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Zeros of solutions of certain higher order
linear differential equations

by Hong-Yan Xu (Jingdezhen) and Cai-Feng Yi (Nanchang)

Abstract. We investigate the exponent of convergence of the zero-sequence of solu-
tions of the differential equation

(1) f (k) + ak−1(z)f (k−1) + · · ·+ a1(z)f ′ + D(z)f = 0,

where D(z) = Q1(z)eP1(z) +Q2(z)eP2(z) +Q3(z)eP3(z), P1(z), P2(z), P3(z) are polynomials
of degree n ≥ 1, Q1(z), Q2(z), Q3(z), aj(z) (j = 1, . . . , k− 1) are entire functions of order
less than n, and k ≥ 2.

1. Introduction and results. We shall assume that the reader is famil-
iar with the fundamental results and the standard notations of the Nevan-
linna value distribution theory of meromorphic functions (see [5, 8]). We
will use the notation σ(f) to denote the order of growth of a meromor-
phic function f(z) and λ(f) to denote the exponent of convergence of the
zero-sequence of f(z).

K. Ishizaki and K. Tohge [6, 7] have studied the exponent of convergence
of the zero-sequence of solutions of the equation

(2) f ′′ + (eP1(z) + eP2(z) +Q0(z))f = 0,

where P1(z), P2(z) are non-constant polynomials

P1(z) = ζ1z
n + · · · , P2(z) = ζ2z

m + · · · , ζ1ζ2 6= 0 (n,m ∈ N).

and Q0(z) is an entire function of order less than max{n,m}, and eP1(z) and
eP2(z) are linearly independent. They have obtained the following results:

Theorem A ([7]). Suppose that n = m, and that ζ1 6= ζ2 in (2). If ζ1/ζ2
is non-real, then for any solution f 6≡ 0 of (2), we have λ(f) =∞.

Theorem B ([6]). Suppose that n = m, and that ζ1/ζ2 = ρ > 0 in (2).
If 0 < ρ < 1/2 or Q0(z) ≡ 0, 3/4 < ρ < 1, then for any solution f 6≡ 0
of (2), we have λ(f) ≥ n.
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Recently, J. Tu and Z. X. Chen [9] investigated the exponent of conver-
gence of the zero-sequence of solutions of the differential equation

(3) f ′′ + (Q1(z)eP1(z) +Q2(z)eP2(z) +Q3(z)eP3(z))f = 0,

and obtained the following theorem:

Theorem C ([9]). Let Q1, Q2, Q3 be entire functions of order less than
n, and P1(z), P2(z), P3(z) be polynomials of degree n ≥ 1,

P1(z) = ζ1z
n + · · · , P2(z) = ζ2z

n + · · · , P3(z) = ζ3z
n + · · · ,

where ζ1, ζ2, ζ3 are complex numbers.

(i) If ζ1/ζ2 is non-real and 0 < λ = ζ3/ζ2 < 1/2, then for any solution
f 6≡ 0 of (3), we have λ(f) =∞.

(ii) If 0 < ζ1/ζ2 < 1/4 and 0 < λ = ζ3/ζ2 < 1, then for any solution
f 6≡ 0 of (3), we have λ(f) ≥ n.

It is natural to ask about the exponent of convergence of the zero-
sequence of solutions of the higher order linear differential equation (1). In
the present paper we shall investigate this problem and obtain the following
result which improves all the theorems mentioned earlier.

Theorem 1.1. Let P1(z), P2(z), P3(z) be as in Theorem C and Q1(z),
Q2(z), Q3(z), aj(z) (j = 1, . . . , k − 1) be entire functions of order less than
n and k ≥ 2.

(i) If ζ1/ζ2 is non-real and 0 < λ = ζ3/ζ2 < 1/k, then for any solution
f 6≡ 0 of (1), we have λ(f) =∞.

(ii) If 0 < ζ1/ζ2 < 1/2k and 0 < λ = ζ3/ζ2 < 1, then for any solution
f 6≡ 0 of (1), we have λ(f) ≥ n.

2. Notations and some lemmas. To prove the theorem, we need some
notations and a series of lemmas. Let Pj(z) (j = 1, 2, 3) be polynomials of
degree n ≥ 1, Pj(z) = (αj + iβj)zn + · · · , αj , βj ∈ R. Define

δ(Pj , θ) = δj(θ) = αj cosnθ − βj sinnθ, θ ∈ [0, 2π) (j = 1, 2, 3),

S+
j = {θ : δj(θ) > 0}, S−j = {θ : δj(θ) < 0} (j = 1, 2, 3).

Let f(z) and a(z) be meromorphic functions in the plane that satisfy

T (r, a) = o{T (r, f)},
except possibly for a set of r having finite linear measure. We then say that
a(z) is a small function with respect to f(z).

Lemma 2.1 ([4]). Let f(z) be a transcendental meromorphic function
with σ(f) = σ <∞, and Γ = {(k1, j1), . . . , (km, jm)} be a finite set of dist-
inct pairs of integers which satisfy ki > ji ≥ 0 for i = 1, . . . ,m. Let ε > 0 be
a given constant. Then there exists a set E ⊂ [0, 2π) of linear measure zero
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ν such that if ϕ ∈ [0, 2π) \ E then there is a constant R1 = R1(ϕ) > 1 such
that for all z satisfying arg z = ϕ and |z| = r > R1, and for all (k, j) ∈ Γ ,
we have ∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(σ−1+ε).

Lemma 2.2 ([2, 9]). Suppose that P (z) = (α + βi)zn + · · · (α, β are
real numbers, |α| + |β| 6= 0) is a polynomial of degree n ≥ 1, and A(z)
(6≡ 0) is an entire function with σ(A) < n. Set g(z) = A(z)eP (z), z = reiθ,
δ(P, θ) = α cosnθ − β sinnθ. Then for any given ε > 0, there exists a set
H1 ⊂ [0, 2π) of linear measure zero such that for any θ ∈ [0, 2π)\ (H1∪H2),
where H2 = {θ ∈ [0, 2π) : δ(P, θ) = 0} is a finite set, there is R > 0 such
that for |z| = r > R, we have:

(i) If δ(P, θ) > 0, then

exp{(1− ε)δ(P, θ)rn} < |g(reiθ)| < exp{(1 + ε)δ(P, θ)rn}.

(ii) If δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} < |g(reiθ)| < exp{(1− ε)δ(P, θ)rn}.

Lemma 2.3 ([1]). Suppose π(z) is the canonical product formed with
the zeros {zn : n = 1, 2, . . . , } (zn 6= 0) of an entire function f(z). Set
On = {z : |z− zn| < |zn|−α} (α (> λ(f)) is a constant). Then for any given
ε > 0,

|π(z)| ≥ exp{−|z|λ(f)+ε} for z 6∈
∞⋃
n=1

On.

Lemma 2.4 ([3]). Let f(z) be an entire function of order σ(f) = α <
+∞. Then for any given ε > 0, there is a set E ⊂ [1,∞) of finite linear
measure and finite logarithmic measure such that for all z satisfying |z| 6∈
[0, 1] ∪ E, we have

exp{−rα+ε} ≤ |f(z)| ≤ exp{rα+ε}.

Lemma 2.5 ([10]). Let Pj(z) (j = 1, 2, 3) be polynomials of degree n ≥ 1,

P1(z) = ζzn +B1(z), P2(z) = ρ1ζz
n +B2(z), P3(z) = ρ2ζz

n +B3(z),

where ζ = α + iβ, α, β ∈ R, |α| + |β| 6= 0, 0 < ρ1 < 1, 0 < ρ2 < 1, and
B1(z), B2(z), B3(z) are polynomials of degree at most n− 1. Let Q1(z) 6≡ 0,
Q2(z), Q3(z) be entire functions of order less than n. Then for any given
ε > 0, there exist a set E of finite linear measure and a constant ξ (n− 1 <
ξ < n) such that

m(r,Q1e
P1 +Q2e

P2 +Q3e
P3) ≥ (1− ε)m(r, eP1) +O(rξ), r →∞ (r 6∈ E).
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Lemma 2.6 ([11]). Let f(z) be an entire function and write f(z) = πeh.
Then

(i)
f (k)

f
= (h′)k + k

π′

π
(h′)k−1 +

k(k − 1)
2

(h′)k−2h′′+Hk−2(h′) (k ≥ 2),

where Hk−2(h′) is a differential polynomial of degree no more than k−2 in h′,
and its coefficients are terms of the type c(π′/π)s1 · · · (π(k)/π)sk , where c is
a constant and s1, . . . , sk are non-negative integers; and

(ii)
f (k+1)

f
− f (k)

f

f ′

f
= k(h′)k−1h′′ +Hk−1(h′) (k ≥ 1),

where Hk−1(h′) is a differential polynomial of degree no more than k − 1
in h′, and its coefficients are terms of the type c(π′/π)s1 · · · (π(k+1)/π)sk+1,
where c is a constant and s1, . . . , sk+1 are non-negative integers.

Lemma 2.7 ([11]). Let U1(z), h(z), Q1(z), P1(z) be entire functions sat-
isfying U1 = Q1h

′′ − 1
k (Q′1 +Q1P

′
1)h′. Then

Qn−1
1 h(n) = A1,n−2(U1, Q1) +Bn−1(Q1)h′ (n ≥ 2),

where A1,n−2(U1, Q1) is an algebraic expression in U (j)
1 , Q(j)

1 , P (j)
1 (j = 0, 1,

. . . , l), involving addition, subtraction and multiplication, where the degree
of U (j)

1 is no more than 1 and the degree of Q(j)
1 is no more than l; Bd(Q1)

is a differential polynomial of degree no more than d in Q1, its coefficients
are algebraic expressions in P

(i)
1 (i = 1, . . . , d) and 1/k, involving addition,

subtraction and multiplication.

Lemma 2.8. Let h(z) and cj(z) (j = 0, 1, . . . , k − 1) be meromorphic
functions satisfying

ck−1(z)(h′)k−1 + ck−2(z)(h′)k−2 + · · ·+ c1(z)h′ + c0(z) = 0.

Then

m(r, h′) ≤
k−1∑
j=0

T (r, cj(z)) +O(1).

Lemma 2.9. Let h be a meromorphic function of finite order, and
Ek−1(h′) a differential polynomial of degree no more than k−1, whose coeffi-
cients are meromorphic functions aj(z) (j = 0, 1, . . . , k− 1) with σ(aj) < n.
Then for sufficiently large r,

m(r, (h′)k + Ek−1(h′)) ≤ km(r, h′) +O(rξ),

where 0 < max{σ(aj) : j = 0, 1, . . . , k − 1} < ξ < n.

Remark 2.1. Lemmas 2.8 and 2.9 are immediate consequences of the
Valiron–Mohon’ko theorem (see [8]) and/or Clunie technique.
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3. Proof of Theorem 1.1. Since ζ3 = λζ2, λ > 0, we have S+
2 = S+

3

and S−2 = S−3 . We see that S+
j and S−j have n components S+

jk and S−jk
respectively (j = 1, 2, 3; k = 1, . . . , n). Hence we write

S+
j =

n⋃
k=1

S+
jk, S−j =

n⋃
k=1

S−jk (j = 1, 2, 3).

Furthermore, we define

D12 =
{
θ ∈ S+

1 ∩ S
+
2 : δ1(θ) >

k(λ+ 1)
k − 1

δ2(θ)
}
,

D21 =
{
θ ∈ S+

1 ∩ S
+
2 : δ2(θ) >

λ+ 1
λ

δ1(θ)
}
.

(i) Let f 6≡ 0 be a solution of (1). Suppose that λ(f) <∞. Write f = πeh,
where π is the canonical product of the zeros of f , and h is an entire function.
From our hypothesis, we have σ(π) = λ(π) <∞. From (1), we get

(4)
f (k)

f
+ ak−1

f (k−1)

f
+ · · ·+ a1

f ′

f
+D(z) = 0,

By Lemma 2.6(i), we get

(5) (h′)k = Ek−1(h′)−Q1(z)eP1(z) −Q2(z)eP2(z) −Q3(z)eP3(z),

where Ek−1(h′) is a differential polynomial of degree no more than k − 1
in h′, and its coefficients are terms of the type capj (z)(π

′/π)s1 · · · (π(k)/π)sk
(j = 1, . . . , k−1), where c is a constant, s1, . . . , sk are non-negative integers
and p is 0 or 1.

Eliminating eP1 from (4), we have

Q1

(
f (k+1)

f
− f (k)

f

f ′

f

)
+ ak−1Q1

(
f (k)

f
− f (k−1)

f

f ′

f

)
+ a1Q1

(
f ′′

f
− f ′

f

f ′

f

)
− (Q′1 +Q1P

′
1)
(
f (k)

f
+ ak−1

f (k−1)

f
+ · · ·+ a1

f ′

f
+Q2e

P2 +Q3e
P3

)
+Q1

[
a′k−1

f (k−1)

f
+ · · ·+ a′1

f ′

f

]
+Q1(Q′2 +Q2P

′
2)eP2

+Q1(Q′3 +Q3P
′
3)eP3 = 0.

By Lemma 2.6(ii), we can write this as

kU1(h′)k−1 = F 1
k−1(h′) + eP2 [Q2(Q′1 +Q1P

′
1)−Q1(Q′2 +Q2P

′
2)](6)

+ eP3 [Q3(Q′1 +Q1P
′
1)−Q1(Q′3 +Q3P

′
3)],

where

(7) U1 = Q1h
′′ − 1

k
(Q′1 +Q1P

′
1)h′,
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and F 1
k−1(h′) is a differential polynomial of degree no more than k− 1 in h′,

with coefficients of the type c(aj(z))p(a′j(z))
q(Q1)l(Q′1)t(P ′1)u(π′/π)s1 · · ·

(π(k)/π)sk , where c is a constant, s1, . . . , sk are non-negative integers and
each of p, q, l, t, u is 0 or 1. Similarly, we obtain

kU2(h′)k−1 = F 2
k−1(h′) + eP1 [Q1(Q′2 +Q2P

′
2)−Q2(Q′1 +Q1P

′
1)](8)

+ eP3 [Q3(Q′2 +Q2P
′
2)−Q2(Q′3 +Q3P

′
3)],

where

(9) U2 = Q2h
′′ − 1

k
(Q′2 +Q2P

′
2)h′,

and F 2
k−1(h′) is a differential polynomial of degree no more than k − 1

in h′, with coefficients of the type c(aj(z))p(a′j(z))
q(Q2)l(Q′2)t(P ′2)u(π′/π)s1

· · · (π(k)/π)sk , where c is a constant, s1, . . . , sk are non-negative integers and
each of p, q, l, t, u is 0 or 1.

Let max{σ(Qi), σ(aj) : i = 1, 2, 3; j = 1, . . . , k − 1} < ξ1 < ξ2 < ξ3 < n.
From Lemma 2.4 we get

|Qi(reiθ| ≤ exp(rξ1) (i = 1, 2, 3), |aj(z)| ≤ exp(rξ1) (j = 1, . . . , k − 1),

for sufficiently large r and for any θ ∈ [0, 2π). Applying the Clunie Lemma
[5, Lemma 3.3] to (5), for any given ε > 0 we get

T (r, h′) = m(r, h′)

≤ m(r,Q1e
P1 +Q2e

P2 +Q3e
P3)

+O
( k∑
j=1

m(r, π(j)/π) +
k−1∑
i=1

m(r, ai)
)

+ S(r, h′)

≤ O(rn+ε) + S(r, h′),

which implies σ(h′) ≤ n. It follows from (7) and (9) that σ(U1) ≤ n and
σ(U2) ≤ n respectively.

In the following, we will show that there exists a set E0 ⊂ [0, 2π) with
m(E0) = 0 such that if θ ∈ S−2 \ E0, then

(10) |U1(reiθ)| ≤ O(exp{rξ2}), r →∞.

If |h′(reiθ)| ≤ 1, from Lemmas 2.1, 2.2 and 2.4 and (7), we have

|U1(reiθ)| ≤ |h
′′(reiθ)|
|h′(reiθ)|

|Q1(reiθ)|+ 1
k
|P ′1(reiθ)| |Q1(reiθ)|(11)

+
1
k

|Q′1(reiθ)|
|Q1(reiθ)|

|Q1(reiθ)|

≤ O(exp{rξ2}), r →∞.



Zeros of solutions 129

Assume |h′(reiθ)| ≥ 1. Since F 1
k−1(h′) is the sum of a finite number of

terms of the type

H(z) = c(aj(z))p(a′j(z))
q(Q1)l(Q′1)t(P ′1)u

(
π′

π

)s1
· · ·
(
π(k)

π

)sk
× (h′)l0(h′′)l1 · · · (h(v))lv−1 ,

where l0, l1, . . . , lv−1 are non-negative integers and l0 + l1 + · · ·+ lv−1 ≤ k−1,
from Lemma 2.1 we get

(12)
|H(reiθ)|
|h′(reiθ)|k−1

≤ |c| |aj(reiθ)|p|a′j(reiθ)|q|Q1(reiθ)|l|Q′1(reiθ)|t|P ′1(reiθ)|u

×
∣∣∣∣π′(reiθ)π(reiθ)

∣∣∣∣s1 · · · ∣∣∣∣π(k)(reiθ)
π(reiθ)

∣∣∣∣sk |h′′(reiθ)|l1|h′(reiθ)|
· · · |h

(v)(reiθ)|lv−1

|h′(reiθ)|
≤ O(exp{rξ2}).

Thus

(13)
|F 1
k−1(reiθ)|

|h′(reiθ)|k−1
≤ O(exp{rξ2}).

From (8), (13) and Lemma 2.2, we get

(14) k|U1(reiθ)|

≤
|F 1
k−1(reiθ)|

|h′(reiθ)|k−1
+ |eP2(reiθ)|

∣∣Q2(reiθ)(Q′1(reiθ) +Q1(reiθ)P ′1(reiθ))

−Q1(reiθ)((Q′2(reiθ) +Q2(reiθ)P ′2(reiθ))
∣∣

+ |eP3(reiθ)|
∣∣Q3(reiθ)(Q′1(reiθ) +Q1(reiθ)P ′1(reiθ))

−Q1(reiθ)(Q′3(reiθ) +Q3(reiθ)P ′3(reiθ)
∣∣

≤ O(exp{rξ2}), r →∞.
From (11) and (14), we obtain (10).

We note that there exist θ̄j (j = 1, 2, 3) satisfying δj(θ) = 0 on the rays
arg z = θ̄j +qπ/n, where q = 0, . . . , 2n−1, which form 2n sectors of opening
π/n each, thus we may assume that θ̄j ∈ [0, π/n). Since ζ2 = λζ3, λ > 0, we
have θ̄2 = θ̄3. Write θ̄jq = θ̄j + qπ/n, j = 1, 2. If there are some integers q1
and q2 such that θ̄1q1 = θ̄2q2 , then θ̄1 − θ̄2 + (q1 − q2)π/n = 0, and we have
tannθ̄j = αj/βj , j = 1, 2. This gives

0 = tan(nθ̄1 − nθ̄2 + (q1 − q2)π) =
α1β2 − α2β1

α1α2 + β1β2
.

This contradicts the assumption that ζ1/ζ2 is non-real. Hence each compo-
nent of S+

1 and S+
2 contains a component of S+

1 ∩S
+
2 . The boundaries of the
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components of S+
1 ∩S

+
2 are some of the rays arg z = θ̄jq. We fix a component

of S+
1 ∩ S

+
2 , say S∗. We may write

S∗ = {θ ∈ S+
1 ∩ S

+
2 : θ∗1 < θ < θ∗2, δ1(θ∗1) = δ2(θ∗2) = 0}

or

S∗ = {θ ∈ S+
1 ∩ S

+
2 : θ∗2 < θ < θ∗1, δ1(θ∗1) = δ2(θ∗2) = 0}.

Since every component of S+
1 and S+

2 has opening π/n, the rays arg z = θ∗1
and arg z = θ∗2 are contained in S+

2 and S+
1 respectively. We handle the first

case, the proof of the second being similar. Then there exist η1, η2 > 0 such
that

{θ : θ∗1 < θ < θ∗1 + η1} ⊂ D21, {θ : θ∗2 − η2 < θ < θ∗2} ⊂ D12.

Hence there exists a θ ∈ (S+
2k ∩ D12) \ E0 for any k = 1, . . . , n. Take 0 <

k(λ+1)
k−1 δ2 < σ2 < σ1 < δ1, 0 < ε1 < 1 − σ1

δ1
, 0 < ε2 <

(k−1)σ2

kδ2
− 1, 0 < ε3 <

(k−1)σ2

kλδ2
− 1. By Lemma 2.2, we have

(15) |Q1e
P1(reiθ) +Q2e

P2(reiθ) +Q3e
P3(reiθ)|

≥ |Q1e
P1(reiθ)|

∣∣∣∣1− ∣∣∣∣Q2

Q1
eP2(reiθ)−P1(reiθ)

∣∣∣∣− ∣∣∣∣Q3

Q1
eP3(reiθ)−P1(reiθ)

∣∣∣∣∣∣∣∣
≥ exp{(1− ε1)δ1rn}(1− o(1))
≥ exp{σ1r

n}(1− o(1)), r →∞.

We assume that there exists an unbounded sequence {rq} such that 0 <
|h′(rqeiθ)| ≤ 1. From (5), (15) and Lemma 2.1, we get

exp{σ1r
n
q }(1− o(1)) ≤ |h′(rqeiθ)|k + |Ek−1(h′(rqeiθ))|

≤ 1 +
∑
|c| |aj(rqeiθ)|p

∣∣∣∣π′(rqeiθ)π(rqeiθ)

∣∣∣∣s1 · · · ∣∣∣∣π(k)(rqeiθ)
π(rqeiθ)

∣∣∣∣sk
× |h′(rqeiθ)|l0 · · · |h(v)(rqeiθ)|lv−1

≤ 1 +
∑
|c| |aj(rqeiθ)|p

∣∣∣∣π′(rqeiθ)π(rqeiθ)

∣∣∣∣s1 · · · ∣∣∣∣π(k)(rqeiθ)
π(rqeiθ)

∣∣∣∣sk
×
∣∣∣∣h′′(rqeiθ)h′(rqeiθ)

∣∣∣∣l1 · · · ∣∣∣∣h(v)(rqeiθ)
h′(rqeiθ)

∣∣∣∣lv−1

≤ O(exp{rξ2q }) (q →∞),

which is not true. Hence we may assume that |h′(reiθ)| ≥ 1 for all r suffi-
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ciently large. From (5), (15) and Lemma 2.2, we get

exp{σ1r
n
q }(1− o(1)) ≤ |h′(rqeiθ)|k + |Ek−1(h′(rqeiθ))|

≤ |h′(rqeiθ)|k
[
1 +

∑
|c| |aj(rqeiθ)|p

∣∣∣∣π′(rqeiθ)π(rqeiθ)

∣∣∣∣s1
· · ·
∣∣∣∣π(k)(rqeiθ)
π(rqeiθ)

∣∣∣∣sk ∣∣∣∣h′′(rqeiθ)h′(rqeiθ)

∣∣∣∣l1 · · · ∣∣∣∣h(v)(rqeiθ)
h′(rqeiθ)

∣∣∣∣lv−1
]

≤ |h′(rqeiθ)|k(1 +O(exp{rξ2q })) (q →∞),

i.e.

|h′(reiθ)|k ≥ 1− o(1)
1 +O(exp{rξ2})

exp{σ1r
n} (r →∞).

Then we obtain for all r large enough

(16) |h′(reiθ)| ≥ exp
{

1
k
σ2r

n

}
.

From Lemma 2.1, (6) and (16), we get

(17) k|U1(reiθ)|

≤
|F 1
k−1(reiθ)|

|h′(reiθ)|k−1

+
|eP2(reiθ)|
|h′(reiθ)|k−1

[
|Q2(reiθ)|

(
|Q′1(reiθ|
|Q1(reiθ)|

|Q1(reiθ)|+ |Q1(reiθ)| |P ′1(reiθ)|
)

+ |Q1(reiθ)|
(
|Q′2(reiθ)|
|Q2(reiθ)|

|Q2(reiθ)|+ |Q2(reiθ)| |P ′2(reiθ)|
)]

+
|eP3(reiθ)|
|h′(reiθ)|k−1

[
|Q3(reiθ)|

(
|Q′1(reiθ)|
|Q1(reiθ)|

|Q1(reiθ)|+ |Q1(reiθ)| |P ′1(reiθ)|
)

+ |Q1(reiθ)|
(
|Q′3(reiθ)|
|Q3(reiθ)|

+ |Q3(reiθ)| |P ′3(reiθ)|
)]

≤ O(exp{rξ2}) + (1 + o(1)) exp
{(

δ2(1 + ε2)− (k − 1)σ2

k

)
rn
}

+ (1 + o(1)) exp
{(

λδ2(1 + ε3)− (k − 1)σ2

k

)
rn
}

(r →∞).

Since δ2(1 + ε2)− (k − 1)σ2/k < 0 and λδ2(1 + ε3)− (k − 1)σ2/k < 0, this
gives that for all sufficiently large r,

(18) |U1(reiθ)| ≤ O(exp{rξ2}).

Now we fix a γ (= γ2k) ∈ (S+
2k ∩ D12) \ E0, k = 1, . . . , n. Then we find

γ1, γ2 ∈ S−2 \E0 with γ1 < γ < γ2 such that γ−γ1 < π/n and γ2−γ < π/n.
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We first prove that for any θ with γ1 ≤ θ ≤ γ, we have

(19) |U1(reiθ)| ≤ O(exp{rξ3}) (r →∞).

Write γ−γ1 = π/(n+ τ1) with τ1 > 0. Since σ(U1) ≤ n, we have |U1(reiθ)| ≤
er
n+τ2 with 0 < τ2 < τ1 for sufficiently large r. Set

g(z) = U1(z)/exp((ze−(γ+γ1)/2)ξ3).

Then g(z) is regular in the region {z : γ1 ≤ arg z ≤ γ}. Since γ1 ≤ arg z =
θ ≤ γ and γ−γ1 < π/n, we infer that cos arg((ze−(γ+γ1)/2)ξ3) ≥ K for some
K > 0. In fact,

−π
2
< −πξ3

2n
≤ −ξ3

γ − γ1

2
≤ arg((ze−(γ+γ1)/2)ξ3) ≤ ξ3

γ − γ1

2
≤ πξ3

2n
<
π

2
.

Hence for γ1 < θ < γ,

|g(reiθ)| ≤
∣∣∣∣ U1(reiθ)
exp{Krξ3}

∣∣∣∣ ≤ O(exp{rn+τ2}) (r →∞).

It follows from (10) and (18) that for some M > 0, as r →∞,

|g(reiγ1)| ≤ O(er
ξ2 )

exp{Krξ3}
≤M

and

|g(reiγ)| ≤ O(er
ξ2 )

exp{Krξ3}
≤M.

By the Phragmén–Lindelöf theorem, we obtain (19). Similarly we see that
(19) holds for γ < θ < γ2. Hence we conclude that (19) holds for any
θ ∈ [0, 2π).

By a similar proof as before we can prove that for any θ ∈ [0, 2π),

(20) |U2(reiθ)| ≤ O(exp{rξ3}) (r →∞).

By (7) and (9), we have

(21) Q2U1 −Q1U2 =
1
k
h′[Q1(Q′2 +Q2P

′
2)−Q2(Q′1 +Q1P

′
1)].

Since σ(Qj) < ξ2 < ξ3 (j = 1, 2, 3), by (5), (10), (20) and Lemma 2.9,

(22) m(r,Q1e
P1(z) +Q2e

P2(z) +Q3e
P3(z))

≤ km(r, h′) +O(log r)

≤ km(r, U1 − U2) +O(log r) ≤ O(rξ3) (r →∞).

Since ζ1/ζ2 is non-real, S+
1 ∩ S

−
2 contains an interval I = [ϕ1, ϕ2] satis-

fying minθ∈I δ1(θ) = s > 0. By Lemma 2.2, there exists an R(I) (> 0) such
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that for any θ ∈ I and r ≥ R(I),

|Q1e
P1(reiθ)| ≥ exp((1− ε)δ1rn),

|Q2e
P2(reiθ)| ≤ exp((1− ε)δ2rn),

|Q3e
P3(reiθ)| ≤ exp((1− ε)λδ2rn).

Hence, we have

(23) m(r,Q1e
P1(z) +Q2e

P2(z) +Q3e
P3(z))

≥
ϕ2�

ϕ1

log+ |Q1e
P1(z) +Q2e

P2(z) +Q3e
P3(z)| dθ

≥
ϕ2�

ϕ1

(1− o(1)) log+ |Q1e
P1(z)| dθ

≥
ϕ2�

ϕ1

(1− o(1))(1− ε)srn dθ

≥ (1− o(1))(1− ε)srn(ϕ2 − ϕ1) (r →∞).

Combining (22) and (23) and recalling that ξ3 < n, we get a contradiction.
Hence, λ(f) =∞.

(ii) Let f 6≡ 0 be a solution of (1). Write f = πeh, suppose that λ(f) < n.
From our hypothesis, we have σ(π) = λ(π) < n. Eliminating eP1 from (5),
we have

kU(h′)k−1 = Fk−1(h′) + eP2 [Q2(Q′1 +Q1P
′
1)−Q1(Q′2 +Q2P

′
2)](24)

+ eP3 [Q3(Q′1 +Q1P
′
1)−Q1(Q′3 +Q3P

′
3)],

where

(25) U = Q1h
′′ − 1

k
(Q′1 +Q1P

′
1)h′,

From (24), (25) and Lemma 2.7, we have

(26) ck−1(z)(h′)k−1 + ck−2(h′)k−2 + · · ·+ c1(z)h′

= c0(z) + eP2 [Q2(Q′1 +Q1P
′
1)−Q1(Q′2 +Q2P

′
2)]

+ eP3 [Q3(Q′1 +Q1P
′
1)−Q1(Q′3 +Q3P

′
3)],

where cj(z) (j = 0, 1, . . . , k − 1) is an algebraic expression in U (l) (l =
0, 1, . . . , k−2), Q(i)

1 (i = 0, 1 . . . , k−1), P (s)
1 (s = 0, 1, . . . , l−1), 1/k, 1/Q1 and

aj , a
′
j (j = 1, . . . , k − 1), involving addition, subtraction and multiplication.

Now we suppose that at least one of cj(z) (j = 1, . . . , k − 1) is not
identically vanishing and the right hand side of (26) does not vanish identi-
cally. Without loss of generality, suppose ck−1(z) 6≡ 0. Then from (26) and
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Lemma 2.8, we have

(27) T (r, h′) = m(r, h′)

≤
k−1∑
i=0

T (r, ci(z)) +m(r, eP2 [Q2(Q′1 +Q1P
′
1)−Q1(Q′2 +Q2P

′
2)]

+ eP3 [Q3(Q′1 +Q1P
′
1)−Q1(Q′3 +Q3P

′
3)]) +O(1).

Take max{σ(Q1), σ(Q2), σ(Q3), λ(f)} < ξ2 < ξ3 < n. From (5), we obtain

(28) T (r,Q1e
P1(z) +Q2e

P2(z) +Q3e
P3(z)) ≤ kT (r, h′) +O(log r).

By Lemma 2.5, we have

(29) m(r,Q1e
P1(z) +Q2e

P2(z) +Q3e
P3(z))

≥ (1− ε)m(r, eP1) +O(rξ3) (r →∞, r 6∈ E).

where E has finite linear measure. From (28) and (29), we obtain

(30) T (r, h′) ≥ 1− ε
k

T (r, eP1) +O(rξ3) (r →∞, r 6∈ E).

Since 0 < ρ = ζ2/ζ1 < 1/2k, ζ3 = λζ2, 0 < λ < 1, we get

δ(P2, θ) = ρδ(P1, θ), S+
1k = S+

2k = S+
3k, S−1k = S−2k = S−3k (k = 1, . . . , n).

By the same reasoning as in (11) and (14), we have

(31) |U(reiθ)| ≤ O(exp{rξ2}) (r →∞)

for any θ ∈ S−1 \E0,m(E0) = 0. Also by the same reasoning as in (15)–(18),
we have

(32) |U(reiθ)| ≤ O(exp{rξ2}) (r →∞)

for any θ ∈ S+
1 \E0,m(E0) = 0. Since σ(U) ≤ n, by the Phragmén–Lindelöf

theorem, we have

(33) |U(reiθ)| ≤ O(exp{rξ3}) (r →∞)

for any θ ∈ [0, 2π).
In the following, we estimate T (r, cj).
From (33), Lemma 2.3 and the theorem on logarithmic derivatives, we

have
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T (r, cj) ≤ O
( k−1∑
i=0

T (r,Q(i)
1 ) +

k−1∑
j=0

m(r, aj) +
k−1∑
j=0

m(r, a′j)(34)

+
k−1∑
s=0

m(r, P (s)
1 ) +

k−2∑
t=1

m(r, U (t)/U) +m(r, U)

+N(r, 1/π) +O(log r)
)

≤ O(rξ3), r →∞, j = 0, 1, . . . , k − 1,

and

(35) T (r, eP2 [Q2(Q′1 +Q1P
′
1)−Q1(Q′2 +Q2P

′
2)]

+ eP3 [Q3(Q′1 +Q1P
′
1)−Q1(Q′3 +Q3P

′
3)])

≤ O(rξ3) + T (r, eP2) + T (r, eP3)

= (1 + λ)T (r, eP2) +O(rξ3)

≤ (1 + λ)ρT (r, eP1) +O(rξ3), r →∞.

From (27), (30), (34) and (35), we get

(36)
1− ε
k

T (r, eP1) +O(rξ3) ≤ T (r, h′)

≤ (1 + λ)ρT (r, eP1) +O(rξ3), r →∞, r 6∈ E.
Thus (36) implies

(37)
(

1− ε
k
− (1 + λ)ρ− o(1)

)
T (e, eP1) ≤ 0, r →∞, r 6∈ E.

Since 0 < ρ = ζ2/ζ1 < 1/2k, 0 < λ < 1, we get a contradiction. Hence
ck−1 = · · · = c1 = c0 + eP2 [Q2(Q′1 +Q1P

′
1)−Q1(Q′2 +Q2P

′
2)] + eP3 [Q3(Q′1 +

Q1P
′
1)−Q1(Q′3 +Q3P

′
3)] ≡ 0. From (26), we have

−c0(z) = eP2 [Q2(Q′1 +Q1P
′
1)−Q1(Q′2 +Q2P

′
2)](38)

+ eP3 [Q3(Q′1 +Q1P
′
1)−Q1(Q′3 +Q3P

′
3)].

We assume that the right hand side above is not identically zero; other-
wise, we have

eP2−P3 = −Q3(Q′1 +Q1P
′
1)−Q1(Q′3 +Q3P

′
3)

Q2(Q′1 +Q1P ′1)−Q1(Q′2 +Q2P ′2)
,

and since ζ3 = λζ2, 0 < λ < 1, a simple order consideration leads to a
contradiction. From (38), by (34) and Lemma 2.5, we obtain

(39) (1− ε)T (r, eP2) +O(rξ3) ≤ O(rξ3), r →∞.
From (39), we have σ(eP2) < ξ3 < n, a contradiction. Hence λ(f) ≥ n.
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