → M is an
FMm,n-invariant family of regular operators (functions)

Bp:Y→M : Congen(p : Y →M)× Conoclass(M)→ Conrhol(p : Y →M)

for all FMm,n-objects p : Y →M , where Congen(p : Y →M) is the set of all
general connections Γ : Y → J1Y on p : Y →M , Conoclass(M) is the set of all
torsion free classical linear connections on M , and Conrhol(p : Y → M)
is the set of all rth order holonomic connections Θ : Y → JrY on p : Y →M .
The FMm,n-invariance means that if (Γ,∇) ∈ Congen(p : Y → M) ×
Conoclass(M) and (Γ1,∇1) ∈ Congen(p1 : Y1 → M1) × Conoclass(M1) are f -
related for an FMm,n-map f : Y → Y1 then so are Bp:Y→M (Γ,∇) and
Bp1:Y1→M1(Γ1,∇1). The regularity means that Bp:Y→M transforms smoothly
parametrized families of pairs of connections into smoothly parametrized
families of connections.

In the rest of the paper, we assume that any classical linear connection
considered is torsion free. This assumption is convenient in classification
problems (because of vanishing Christoffel symbols at the centre of nor-
mal coordinates), but not essential in existence problems. Indeed, from a
classical linear connection ∇ one can produce a corresponding torsion free
classical linear connection ∇sym, the torsion free part of ∇. Hence if we
have a construction A(·,∇) by means of torsion free classical linear connec-
tions ∇, then we have a construction A(·,∇) := A(·,∇sym) by means of
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(not necessarily torsion free) classical linear connections ∇. The converse is
obvious.

All manifolds and maps are assumed to be smooth (of class C∞).

1. Holonomic prolongation of general connections. In [3], we stud-
ied the problem whether given a general connection Γ : Y → J1Y on a fibred
manifold p : Y →M from FMm,n one can construct (FMm,n-canonically)
an rth order holonomic connection A(Γ ) : Y → JrY on Y →M , and ob-
tained the solutions given below.

For r = 1 or r = 2 or m = 1 we have the following constructions.

Example 1. For r = 1, we have A(Γ ) = Γ : Y → J1Y .

Example 2. For r = 2, we have the second order holonomic connection

Γ (2) := C(2) ◦ (Γ ∗ Γ ) : Y → J2Y

on Y → M from a general connection Γ : Y → J1Y on Y → M , where
Γ ∗ Γ = J1Γ ◦ Γ : Y → J 2Y is the Ehresmann semiholonomic prolongation
of Γ : Y → J1Y and C(2) : J 2Y → J2Y is the well-known symmetrization
of semiholonomic second order jets.

Example 3. We have the Ehresmann rth order semiholonomic prolon-
gation

Γ ∗ · · · ∗ Γ : Y → J rY

of a general connection Γ : Y → J1Y on Y → M . If dim(M) = 1, then
J rY = JrY , and then Γ ∗ · · · ∗ Γ : Y → JrY is an rth order holonomic
connection on Y →M .

In other cases, there are no constructions in question. Indeed, we have
the following result.

Proposition 1 ([3]). Let m,n, r be positive integers with m ≥ 2 and
r ≥ 3. There is no FMm,n-natural operator A transforming connections
Γ : Y → J1Y into rth order holonomic connections A(Γ ) : Y → JrY .

In [3], we proved Proposition 1 by using a complicated result from [20].
In Appendix, we will present another direct proof of Proposition 1.

Roughly speaking, Proposition 1 says that for the existence of a construc-
tion of rth order connections Y → JrY from general connections Y → J1Y
an additional object on p : Y → M is unavoidable, provided r ≥ 3 and
m ≥ 2.

On the other hand, in Section 3 of [3] we proved the following lemma.

Lemma 1. Let Γ : Y → J1Y be a general connection on a fibred manifold
p : Y → M . Let ∇̃ be a torsion free projectable classical linear connection
on p : Y → M (i.e. ∇̃ is a (torsion free) classical linear connection on Y
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and there exists a (unique) torsion free classical linear connection ∇̃ on M
such that ∇̃ and ∇̃ are p-related.) Let y ∈ Yx, x ∈M .

(i) There is a normal coordinate system (U,Φ) of ∇̃ with centre y cover-
ing a normal coordinate system (U,Φ) of ∇̃ with centre x such that
J1Φ(Γ (y)) = j10(0).

(ii) If (U,Ψ) is another normal coordinate system ∇̃ with centre y cover-
ing a normal coordinate system (U,Ψ) of ∇̃ with centre x such that
J1Ψ(Γ (y)) = j10(0), then there exist A ∈ GL(Rm) and B ∈ GL(Rn)
such that Ψ = (A×B) ◦ Φ on some neighbourhood of y.

Then, using Lemma 1, we presented the following construction.

Example 4 ([3]). Let Γ : Y → J1Y be a general connection on an
FMm,n-object p : Y →M , and ∇̃ be a torsion free projectable classical lin-
ear connection on p : Y →M . We define an rth order holonomic connection
Br

1(Γ, ∇̃) : Y → JrY on p : Y →M by

Br
1(Γ, ∇̃)(y) := Jr(Φ−1)(jr0(0))

where Φ is as in Lemma 1(i). By Lemma 1(ii), the definition of Br
1(Γ, ∇̃)(y)

is independent of the choice of Φ. We see that Br
1(Γ, ∇̃) is an rth order

holonomic extension of Γ , i.e. πr1 ◦Br
1(Γ, ∇̃) = Γ , where πr1 : JrY → J1Y is

the jet projection.

Because of the canonical character of the construction of Br
1(Γ, ∇̃), the

correspondence Br
1 : (Γ, ∇̃) → Br

1(Γ, ∇̃) is an FMm,n-natural operator. It
is of order 0 in Γ . In other words, we have a well-defined section Dr

1(∇̃) :
J1Y → JrY of the jet projection JrY → J1Y , given by

Dr
1(∇̃)(ρ) := Br

1(Γ, ∇̃)(y),

ρ ∈ (J1Y )y, y ∈ Y , where Γ : Y → J1Y is a general connection on Y →M

such that Γ (y) = ρ. Clearly, Br
1(Γ, ∇̃) = Dr

1(∇̃) ◦ Γ.
Remark 1. In [3], we generalized the above natural operator Br

1(Γ, ∇̃)
directly to higher order general holonomic connections Θ : Y → JqY in
place of Γ . Namely, we presented a canonical construction (natural operator)
Br
q for r > q ≥ 1 of an rth order holonomic connection Br

q (Θ, ∇̃) : Y →
JrY on Y → M from a qth order holonomic connection Θ : Y → JqY on
Y →M by using a torsion free projectable classical linear connection ∇̃ on
Y → M . Then one can define a section Dr

q(∇̃) : JqY → JrY of the jet
projection JrY → JqY (a direct generalization of Dr

1(∇̃) : J1Y → JrY ).
Then Br

q (Θ, ∇̃) = Dr
q(∇̃) ◦Θ.

In [17], we proved the following result.

Proposition 2. There is no FMm,n-canonical construction of torsion
free classical linear connections B(Γ,∇) on Y from torsion free classical
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linear connections ∇ on M by means of general connections Γ : Y → J1Y
on Y →M .

So, we have the following natural problem.

Problem 1. Let r ≥ 1. Given a general connection Γ : Y → J1Y on
p : Y →M and a torsion free classical linear connection ∇ on M , construct
an rth order holonomic connection Br(Γ,∇) : Y → JrY on p : Y →M such
that Br(Γ,∇) is an extension of Γ , i.e. πr1 ◦Br(Γ,∇) = Γ .

Unfortunately, because of Proposition 3 (see below) we have no canonical
construction D̃r

1 of a section D̃r
1(∇) : J1Y → JrY of the jet projection

JrY → J1Y from a torsion free classical linear connection∇ onM . Therefore
in solving Problem 1 we must use a more complicated method than the one
used in Example 4.

Proposition 3. Let m,n be positive integers. For r > q ≥ 1, there is no
FMm,n-natural operator A transforming general connections Γ : Y → J1Y
on FMm,n-objects Y → M and torsion free classical linear connections ∇
on M into sections A(Γ,∇) : JqY → JrY of the jet projection JrY → JqY .

Proof. Suppose that such an operator A exists. Let Γo : Rm,n→ J1(Rm,n)
be the trivial general connection on Rm,n. Let∇o be the usual flat torsion free
classical linear connection on Rm. Since A(Γo,∇o) : JqRm,n → JrRm,n is a
section, A(Γo,∇o)(jq0(x1, 0, . . . , 0)) = jr0(x1 +σ1(x), 0+σ2(x), . . . , 0+σn(x))
for some σj : Rm → R with jq0(σj) = 0. The FMm,n-map ψ : Rm,n → Rm,n

given by ψ(x, y) = (x, y1 + (y1)q+1, y2, . . . , yn), x ∈ Rm, y = (y1, . . . , yn)
∈ Rn, preserves Γo, ∇o and jq0(x1, 0, . . . , 0), but it does not preserve
jr0(x1 + σ1, σ2, . . . , σn). Contradiction.

To present a local coordinate solution of Problem 1 we need some “special”
fibred coordinates presented in Lemma 2 (below). We start with the following
notation.

Let Φr : Jr−1
0 (T ∗Rm ⊗ Rn)→ Jr0 (Rm,Rn)0 be the composition

Jr−1
0 (T ∗Rm ⊗ Rn) =

r−1⊕
k=0

SkT ∗0 Rm ⊗ T ∗0 Rm ⊗ Rn

→
r−1⊕
k=0

Sk+1T ∗0 Rm ⊗ Rn = Jr0 (Rm,Rn)0,

where the arrow is defined by symmetrization and the equalities are the usual
(GL(m)-invariant) identifications. In other words, Φr is the linear map such
that

Φr(jr−1
0 ((xi1 · · ·xikdxj)es)) =

1
k + 1

jr0(xi1 · · ·xikxjes)
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for any i1, . . . , ik, j = 1, . . . ,m, k = 0, . . . , r − 1 and s = 1, . . . , n, where es
is the usual canonical basis in Rn and x1, . . . , xm are the usual coordinates
on Rm. Then

Φr(jr−1
0 (dσ)) = jr0(σ)

for any σ : Rm → Rn with σ(0) = 0. Clearly, Φr is GL(m)-invariant and
linear.

Lemma 2. Let r,m, n be positive integers. Let Γ : Y → J1Y be a general
connection on an FMm,n-object p : Y → M , ∇ be a torsion free classical
linear connection on M , yo ∈ Y be a point, xo = p(yo) ∈M .

(1) There exists a fibred coordinate system ψ on Y with ψ(yo) = (0, 0) ∈
Rm×Rn covering a ∇-normal coordinate system ψ on M with centre
xo such that

Φr(jr−1
0 ((ψ∗Γ )0)) = jr0(0),

where ψ∗Γ : Rm,n → J1(Rm,n) is the image of Γ under ψ and
(ψ∗Γ )0 : Rm → T ∗Rm ⊗ Rn is the Rn-valued 1-form given by
(ψ∗Γ )0(x) = (ψ∗Γ )(x, 0) ∈ J1

x(Rm,Rn)0 = T ∗xRm ⊗ Rn, x ∈ Rm,
and Φr is defined above.

(2) If ψ1 is another such coordinate system then φ = ψ1 ◦ ψ−1 is of
the form φ(x, y) = (A(x), φ̃(x, y)) for some A ∈ GL(m) and φ̃ :
Rm × Rn → Rn with jr0((φ̃)0) = 0, where (φ̃)0(x) = φ̃(x, 0). In
other words, if ψ1 is another such coordinate system then there exist
A ∈ GL(m) and φ̃ : Rm × Rn → Rn such that

jr0((φ̃)0) = 0 and ψ1 = φ ◦ ψ,
where (φ̃)0(x) = φ̃(x, 0) and φ(x, y) = (Ax, φ̃(x, y)).

Proof. Because of the existence of ∇-normal coordinates, we may assume
Y = Rm,n, yo = (0, 0) and idRm is a ∇-normal coordinate system with
centre 0. Let Γ =

∑m
i=1 dx

i ⊗ ∂
∂xi +

∑m
i=1

∑n
k=1 Γ

k
i dx

i ⊗ ∂
∂yk be the lifting

(affinor) presentation of the general connection, where x1, . . . , xm, y1, . . . , yn

are the usual coordinates on Rm,n. We may assume that Γ ki : Rm,n → R are
polynomials of degree ≤ r − 1.

(1) We will apply induction with respect to r.
(i) The case r = 1. Let Γ (0, 0) = j10(σ), where σ : Rm → Rn is

the linear map. Define ψ : Rm,n → Rm,n, ψ(x, y) = (x, y − σ(x)). Then
(ψ∗Γ )(0, 0) = j10(0). Hence j00((ψ∗Γ )0) = (ψ∗Γ )0(0) = 0. Consequently,
Φ1(j00(ψ∗Γ )0) = j10(0), as well.

(ii) The inductive step. By the inductive assumption for r − 1 ≥ 1 we
may additionally assume that Φr−1(jr−2

0 Γ 0) = 0. Let σ = σses : Rm → Rn

be a map such that jr0(σ) = Φr(jr−1
0 (Γ 0)), where Γ 0 is the 1-form given

by Γ 0(x) = Γ (x, 0) ∈ J1
x(Rm,Rn)0 = T ∗Rm ⊗ Rn, x ∈ Rm. Then (by the
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additional inductive assumption), jr−1
0 (σ) = 0. Define ψ : Rm,n → Rm,n by

ψ(x, y) = (x, y−σ(x)). We prove that ψ satisfies part (1) of the lemma for r.
We see that ψ preserves xi and ∂

∂ys , sends ∂
∂xi to ∂

∂xi−
∑n

s=1
∂σs

∂xi
∂
∂ys and ys to

ys+σs. Therefore ψ sends
∑m

i=1 dx
i⊗ ∂

∂xi to
∑m

i=1 dx
i⊗ ∂

∂xi−
∑n

s=1 dσ
s⊗ ∂

∂ys ,
and Γ to ψ∗Γ = Γ−

∑n
s=1 dσ

s⊗ ∂
∂ys +· · · , the dots standing for a linear com-

bination of terms of degree ≥ r. Then jr−1
0 ((ψ∗Γ )0) = jr−1

0 (Γ 0)− jr−1
0 (dσ).

Therefore Φr(jr−1
0 ((ψ∗Γ )0) = Φr(jr−1

0 (Γ 0))− Φr(jr−1
0 (dσ)) = jr0(σ)− jr0(σ)

= 0, as well.
(2) We may assume ψ = idRm,n . Then Φr(jr−1

0 (Γ 0)) = 0, φ = ψ1 and
φ is a ∇-normal coordinate system with centre 0. Then φ = A for some
A ∈ GL(m) (as idRm is a ∇-coordinate system with centre 0). Since A pre-
serves jr0(0) and A commutes with Φr, we may assume A = id. Denote Γ 0 =
(Γ 0)ses. Let σ := (φ̃)0. Let φ1 be given by φ1(x, y) = φ(x, y)−(0, σ(x)). Then
φ1(x, 0) = (x, 0). Consequently, jr−1

0 (((φ1)∗Γ )0) = jr−1
0 (Γ 0+ · · · ), where the

dots denote a linear combination of terms of the form xβ(Γ 0)skes1 , with (Γ 0)sk
denoting the homogeneous part of (Γ 0)s of degree k. Clearly, by the defini-
tion of Φr we have Φr(jr−1

0 (xβ((Γ 0)skes1))) = ckΦr(jr−1
0 ((Γ 0)skes1))jr0(xβ) =

jr0(0), where ck is some real number. Then Φr(jr−1
0 ((φ1)∗Γ )0) = jr0(0). So,

replacing φ by φ ◦ (φ1)−1, we may assume that φ(x, y) = (x, y + σ(x)). It
remains to prove that jr0(σ) = 0. We will proceed by induction with respect
to r.

(i) The case r = 1. Clearly, Γ(0, 0) = j10(0). Consequently, (φ∗Γ )0(0) =
d0σ. Then 0 = Φ1(j00((φ∗Γ )0)) = Φ1(j00(dσ)) = j10(σ).

(ii) The inductive step. By the inductive assumption for r − 1 ≥ 1 we
may additionally assume that jr−1

0 (σ) = 0. Then by the same reason as in
the inductive step for (1) (with φ instead of ψ and −σ instead of σ) we have
0 = Φr(jr−1

0 ((φ∗Γ )0)) = Φr(jr−1
0 (Γ 0)) + jr0(σ) = jr0(σ), as well.

Now, we are in a position to present the following local coordinate solu-
tion of Problem 1.

Example 5. Let Γ : Y → J1Y be a general connection on an FMm,n-
object p : Y →M . Let ∇ be a torsion free classical linear connection on M .
We define an rth order holonomic connection Br(Γ,∇) : Y → JrY on
Y →M as follows. Consider an arbitrary point y ∈ Yx, x ∈M . Let ψ be as
in Lemma 2(1) (for Γ,∇, yo = y as above). We put

Br(Γ,∇)(y) := Jr(ψ−1)(jr0(0)),

where jr0(0) ∈ Jr0 (Rm,Rn)0 = Jr(0,0)(R
m,n) is the r-jet at 0 ∈ Rm of the zero-

section of Rm,n. Using Lemma 2(2) we see that the definition of Br(Γ,∇)(y)
is correct (independent of the choice of ψ). Since we can choose such coordi-
nates ψ (for y) smoothly in y (as follows from the construction of ψ in the
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proof of Lemma 2), Br(Γ,∇) : Y → JrY is smooth, and so it is an rth order
holonomic connection on Y →M . From the above construction, we see that
πr1 ◦Br(Γ,∇) = Γ , i.e. Br(Γ,∇) is an extension of Γ .

We also have the following strictly geometric solution of Problem 1.

Example 6. Let Γ : Y → J1Y be a general connection on p : Y → M
and ∇ be a torsion free classical linear connection on M . Define an rth
order holonomic connection B̃r(Γ,∇) : Y → JrY on Y → M as follows.
Let yo ∈ Y and xo = p(yo). Let expxo

: TxoM ⊃ U0xo
→ Wxo ⊂ M be the

exponent of ∇ at xo, where U0xo
is sufficiently small and convex. Define a

smooth map φ : (−2, 2)×Wxo →M by

φ(t, x) = expxo
(t(expxo)−1(x)),

t ∈ (2, 2), x ∈Wxo . Given x ∈Wxo , let φx : (−2, 2)→M be the curve given
by φx(t) = φ(x, t), t ∈ (−2, 2). Let φ̃yo

x : (−2, 2) → Y be the Γ -horizontal
lifting of φx passing through yo, i.e. the curve such that p◦φ̃yo

x = φx, φ̃
yo
x (0) =

yo and d
dt(φ̃

yo
x )(t) is Γ -horizontal for any t (see the proof of Theorem 9.8

in [12] for the existence and uniqueness). Then we have a smooth local section
σyo : Wxo → Y of Y → M defined by σyo(x) = ψ̃yo

x (1), x ∈ Wxo (see
Theorem 9.8 in [12] for smoothness). We put

B̃r(Γ,∇)(yo) = jrxo
(σyo).

Then B̃r(Γ,∇) : Y → JrY is smooth (see Theorem 9.8 in [12]). Since
σyo(xo) = yo, B̃r(Γ,∇) : Y → JrY is an rth order holonomic connection on
Y →M .

Remark 2. (1) By Theorem 1 below, the constructions Br and B̃r from
Examples 5 and 6 are equal.

(2) The construction B̃r(Γ,∇) from Example 6 is more “economic” than
Ar(Γ, ∇̃) = Br

1(Γ, ∇̃) from Example 4. Indeed, to obtain B̃r(Γ,∇) we need
a torsion free classical linear connection ∇ on M instead of a torsion free
projectable classical linear one ∇̃ on p : Y → M as in the case of Ar(Γ, ∇̃)
from Example 4.

(3) We have the following coordinate expression of B̃2(Γ,∇) from Ex-
ample 5. Denote by (xi, yp) the canonical coordinates on Y and let(

xi, yp, ypi =
∂yp

∂xi
, ypij =

∂ypi
∂xj

)
be the induced coordinates on J 2Y . If ypi = Γ pi (x, y) is the coordinate expres-
sion of Γ , then its Ehresmann prolongation Γ ∗ Γ : Y → J 2Y has equations

ypi = Γ pi , ypij =
∂Γ pi
∂xj

+
∂Γ pi
∂yq

Γ qj .
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Then Γ (2) (from Example 2) has the expression

ypi = Γ pi , ypij =
1
2

(
∂Γ pi
∂xj

+
∂Γ pi
∂yq

Γ qj +
∂Γ pj
∂xi

+
∂Γ pj
∂yq

Γ qi

)
.

By Theorem 1 below, B̃2(Γ,∇) = Γ (2).
(4) It is difficult to obtain the coordinate expression of B̃r(Γ,∇) from

Example 6 for r ≥ 3. By the construction from Example 5, we know such
expressions at the centres of “special coordinates” only.

Remark 3. Reformulating suitable parts of Remark 1 in [3], the con-
struction Br from Example 5 can be used for the geometric description of
fields of higher geometric objects as follows. Let P → M be a principal G-
bundle with m-dimensional basis. Its rth principal prolongation W rP is de-
fined as the space of all r-jets jr(0,e)ϕ of local trivializations ϕ : Rm×G→ P ,
where e ∈ G is the unit. By [12], W rP → M is a principal bundle with the
structure groupW r

mG = Jr(0,e)(R
m×G,Rm×G)(0,−), and the fibred manifold

W rP →M coincides with the fibred product W rP = P rM ×M JrP , where
P rM = inv Jr0 (Rm,M) is the rth order frame bundle ofM . Let Γ : P → J1P
be a principal (i.e. G-invariant) connection on P →M and Λ be a classical
linear connection on M . By [12], we have a reduction of principal bundles
µΓ : P 1M ×M P → P 1M ×M J1P = W 1P , µΓ (l, p) = (l, Γ (p)), with the ob-
vious group monomorphism GL(m)×G→ W 1

mG. Using right translations,
we can extend the product connection Λ× Γ on P 1M ×M P to a principal
connection p(Γ,Λ) on W 1P →M . It is well known that the bundle functor
W r
m plays a fundamental role in the theory of gauge natural operators and

in mathematical physics. Moreover, the reduction µΓ has applications in the
coordinate description of fields of geometric objects (see [12]).

Now let Br(Γ,Λ) : P → JrP be the connection from Example 5. Because
of the canonical character of the construction Br with respect to fibred em-
beddings, Br(Γ,Λ) is G-right invariant (as right translations of G on P
are fibre embeddings). Then taking into account the exponential extension
of λrΛ (see Section 2 below) instead of Λ, we can generalize µΓ to the reduc-
tion idP rM ×Br(Γ,Λ) : P rM ×M P → W rP , the connection Λ × Γ to the
connection λrΛ × Γ on P rM ×M P and the principal connection p(Γ,Λ) on
W 1P → M to the principal connection pr(Γ,Λ) on W rP → M (extending
λrΛ×Γ ). This provides us with the geometric background for the description
of fields of higher order geometric objects.

In the rest of this section we prove the following theorem.

Theorem 1. Let m,n, r be natural numbers. Any FMm,n-natural op-
erator B transforming general connections Γ : Y → J1Y on Y → M and
torsion free classical linear connections ∇ on M into rth order holonomic
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connections B(Γ,∇) : Y → JrY on Y → M is equal to Br(Γ,∇) from Ex-
ample 5. In particular, the constructions Br and B̃r from Examples 5 and 6
coincide.

To prove Theorem 1 we need the following lemma.

Lemma 3. Any FMm,n-natural operator ∆ transforming general con-
nections Γ : Y → J1Y on Y → M and torsion free classical linear connec-
tions ∇ on M into tensor fields ∆(Γ,∇) : Y → SrT ∗M ⊗ V Y is equal to
zero.

Proof of Theorem 1. We proceed by induction with respect to r.
(i) r = 1. Let B(Γ,∇) : Y → J1Y be an operator as in the statement.

We have the well-known affine bundle structure on π1
0 : J1Y → Y with the

corresponding vector bundle T ∗M ⊗ V Y . Consider the difference

∆(Γ,∇) := B(Γ,∇)−B1(Γ,∇) : Y → T ∗M ⊗ V Y.
It is equal to zero, by Lemma 3 for r = 1. Therefore B(Γ,∇) = B1(Γ,∇).

(ii) The inductive step. Let r ≥ 2. Let B(Γ,∇) : Y → JrY be as in the
statement. Then πrr−1◦B(Γ,∇) = Br−1(Γ,∇) : Y → Jr−1Y by the inductive
assumption (as πrr−1 ◦ B(Γ,∇) is an FMm,n-natural operator of the type
considered for r − 1). Moreover, by the same argument, πrr−1 ◦ Br(Γ,∇) =
Br−1(Γ,∇) : Y → Jr−1Y . We have the well known affine bundle structure
on πrr−1 : JrY → Jr−1Y with the corresponding vector bundle SrT ∗M⊗V Y
over Jr−1Y (where the pull back with respect to πr−1

0 : Jr−1Y → Y is not
indicated). Then we have the difference

∆(Γ,∇) := B(Γ,∇)−Br(Γ,∇) : Y → SrT ∗M ⊗ V Y.
It is zero by Lemma 3. Hence B(Γ,∇) = Br(Γ,∇).

Proof of Lemma 3. It is sufficient to show that the contraction

〈∆(Γ,∇)(y), w ⊗ v〉 = 0

for any y ∈ Yx, x ∈ M , w ∈ SrTxM , v ∈ (VyY )∗ . Because of the FMm,n-
invariance of ∆ and Lemma 2 and the linearity in w ⊗ v, we may assume
that (Y → M) = Rm,n, y = (0, 0), x = 0, w = �r ∂

∂x1 (0) and v = d0y
1, and

that the identity map idRm,n is a “special” fibred coordinate system as in
Lemma 2 for Γ,∇, r̃ and yo = (0, 0), xo = 0, where r̃ is arbitrarily large. Then
Φr̃((Γ )0) = 0, and then (in particular) Γ (0, 0) = j10(0), and ∇(0) = ∇o(0)
(as the Christoffel symbols of torsion free classical linear connections vanish
at the centre of normal coordinates), where ∇o is the usual flat torsion free
classical linear connection on Rm. Because of Corollary 19.8 in [12] of the
non-linear Peetre-like theorem, we may replace Γ and ∇ by new ones with
the same q-jets at (0, 0) and 0, where q is sufficiently large (depending on
Γ,∇). Then we may assume that the Christoffel symbols of ∇ and Γ in the
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identity chart are polynomials of degree q, where q is a natural number. Then
we can assume that Γ is of the form

(1) Γ = Γo +
m∑
i=1

n∑
k=1

∑
1≤|(α,β)|≤q

akαβix
αyβdxi ⊗ ∂

∂yk

and ∇ is of the form

(2) ∇i1i2i3 =
∑

1≤|γ|≤q

ci1i2i3γx
γ ,

where the coefficients akαβi and ci1i2i3γ are real numbers and Γo denotes the
trivial general connection on Rm,n. As Φr̃((Γ )0) = 0, we may additionally
assume

(3) ak(b,0,...,0)(0)1 = 0

for all b = 0, 1, . . . , q and k = 1, . . . , n. Because at the centre of ∇-normal
coordinates∇i1,1;1,...,1(0) = 0 for all i = 1, . . . ,m and arbitrarily long 1, . . . , 1,
we may additionally assume

(4) ci11,1,(b,0,...,0) = 0

for any i1 = 1, . . . ,m and any b = 1, . . . , q. Given q, the space W of all
systems (Γ,∆) of the form (1) and (2) satisfying (3) and (4) is obviously
a finite-dimensional vector space, which is invariant with respect to the
FMm,n-maps (t1x1, . . . , tmxm, τ1y1, · · · , τnyn) for ti > 0 and τ j > 0. The
coefficients akαβi and ci1i2i3γ as in (3) and (4) will be called inessential , and
the others from (1) and (2) will be called essential . Let K be the set of all
indices of essential coefficients. Define ∆ : RK → R by

(5) ∆(ci1i2i3γ , a
k
αβi) :=

〈
∆(Γ,∇)(0, 0),�r ∂

∂x1
(0)� d0y

1

〉
∈ R,

where (Γ,∇) is the unique system from W given by (1) and (2) for
(ci1i2i3γ , a

k
αβi) ∈ RK . Fixing an ordering in K we may assume that K ∈ N is

the number of elements in K. The function ∆ : RK → R is defined on the
whole RK . By the regularity of the FMm,n-natural operator ∆, the function
∆ : RK → R is smooth. Applying the invariance of ∆ with respect to the
homotheties 1

τ idRm,n for τ > 0, we obtain the homogeneity condition

∆(τ |γ|+1ci1i2i3γ , τ
|(α,β)|akαβi) = τ r−1∆(ci1i2i3γ , a

k
αβi).

If r = 1 then putting τ → 0 we see that ∆ is constant, and then using the
invariance with respect to the base homotheties we get ∆ = 0. If r ≥ 2
then by the homogeneous function theorem [12], this type of homogeneity
implies that ∆(ci1i2i3γ , a

k
αβi) is a linear combination (with real coefficients) of

monomials of the form
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(6)
S∏
s=1

c
is1
is2i

s
3γ

s

P∏
p=1

ak
p

αpβpip

where ci
s
1
is2i3γ

s and ak
p

αpβpip are essential (where
∏S
s=1 c

is1
is2i

s
3γ

s := 1 if S = 0,
and similarly if P = 0). Suppose that the coefficient of some monomial (6)
in the linear combination expressing ∆ is not zero. By the invariance of
∆ with respect to fibre homotheties we deduce that P ≥ 1 and βp = (0)
for some p = 1, . . . , P . Then αp + eip = (b1, . . . , bm) with bj ≥ 1 for some
j = 2, . . . ,m (because in the other case akp

αpβpip is inessential, see (3)). Then
using the invariance of ∆ with respect to (x1, τx2, . . . , τxm, y1, . . . , yn) we
deduce that S ≥ 1 and for some s = 1, . . . , S there is bs such that eis2 +
eis3 + γs = (bs, 0, . . . , 0). But such a cisis2is3γs is inessential (see (4)). Therefore,
∆(ci1i2i3γ , a

k
αβi) = 0.

2. Prolongation of higher order holonomic connections by
bundle functors. In Definition 45.4 of [12], the authors defined a gen-
eral connection F(Γ, λ) : FY → J1(FY ) on FY → M from a general
connection Γ : Y → J1Y on p : Y → M by means of kth order lin-
ear connection λ : TM → JkTM on M , where F : FMm,n → FM is
a bundle functor of order k. More precisely, the corresponding lifting map
F(Γ, λ) : FY ×M TM → TFY of F(Γ, λ) is defined by

F(Γ, λ)(u, v) = F(XΓ )(u),

u ∈ (FY )x, v ∈ TxM , x ∈ M , where X is a vector field on M such that
λ(x) = jrx(X), XΓ is the Γ -lift of X to Y (i.e. a projectable vector field on
Y →M defined by XΓ (y) = Γ (X(x), y), y ∈ Yx, x ∈M) and F(Z) denotes
the flow prolongation of a projectable vector field Z on Y →M . (Since the
flow prolongation F is linear and of order k, F(Γ,∇) is a well defined lifting
map of a general connection on FY → M ; see [12] for details.) But given
a torsion free classical linear connection ∇ on M , using the exponent of ∇,
one can produce a kth order linear connection λk∇ : TM → JkTM on M
(see e.g. [18]). More precisely,

λk∇(v) = jkx((exp∇x )∗ṽ),

v ∈ TxM , x ∈ M , where ṽ ∈ X (TxM) is the constant vector field on TxM
given by ṽ(w) = d

dt0
(w + tv), w ∈ TxM , and exp∇x : TxM ⊃ U → W ⊂ M

is the exponent of ∇ at x (from some open neighbourhood U of 0 ∈ TxM
onto some open neighbourhood W of x). (Probably λk∇ = B̃k(λ, λ), where
B̃k(Γ,∇) is the operator as in Example 6 for k instead of r, Γ = λ : Y =
TM → J1Y = J1TM and ∇ = λ.) Then given a general connection Γ :
Y → J1Y on p : Y →M and a torsion free classical linear connection ∇ on



114 W. M. Mikulski

M we have the general connection

F(Γ,∇) := F(Γ, λk∇) : FY → J1(FY )

on FY →M . So, we have the following natural problem.

Problem 2. Let r, q,m, n be positive integers. Let F : FMm,n → FM
be a bundle functor. Given a qth order holonomic connection Θ : Y → JqY
on p : Y → M and a torsion free classical linear connection ∇ on M ,
construct an rth order holonomic connection Frq (Θ,∇) : FY → Jr(FY ) on
FY →M .

In [4], we solved Problem 2 in the special case F = Js : FMm,n → FM
and q = r. A solution of Problem 2 (in the general case) is given in the
following example.

Example 7. Let Θ : Y → JqY be a qth order holonomic connection on
an FMm,n-object p : Y → M and let ∇ be a torsion free classical linear
connection on M . Let F : FMm,n → FM be a bundle functor. Define an
rth order holonomic connection Frq (Θ,∇) : FY → Jr(FY ) on FY → M

as follows. Let k be the order of F . Let Γ : Y → J1Y be the underlying
connection of Θ. Let F(Γ,∇) : FY → J1(FY ) be the general connection on
FY →M induced by Γ and ∇ (recalled above). We put

Frq (Θ,∇) := Br(F(Γ,∇),∇),

where the operator Br is as in Example 5 for FY →M instead of Y →M .

Using the construction Frq (Θ,∇) from Example 7, we immediately obtain
a solution of the next problem.

Problem 3. Let r, q,m, n be positive integers. Let F : FMm,n → FM
be a bundle functor. Given a qth order holonomic connection Θ : Y → JqY
on p : Y →M and a torsion free projectable classical linear connection ∇̃ on
p : Y →M , construct an rth order holonomic connection F̃rq (Θ, ∇̃) : FY →
Jr(FY ) on FY →M .

Indeed, we have the following example.

Example 8. Let Θ : Y → JqY be a general qth order holonomic connec-
tion on an FMm,n-object p : Y →M and let ∇̃ be a torsion free projectable
classical linear connection on p : Y → M . Let F : FMm,n → FM be a
bundle functor. Define an rth order holonomic connection

F̃rq (Θ, ∇̃) := Frq (Θ, ∇̃) : FY → Jr(FY )

on FY → M , where ∇̃ is the torsion free classical linear connection on M
underlying ∇̃ and Frq is as in Example 7.

Remark 4. Problem 3 solved above was open and rather difficult. In-
deed, in [19] we presented a bundle functor F : FMm,n → FM such that
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there is no construction of a torsion free projectable classical linear connec-
tion BF (∇̃) on FY from a torsion free projectable classical linear connec-
tion ∇̃ on p : Y → M , and hence we could not solve Problem 3 by putting
F̃rq (Θ, ∇̃) = Br

1(F(Γ, ∇̃), BF (∇̃)) : FY → Jr(FY ) (for such F ), where
Γ : Y → J1Y is the general connection underlying Θ and Br

1(Γ, ∇̃) is the
operator from Example 4.

In the rest of this section, using the operator Br from Example 5 and
the main result from [21], we also solve the following classification problem.

Problem 4. Let r, q,m, n be positive integers. Describe all bundle func-
tors F : FMm,n → FM such that there is a canonical construction A of rth
order holonomic connections A(Θ,∇) : FY → Jr(FY → Y ) on FY → Y
from qth order holonomic connections Θ : Y → JqY on Y → M by means
of torsion free classical linear connections ∇ on M .

We start with the following example.

Example 9. Let G : Mfm → FM be a natural bundle of (finite) or-
der k. We have a bundle functor p∗G : FMm,n → FM, where (p∗G)(Y ) :=
p∗(G(M)→M) for FMm,n-objects p : Y →M is the pull-back of G(M)→M
with respect to p : Y → M , and where (p∗G)(f) : (p∗G)(Y ) → (p∗G)(Y1)
is obviously defined from G(f) : G(M) → G(M1) for FMm,n-morphisms
f : Y → Y1 covering f : M → M1. Let p : Y → M be an FMm,n-object
and ∇ be a torsion free classical linear connection on M . We construct an
rth order holonomic connection A(∇) on (p∗G)(Y ) → Y as follows. The
connection ∇ induces a general connection Γ∇G : GM ×M TM → TGM on
G(M) → M by Γ∇G (v, w) = G(X)(v), v ∈ FxM , w ∈ TxM , x ∈ M , where
λk∇ : TM → JkTM is the “exponential” extension of ∇ (see the beginning
of this section), jkx(X) = λk∇(w) and G(X) is the flow lifting of a vector
field X on M to GM . Applying the operator Br from Example 5, we have
the rth order holonomic connection Br

G(∇) := Br(Γ∇G ,∇) on G(M) → M .
Consider an arbitrary element w = (v, y) ∈ (p∗G)(Y ), y ∈ Yx, v ∈ Gx(M),
x ∈ M . Let σ : M → G(M) be a section of G(M) → M such that jrx(σ) =
Br
G(∇)(v). We put A(∇)(w) := jry(σ̃), where σ̃ : Y → (p∗G)(Y ) is defined

by σ̃(z) = (σ(p(z)), z), z ∈ Y . Clearly, jry(σ̃) is determined by jrx(σ). Hence
the definition of A(∇)(w) is correct. Clearly, A(∇) is an rth order holonomic
connection on (p∗G)(Y )→ Y .

Proposition 4. Let r, q,m, n be positive integers. Let F : FMm,n →
FM be a bundle functor. There exists a canonical construction A of rth
order holonomic connections A(Θ,∇) on F (Y ) → Y from qth order holo-
nomic connections Θ on Y → M by means of torsion free classical linear
connections ∇ on M if and only if F is isomorphic to p∗G for some natural
bundle G :Mfm → FM.
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Proof. In [21], we proved this proposition in the case q = r = 1. Now, let
q and r be arbitrary. If F is isomorphic to p∗G then such an A exists in view
of Example 9. If F is not isomorphic to any p∗G then by the proposition
for q = r = 1 there is no canonical construction B of general connections
B(Γ,∇) on F (Y )→ Y from general connections Γ on Y →M by means of
classical linear connections ∇ onM . Suppose that such an A exists. Then we
can define a general connection B(Γ,∇) on FY → Y to be the underlying
connection of the rth order connection A(Bq(Γ,∇),∇) on FY → Y , where
Bq(Γ,∇) is as in Example 5 for q instead of r. Contradiction.

Roughly speaking, Proposition 4 says that (in contrast to Example 7)
the class of bundle functors F : FMm,n → FM for which we can construct
canonically an rth order holonomic connection A(Θ,∇) :FY → Jr(FY → Y )
on FY → Y from a qth order holonomic connectionΘ : Y → JqY on Y →M
by using a torsion free classical linear connection ∇ onM is very narrow. For
example, from Proposition 4 we immediately have the following corollaries.

Corollary 1. Let s ≥ 1. There is no FMm,n-canonical construction
of rth order holonomic connections A(Θ,∇) : JsY → Jr(JsY → Y ) on
JsY → Y from qth order holonomic connections Θ : Y → JqY on Y → M
by means of torsion free classical linear connections ∇ on M .

Corollary 2. There is no FMm,n-canonical construction of rth order
holonomic connections A(Θ,∇) : TY → Jr(TY → Y ) on TY → Y from qth
order holonomic connections Θ : Y → JqY on Y →M by using torsion free
classical linear connections ∇ on M .

3. An application of prolongations of connections to lifting of ge-
ometric objects. Let Γ : Y → J1Y be a general connection on p : Y →M .

It is a well-known classical fact that using Γ one can lift vector fields on
M to vector fields on Y . This classical construction can be presented in the
following way. Let X be a vector field on M . We define a vector field XΓ

on Y by XΓ (y) = Tx(σ)(X(x)), y ∈ Yx, x ∈ M , where σ : M → Y is a
section such that j1x(σ) = Γ (y). The definition of XΓ (y) is correct because
Tx(σ) : TxM → Tσ(x)Y depends on the first jet of σ at x only.

The above construction of XΓ can be directly generalized to all first
order bundle functors F : Mf → FM in place of the tangent functor
T :Mf → FM, whereMf is the category of all smooth manifolds and all
smooth maps. Namely, we have the following example.

Example 10. Let ρ : M → F (M) be a section of F (M)→M . We define
a section ρΓ : Y → F (Y ) of F (Y ) → Y by ρΓ (y) = Fx(σ)(ρ(x)), y ∈ Yx,
x ∈ M , where σ : M → Y is a section such that j1x(σ) = Γ (y). If F is of
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order 1, the definition of ρΓ (y) is correct because Fx(σ) : FxM → Fσ(x)(Y )
depends on the first jet of σ at x only.

Clearly, if F : Mf → FM is of the minimal order r > 1, then the
construction from Example 10 is not correct. However, if we apply an rth
order holonomic connection Θ : Y → JrY instead of Γ : Y → J1Y then the
construction as in Example 10 will be correct. Namely we have the following
example.

Example 11. Let F :Mf → FM be a bundle functor of finite order r.
Let Θ : Y → JrY be an rth order holonomic connection on a fibred manifold
Y →M . Let ρ : M → F (M) be a section of F (M)→M . We define a section
ρΘ : Y → F (Y ) of F (Y ) → Y by ρΘ(y) = Fx(σ)(ρ(x)), y ∈ Yx, x ∈ M ,
where σ : M → Y is a section such that jrx(σ) = Θ(y).

So, given a general connection Γ : Y → J1Y and an rth order bundle
functor F : Mf → FM one can lift sections of F (M) → M to sections of
F (Y ) → Y if we can produce an rth order holonomic connection Θ : Y →
JrY from Γ . This is possible if r = 2 (in this case we have Θ = Γ (2) : Y →
J2Y , see Example 2). Thus we have the following example.

Example 12. Let F : Mf → FM be a bundle functor of order 2. Let
Γ : Y → J1Y be a general connection on Y →M . Let ρ : M → F (M) be a
section of F (M). We have a section ρΓ := ρΓ

(2)
: Y → F (Y ), where ρΓ (2) is

defined in Example 11 for Θ = Γ (2) (from Example 2).

Remark 5. An important example of a second order bundle functor is
the vector second order tangent bundle functor T (2) :Mf → FM. We recall
that T (2)(M) = (J2(M,R)0)∗ (see [12]). Thus sections σ : M → T (2)(M)
of T (2)(M) → M are in fact linear second order differential operators σ :
C∞(M)→ C∞(M) (annihilating constants), σ(f)(x) := σ(x)(j2x(f−f(x))),
x ∈ M , f ∈ C∞(M). (To omit the assumption on annihilating constants it
is sufficient to take the extended vector second order tangent bundle functor
E(2) = T (2) ×R instead of T (2).) Thus Example 12 for F = T (2) shows that
given a general connection Γ : Y → J1Y one can lift linear second order
differential operators on C∞(M) to linear second order differential operators
on C∞(Y ).

Remark 6. In [2], we produced (in a rather complicated way) a so-
called (2)-connection Γ̃ (2) : Y ×M T (2)(M) → T (2)Y on Y → M from a
given general connection Γ : Y ×M TM → TY on Y → M . Of course, this
(2)-connection can be (equivalently) interpreted as the corresponding lift of
sections ρ of T (2)(M) to sections ρΓ̃ (2) of T (2)(Y ), by ρΓ̃ (2)

(y) = Γ̃ (2)(y, ρ(x)),
y ∈ Yx, x ∈ M . In [2], we also proved that the natural operator Γ → Γ̃ (2)

is the unique natural operator sending general connections on Y → M to
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(2)-connections on Y → M . Hence, the lift ρΓ of Example 12 for F = T (2)

coincides with ρΓ̃ (2) . Now, we see that the above fact holds because Γ → Γ (2)

is the only natural operator sending general connections on Y →M to second
order holonomic connections on Y →M . In [2], we could not generalize the
construction Γ̃ (2) to all r. Now, we see that the reason was that for r ≥ 3
there is no rth order holonomic connection on Y →M coming from a general
connection on Y →M .

Substituting Br(Γ,∇) of Example 5 for Θ in Example 11 we have the
following example.

Example 13. Let F :Mf → FM be a bundle functor of finite order r.
Let Γ : Y → J1Y be a general connection on a fibred manifold Y →M and
∇ be a torsion free linear classical connection on M . Let ρ : M → F (M) be
a section of F (M) → M . We have a section ρ(Γ,∇) := ρB

r(Γ,∇) : Y → F (Y )
of F (Y ) → Y , where ρBr(Γ,∇) is defined in Example 11 for Θ = Br(Γ,∇)
and Br(Γ,∇) : Y → JrY is defined in Example 5. Thus given (Γ,∇) we
have the (Γ,∇)-lift ρ → ρ(Γ,∇). In particular, for F = T (r) : Mf → FM
we obtain the (Γ,∇)-lifting of linear rth order differential operators C∞(M)
→ C∞(M) (annihilating constants) to rth order linear differential operators
C∞(Y ) → C∞(Y ) (annihilating constants). For F = (JrT ∗)∗ : Mf →
FM we obtain the (Γ,∇)-lifting of linear rth order differential operators
Ω1(M)→ C∞(M) to rth order ones Ω1(Y )→ C∞(Y ).

Remark 7. Let Γ : Y → J1Y be a general connection on a fibred man-
ifold p : Y →M with non-vanishing curvature. We see that for r ≥ 2, there
is no operator lifting rth order linear differential operators ρ : C∞(M) →
C∞(M) to rth order linear differential operators ρΓ : C∞(Y ) → C∞(Y )
such that (X1 ◦ · · · ◦Xk)Γ = XΓ

1 ◦ · · · ◦XΓ
k for all X1, . . . , Xk ∈ X (M) and

k = 1, . . . , r, where XΓ denotes the Γ -horizontal lift of X (see the beginning
of this section). Indeed, if Γ has non-vanishing curvature, then there are two
commuting vector fields X1, X2 ∈ X (M) such that XΓ

1 , X
Γ
2 ∈ X (Y ) are not

commuting, and then we would have (X1 ◦X2)Γ = XΓ
1 ◦XΓ

2 6= XΓ
2 ◦XΓ

1 =
(X2 ◦X1)Γ = (X1 ◦X2)Γ .

We apply the construction of Example 13 in the case Y = G(M)→ M ,
where G : Mfm → FM is a natural bundle over m-manifolds and their
embeddings. We have the following example.

Example 14. Let F : Mf → FM be a bundle functor of finite or-
der r. Let G : Mfm → FM be a natural bundle. Denote k = ord(G).
Let ∇ be a torsion free classical linear connection on an m-manifold M .
This connection ∇ induces the “exponential” extension λk∇ : TM → JkTM
(recalled in Section 2). It is a well-known fact that this kth order linear con-
nection λk∇ on M induces a general connection Γ∇G : G(M)→ J1(G(M)) on
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G(M) → M with the lifting form Γ∇G : G(M)×M TM → TG(M) given by
Γ∇G (w, v) = G(X)(w), w ∈ Gx(M), v ∈ TxM , x ∈M , where X is the vector
field on M such that jkx(X) = λk∇(v) and G(Z) denotes the flow prolon-
gation of the vector field Z on M to G(M). Now, let ρ : M → F (M)
be a section of F (M) → M . Then we have a section ρ∇ := ρ(Γ∇G ,∇) :
G(M) → F (G(M)) of F (G(M)) → G(M) (see Example 13). In par-
ticular, for F = T (r), we obtain the ∇-lifting of rth order linear differ-
ential operators C∞(M) → C∞(M) (annihilating constants) to rth order
linear differential operators C∞(G(M)) → C∞(G(M)) (annihilating con-
stants).

4. Appendix. In [3], we proved Proposition 1 by using a complicated
result from [20]. Below, we present another direct proof.

Proof of Proposition 1. By a jet projection argument we may assume
r = 3. Suppose that A is an operator as in the statement. Then (we repeat
the relevant part of the proof from [3]) we have an Mfm-natural operator
B : T ∗  T ∗3 transforming 1-forms on m-manifolds M into sections of
T ∗3M = J3(M,R)0 defined by

BM (ω)(x) = pr1 ◦A
(
ΓM + ω ⊗ ∂

∂y1

)
(x, 0) ∈ T ∗3x M = J3

x(M,R)0,

where ω ∈ Ω1(M), x ∈ M , ΓM : TM ×M (M × Rn) → T (M × Rn)
is the trivial connection on the trivial bundle M × Rn → M and pr1 :
J3
x(M,Rn)0 = ×nJ3

x(M,R)0 → J3
x(M,R)0 is the projection onto the first

factor. By Proposition 23.5 in [12], B is of finite order. This operator is
linear because of the invariance of A with respect to fiber homotheties and
the homogeneous function theorem. We consider the 1-form ωo = x2dx1 −
x1dx2. Using the invariance of A with respect to the base homotheties
(t1x1, . . . , tmx

m) we easily deduce that B(ωo)(0) = j30(ax1x2) for some
a ∈ R. Then using the invariance of A with respect to the permutation
of x1 and x2 we see that a = 0 (because this permutation sends ωo to −ωo
and preserves x1x2). Then using the invariance of A with respect to ϕ =
(x1, x2 +(x1)2, x3, . . . , xm, y1, . . . , yn) we deduce that B(ωo−(x1)2dx1)(0) =
j30(0) (because ϕ−1 sends ωo into ωo − (x1)2dx1 and preserves j30(0)). Then
B((x1)2dx1)(0) = 0. But pr1 ◦A(ΓM )(0, 0) = B(0)(0) = j30(0). Then using
the invariance of A with respect to ψ = (x1, . . . , xm, y1+(x1)3, y2, . . . , yn) we
deduce that 0 = 3B((x1)2dx1)(0) = pr1 ◦A

(
ΓM + 3(x1)2dx1 ⊗ ∂

∂y1

)
(0, 0) =

j30((x1)3) (because ψ sends ΓM to ΓM + 3(x1)2dx1 ⊗ ∂
∂y1

, and j30(0) to
j10((x1)3)). But j30((x1)3) 6= 0. Contradiction.
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