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The image of a finely holomorphic map is pluripolar

by Armen Edigarian (Kraków), Said El Marzguioui (Amsterdam)
and Jan Wiegerinck (Amsterdam)

Abstract. We prove that the image of a finely holomorphic map on a fine domain in
C is a pluripolar subset of Cn. We also discuss the relationship between pluripolar hulls
and finely holomorphic functions.

1. Introduction. A subset E ⊂ Cn is said to be pluripolar if for each
point a ∈ E there is an open neighborhood Ω of a and a function ϕ ( 6≡ −∞)
plurisubharmonic in Ω (ϕ ∈ PSH(Ω)) such that

E ∩Ω ⊂ {z ∈ Ω : ϕ(z) = −∞}.

It is a fundamental result of Josefson [16] that this local definition is equiva-
lent to the global one, i.e., in this definition one can assume ϕ to be plurisub-
harmonic in all of Cn with

E ⊂ {z ∈ Cn : ϕ(z) = −∞}.

E is called complete pluripolar (in Cn) if for some plurisubharmonic function
ϕ ∈ PSH(Cn), we have E = {z ∈ Cn : ϕ(z) = −∞}. Unlike the situation in
classical potential theory, pluripolar sets often “propagate”: it may happen
that any PSH function ϕ which is −∞ on a pluripolar set E is automati-
cally −∞ on a larger set. For example, if the −∞ locus of a PSH function
ϕ contains a non-polar piece of a complex analytic variety A, then the set
{z ∈ Cn : ϕ(z) = −∞} must contain the whole A. However, the structure of
pluripolar sets may be much more complicated (cf. [18, 1]). Completeness of
pluripolar sets has received growing attention, and in particular cases many
results were obtained (see [1, 3–6, 18, 22, 24, 26]). But our knowledge and
understanding of the general situation is fragmentary, and a good character-
ization of complete pluripolar sets is still lacking, even in the case of graphs
of analytic functions.
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Around 1980 Fuglede and others developed the theory of so-called finely
holomorphic functions, [13]. Recently, in [6] Edlund and Jöricke have con-
nected the propagation of the graph of a holomorphic function as a pluripolar
set to fine holomorphic continuation of the function.

Theorem 1.1 (Edlund and Jöricke, [6, Theorem 1]). Let f be holomor-
phic in the unit disc D ⊂ C and let p ∈ ∂D. Suppose that f has a finely
holomorphic continuation F at p to a closed fine neighborhood V of p. Then
there exists another closed fine neighborhood V1 ⊂ V of p such that the graph
ΓF (V1) is contained in the pluripolar hull of Γf (D).

The definition of the pluripolar hull and necessary preliminaries about
finely holomorphic functions are presented in Section 2.

In view of this result, it is reasonable to investigate the connection be-
tween finely holomorphic functions and pluripolar sets. Using Fuglede’s fun-
damental work, both in fine potential theory and fine holomorphy, we can
give shorter proofs of some known results about pluripolar hulls and obtain
our main result, which improves on Theorem 1.1:

Theorem 1.2. Let f : U → Cn, f(z) = (f1(z), . . . , fn(z)), be a finely
holomorphic map on a finely open set U ⊆ C. Then f(U) is a pluripolar
subset of Cn. Moreover, if E is a non-polar subset of U , then the pluripolar
hull of f(E) contains f(U).

Note that in general U may have no Euclidean interior points. The the-
orem applies e.g. to Borel-type series like

(1) f(z) =
∞∑
j=1

cj
2j(z − aj)

,

where the cj are very small and {aj} is dense in C. We will give such an
example in Section 4.

The next theorem is a simple, precise, and complete interpretation of
recent results of the first and third authors (see [3, 4]).

Theorem 1.3. Let D be a domain in C and let A be a closed polar subset
of D. Suppose that f ∈ O(D \A) and z0 ∈ A. Then the following conditions
are equivalent:

(1) ({z0} × C) ∩ (Γf )∗D×C 6= ∅.
(2) f has a finely holomorphic extension f̃ at z0.

Moreover, if one of these conditions holds, then ({z0} × C) ∩ (Γf )∗D×C =
(z0, f̃(z0)).

The proofs of the above results are given in Section 3. Our arguments rely
heavily on fine potential theory. Since this theory is not of a very common
use in the study of pluripolar sets, we will recall some basic facts in Section 2.
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Using the same ideas as in the proof of Theorem 1.2 and properties of finely
plurisubharmonic functions, a version of Theorem 1.1 for functions of several
complex variables has been proved in [8]. We pay some attention to this
development at the end of Section 3. In the final section we discuss some
consequences of Theorem 1.2 and some open problems.

2. Preliminaries

2.1. Pluripolar hulls. Let Ω ⊂ Cn be an open set and let E ⊂ Ω be a
pluripolar set in Cn. The pluripolar hull of E relative to Ω is the set

E∗Ω = {z ∈ Ω : for all ϕ ∈ PSH(Ω) : ϕ|E = −∞⇒ ϕ(z) = −∞}.
The notion of pluripolar hull was first introduced and studied by Zeriahi
in [25]. The paper [19] of Levenberg and Poletsky contains a more detailed
study of this notion.

Let f be a holomorphic function in an open set Ω ⊆ Cn. We denote by
Γf (Ω) the graph of f over Ω,

Γf (Ω) = {(z, f(z)) : z ∈ Ω}.
It is immediate that Γf (Ω) is a pluripolar subset of Cn+1. The pluripolar
hulls of the graphs of holomorphic functions were studied in several papers
(see [3–6, 22, 24, 26]).

Of particular interest for our present considerations is the following (see
[3, 4]).

Theorem 2.1 (Edigarian and Wiegerinck). Let D be a domain in C
and let A be a closed polar subset of D. Suppose that f ∈ O(D \A) and that
z0 ∈ A. Then the following conditions are equivalent:

(i) ({z0} × C) ∩ (Γf )∗D×C 6= ∅.
(ii) the set {z ∈ D \A : |f(z)| ≥ R} is thin at z0 for some R > 0.

2.2. Fine potential theory. In this subsection we gather some defini-
tions and known results from fine potential theory that we will need later
on.

The fine topology on an open set Ω is the weakest topology on Ω making
all subharmonic functions continuous. If Ω1 ⊂ Ω2 are domains, then the
fine topology on Ω1 coincides with the restriction of the fine topology in Ω2

to Ω1. The following results, except (iv) which is obvious, are due to Fuglede
and can be found in [9, Chapters III, IV].

Proposition 2.2.

(i) The fine topology is locally connected.
(ii) Every usual domain is also a fine domain.
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(iii) If U is a fine domain and E is a polar set, then U \ E is a fine
domain, in particular it is connected.

(iv) The fine topology has a neighborhood basis consisting of fine neigh-
borhoods that are Euclidean compact.

The fine topology has no infinite compact sets and is not Lindelöf. How-
ever, the following property can serve as a replacement (see e.g. [2, p. 181].

Theorem 2.3 (Quasi-Lindelöf property). An arbitrary union of finely
open subsets of C differs from a suitable countable subunion by at most a
polar set.

We now formulate the definitions and results concerning fine potential
theory that we will use in the present paper. All of these, the proofs, and
much more can be found in [9]. All are quite natural in comparison with the
classical situation. First we give the definitions.

Definition 2.4. A function ϕ : U → [−∞,+∞[ defined on a finely open
set U ⊆ C is said to be finely hypoharmonic if ϕ is finely upper semicontin-
uous and if

ϕ(z) ≤
�
ϕdεC\V

z , ∀z ∈ V ∈ B(U).

(It is part of the requirement that the integral exists.) ϕ is finely subharmonic
if, moreover, ϕ is finite on a finely dense subset of U .

Here B(U) denotes the class of all finely open sets V of compact closure
V (in the usual topology) contained in U , and εC\V

z is the swept-out of the
Dirac measure εz onto C \ V . It is carried by the fine boundary ∂fV of V .
This swept-out measure boils down to the usual harmonic measure if V is a
usual open set.

Theorem 2.5.

(i) Finely subharmonic functions on a finely open set Ω form a convex
cone that is stable under pointwise supremum for finite families, and
closed under finely locally uniform convergence.

(ii) A pointwise infimum of a downward directed family of finely subhar-
monic functions in a fine domain Ω is either finely subharmonic, or
identically −∞.

(iii) A finely subharmonic function f on a finely open set Ω has a finely
subharmonic restriction to every finely open subset of Ω. Conversely,
suppose that f is finely subharmonic in some fine neighborhood of
each point of Ω. Then f is finely subharmonic in Ω, i.e., finely
subharmonic functions have the sheaf property.



Image of a finely holomorphic map 141

Proposition 2.6 ([10]). In a usual open set in C finely subharmonic
functions are just subharmonic ones, and the restriction of a usual subhar-
monic function to a finely open set is finely subharmonic.

Theorem 2.7. Let h : U → [−∞,+∞[ be a finely hypoharmonic function
on a fine domain U ⊂ C. Then either the set {z ∈ U : h(z) = −∞} is a
polar subset of U and h is finely subharmonic, or h ≡ −∞.

2.3. Finely holomorphic functions. Shortly after the establishment
of fine potential theory several authors turned their attention to developing
the analog of holomorphic functions on a fine domain (see [13], [14] and
the references therein). Fuglede’s paper [13] is our main reference for what
follows.

For a compact set K in C, we denote by R(K) the uniform closure on K
of the set of rational functions with poles outside K. By Runge’s theorem
one can just as well take the closure of the set of functions holomorphic in a
neighborhood of K.

Definition 2.8. Let U be a finely open set in C. A function f : U → C
is called finely holomorphic if every point of U has a compact (in the usual
topology) fine neighborhood K ⊂ U such that the restriction f |K belongs to
R(K).

As we shall see below, finely holomorphic functions share many properties
with ordinary holomorphic functions. We will now assemble the results we
will need.

Theorem 2.9. A function f : U → C defined in a finely open set U ⊆ C
is finely holomorphic if and only if every point of U has a fine neighborhood
V ⊆ U in which f coincides with the Cauchy–Pompeiu transform of some
compactly supported function ϕ ∈ L2(C) with ϕ = 0 a.e. in V:

f(z) =
�

C

1
z − ζ

ϕ(ζ) dλ(ζ), z ∈ V.

Theorem 2.10. A finely holomorphic function on a Euclidean open set
is holomorphic in the usual sense.

Theorem 2.11.

(i) A finely holomorphic function f on a fine domain has at most count-
ably many zeros (unless f ≡ 0).

(ii) A finely holomorphic function f is infinitely finely differentiable, and
all its fine derivatives f (n) are finely holomorphic.

(iii) Let f be finely holomorphic in a finely open set U ⊂ C. Suppose that
the fine derivative f ′ of f does not vanish at some point z0 ∈ U .
Then one can find a finely open neighborhood W ⊆ U of z0 such
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that f |W : W → f(W ) is bijective and the inverse function f−1 is
finely holomorphic in the finely open set f(W ).

(iv) The composition of finely holomorphic functions is finely holomor-
phic where it is defined.

(v) Let U be finely open and z0 ∈ U . If f is finely holomorphic on
U \ {z0} and bounded in a punctured fine neighborhood of z0, then f
extends as a finely holomorphic function to U .

3. Pluripolarity of finely holomorphic curves. A finely holomorphic
curve is a pair (U, f) where U is a fine domain and f = (f1, . . . , fn) : U → Cn

is a finely holomorphic map. As usual we will identify a curve with its image.

Lemma 3.1. Let U ⊆ C be a fine domain, and let f : U → Cn, f(z) =
(f1(z), . . . , fn(z)), be a finely holomorphic map. Suppose that h : Cn →
[−∞,+∞[ is a plurisubharmonic function. Then the function h ◦ f is ei-
ther finely subharmonic on U or ≡ −∞.

Proof. First, we assume that h is everywhere finite and continuous. Let
a ∈ U . Definition 2.8 gives us a compact (in the usual topology) fine neigh-
borhood K of a in U , and n sequences (fkj )k≥0, j = 1, . . . , n, of holomorphic
functions defined in Euclidean neighborhoods of K such that

fkj |K → fj |K , j = 1, . . . , n, uniformly.

Clearly, (fk1 , . . . , f
k
n) converges uniformly on K to (f1, . . . , fn). Since h

is continuous, the sequence h(fk1 , . . . , fkn), of finite continuous subharmonic
functions, converges uniformly to h(f1, . . . , fn) on K. According to Theorem
2.5(i), h(f1, . . . , fn) is finely subharmonic in the fine interior of K.

Suppose now that h is arbitrary. We can assume that the fine interior of
K is finely connected. Let (hm)m≥0 be a decreasing sequence of continuous
plurisubharmonic functions which converges (pointwise) to h. By the first
part of the proof, hm(f1, . . . , fn) is a decreasing sequence of finely subhar-
monic functions in the fine interior of K. The limit function h(f1, . . . , fn)
is by Theorem 2.5(ii) finely subharmonic or identically −∞ in the fine inte-
rior of K. The sheaf property (Theorem 2.5(iii)) implies that h(f1, . . . , fn)
is indeed finely subharmonic in all of U or is identically equal to −∞.

Remark 3.2. The above lemma was also independently proved by Fu-
glede.

Lemma 3.3. Let f : U → Cn, f(z) = (f1(z), . . . , fn(z)), be a finely
holomorphic map on a fine domain U ⊂ C which contains a disc with positive
radius. Then f(U) is a pluripolar subset of Cn.

We denote by B(a, r) the open disc in C with center a and radius r > 0.
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Proof. Let B(a, δ) ⊂ U be a small disc in U . Since f is a holomorphic
map on B(a, δ) (Theorem 2.10), f(B(a, δ)) is a pluripolar subset of Cn. By
Josefson’s theorem there exists a plurisubharmonic function h ∈ PSH(Cn)
(6≡ −∞) such that h(f1(z), . . . , fn(z)) = −∞ for all z ∈ B(a, δ). According
to Lemma 3.1, the function g(z) = h(f1(z), . . . , fn(z)) is finely subharmonic
on U or ≡ −∞. Since it is −∞ on a non-polar subset of U , it must be
identically −∞ on U by Theorem 2.7. Hence h|f(U) = −∞, and so f(U) is
pluripolar.

Proposition 3.4. Let f : U → Cn, f(z) = (f1(z), . . . , fn(z)), be a finely
holomorphic map on a finely open subset U ⊆ C. Then the graph Γf (U) is a
pluripolar subset of Cn+1.

Proof. Since the fine topology is locally connected (Proposition 2.2), it
follows from the quasi-Lindelöf property (Theorem 2.3) that U has at most
countably many finely connected components. Because a countable union of
pluripolar sets is pluripolar, there is no loss of generality to assume that U
is a fine domain. Let a ∈ U . According to Theorem 2.9 there exist a finely
open fine neighborhood V ⊂ U of a, and ϕj ∈ L2(C), j = 1, . . . , n, with
compact support such that ϕj = 0, j = 1, . . . , n, a.e. in V and

fj(z) =
�

C

1
z − ζ

ϕj(ζ) dλ(ζ), z ∈ V, j = 1, . . . , n.

Because of local connectedness, we can assume that V is finely connected.
Let z0 ∈ V and 0 < δ < 1 be such that a 6∈ B(z0, δ). Choose a smooth
function ρ such that ρ ≡ 1 on B(z0, δ/2) and ρ ≡ 0 on C \B(z0, δ). We set

f1
j (z) =

�

C

ρ(ζ)
z − ζ

ϕj(ζ) dλ(ζ), f2
j (z) =

�

C

1− ρ(ζ)
z − ζ

ϕj(ζ) dλ(ζ),

for j = 1, . . . , n. It is clear that f2
j , j = 1, . . . , n, is holomorphic on B(z0, δ/2)

and finely holomorphic on the finely open set V ∪B(z0, δ/2). Since usual do-
mains are also finely connected, V ∪B(z0, δ/2) is finely connected. Now, by
Lemma 3.3, the image of V ∪ B(z0, δ/2) under z 7→ (z, f2

1 (z), . . . , f2
n(z)) is

a pluripolar subset of Cn+1. By Josefson’s theorem, there exists a plurisub-
harmonic function h ∈ PSH(Cn+1) (6≡ −∞) such that

h(z, f2
1 (z), . . . , f2

n(z)) = −∞, ∀z ∈ V ∪B(z0, δ/2).

Since f1
j , j = 1, . . . , n, is holomorphic on C \B(z0, δ), the function g : Cn+1

→ Cn+1 defined by

g(z, w1, . . . , wn) = (z, w1 − f1
1 (z), . . . , wn − f1

n(z))

is holomorphic on (C \ B(z0, δ)) × Cn. Hence h ◦ g is plurisubharmonic on
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(C \B(z0, δ))× Cn and clearly not identically −∞. Moreover,

h ◦ g(z, f1(z), . . . , fn(z)) = h(z, f2
1 (z), . . . , f2

n(z))

= −∞, ∀z ∈ V ∩ (C \B(z0, δ)).

This proves that the graph {(z, f1(z), . . . , fn(z)) : z ∈ V ∩ (C \ B(z0, δ))}
is a pluripolar subset of Cn+1. Notice that V ∩ (C \ B(z0, δ)) is a finely
open set containing the point a. Again, by Josefson’s theorem, there exists
a plurisubharmonic function ψ ∈ PSH(Cn+1) such that

ψ(z, f1(z), . . . , fn(z)) = −∞, ∀z ∈ V ∩ (C \B(z0, δ)).

In view of Lemma 3.1 the function z 7→ ψ(z, f1(z), . . . , fn(z)) is finely subhar-
monic in U or ≡ −∞. Since it is −∞ on the non-polar set V ∩ (C\B(z0, δ)),
it must be identically −∞ on U by Theorem 2.7. This completes the proof.

For convenience of the reader we repeat the statement of our main result,
which we will prove subsequently.

Theorem 3.5. Let f : U → Cn, f(z) = (f1(z), . . . , fn(z)), be a finely
holomorphic map on a finely open subset U ⊆ C. Then f(U) is a pluripolar
subset of Cn. Moreover, if E is a non-polar subset of U , then the pluripolar
hull of f(E) contains f(U).

Proof. We may assume that f1 is not constant and U is a fine domain.
By Theorem 2.11 one can choose a non-empty finely open subset W ⊆ U of
U such that f1|W : W → f1(W ) is bijective and f−1

1 is finely holomorphic
in the finely open set f1(W ). Now, observe that

f(W ) = {(f1(z), . . . , fn(z)) : z ∈W}
= {(w, f2(f−1

1 (w)), . . . , fn(f−1
1 (w))) : w ∈ f1(W )}.

Since the composition of finely holomorphic functions is finely holomorphic
(Theorem 2.11), the map w 7→ (f2(f−1

1 (w)), . . . , fn(f−1
1 (w))) is finely holo-

morphic in f1(W ). By Proposition 3.4, the graph

{(w, f2(f−1
1 (w)), . . . , fn(f−1

1 (w))) : w ∈ f1(W )} = f(W )

is a pluripolar subset of Cn. Again, Josefson’s theorem ensures the existence
of a plurisubharmonic function h ∈ PSH(Cn) such that

h(f1(z), . . . , fn(z)) = −∞, ∀z ∈W.
By Lemma 3.1, the function z 7→ h(f1(z), . . . , fn(z)) is either finely subhar-
monic or identically −∞. Since it is −∞ on the non-polar subset W ⊂ U ,
we must have h(f(U)) = −∞ by Theorem 2.7. Repeating this last argument
yields the second statement of Theorem 3.5.

Proof of Theorem 1.3. (1)⇒(2). According to Theorem 2.1, there exists
R > 0 such that the set {z ∈ D \ A : |f(z)| ≥ R} is thin at z0. Clearly,
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U = {z ∈ D \ A : |f(z)| < R} ∪ {z0} is a finely open neighborhood of z0.
Since f is bounded in U \ {z0} and finely holomorphic in U \ {z0}, Theorem
2.11(v) gives that f has a finely holomorphic extension at z0.

(2)⇒(1). Suppose that f has a finely holomorphic extension f̃ at z0.
Clearly, (D \ A) ∪ {z0} is a finely open neighborhood of z0. Since polar
sets do not separate fine domains (Proposition 2.2) the set (D \ A) ∪ {z0}
is finely connected. Let h ∈ PSH(D × C) be a plurisubharmonic function
such that h(z, f(z)) = −∞ for all z ∈ D \ A. According to Lemma 3.1,
the function z 7→ h(z, f̃(z)) is either finely subharmonic on (D \ A) ∪ {z0}
or ≡ −∞. As it is −∞ on D \ A, it must be identically −∞ in view of
Theorem 2.7. Consequently, (z0, f̃(z0)) ∈ (Γf )∗D×C. The last assertion follows
from Theorem 5.10 in [4].

4. A Borel-type example. We give an example in the spirit of Borel
to which the theory applies. It exhibits a finely holomorphic function on a
fine domain which is a dense subset of C with empty Euclidean interior. Our
point is to show that the study of quite natural series in connection with
pluripolarity is fruitfully done in the framework of fine holomorphy.

Example 4.1. Let {aj}∞j=1 be a dense sequence in C with |aj | < j for
all j. Let rj = 2−j . Then

⋃∞
j=1B(aj , rj) has finite area, and its circular

projection z 7→ |z| has finite length. Next, define subharmonic functions
gj(z) = log |z − aj | − 3j and un by

(2) un(z) =
∞∑
j=n

j−3gj(z).

The terms in the series (2) are subharmonic, and negative for |z| < k as soon
as j ≥ k. Hence un represents a subharmonic function. Let

D =
(⋃

n

{un > −10}
)
\ {a1, a2, . . .}.

We claim that D = {u1 > −∞}. Indeed, let z0 ∈
⋃
n{un > −∞} \

{a1, a2, . . .}. Then there exists a natural number k such that |z0| < k and
uk > −∞. Since, as mentioned before, all the terms of the series uk(z0)
are negative, a suitable tail, say uN (z0), will be very close to 0. In other
words, z0 ∈ {uN > −10}. Hence z0 ∈ D and therefore D =

⋃
n{un > −∞}\

{a1, a2, . . .}. Consequently,

C \D =
∞⋂
n=1

{un = −∞} ∪ {a1, a2, . . .}.

Since {uk1 = −∞}\{a1, a2, . . .} = {uk2 = −∞}\{a1, a2, . . .} for any natural



146 A. Edigarian et al.

numbers k1 and k2, we conclude that

C \D = {u1 = −∞} ∪ {a1, a2, . . .} = {u1 = −∞}.
This proves the claim. In particular, by Proposition 2.2, D is a fine domain.

For every j there exists 0 < cj < 1 such that if |z − aj | < cj , then
un(z) < −11 for n ≤ j. Indeed,

∑
k>j k

−3gk(z) < 0, while
j−1∑
k=n

k−3gk(z) < log j
j−1∑
k=n

k−3 < 10 log j,

so it suffices to take cj = j−11j3 .
Next we define a function on D by

(3) f(z) =
∞∑
j=1

cj
2j(z − aj)

.

We claim that f is finely holomorphic on D. Indeed, let z0 ∈ D. For every
m a suitable tail of the series (3) is uniformly convergent on the compact set
K = {|z| ≤ 2|z0|} \

⋃
j≥mB(aj , cj). Now if z0 ∈ D, then z0 belongs to the

finely open set {um > −10} for some m. Hence, |z0 − aj | > cj for all j ≥ m,
and K is a fine neighborhood of z0.

Application of Theorem 1.2 implies that the graph Γf (D) is a pluripolar
set. The theorem also shows that for a set E ⊂ D of positive capacity, e.g.,
a circle in {u1 > −10},

Γf (D) ⊂ (Γf (E))∗C2 .

Even for this example there are many questions left open. We have no
description of the maximal domain D0 to which f extends as a finely holo-
morphic function, and we do not know if Γf (D0) = (Γf (E))∗C2 , as one may
expect in view of [4].

5. Concluding remarks and open questions. We now discuss some
applications and open problems. Let E ⊂ Cn be a pluripolar set and E∗Cn

its pluripolar hull. It follows from the arguments used before that if E hits
a finely holomorphic curve f(U) in some “non-small” set, then E∗Cn contains
all the points of f(U). Namely, we have the following.

Proposition 5.1. Let f : U → Cn be a finely holomorphic map on a
fine domain U ⊂ C and let E ⊂ Cn be a pluripolar set. If f(U)∩E 6= ∅ and
f−1(f(U) ∩ E) is non-polar, then f(U) ⊂ E∗Cn.

Proof. Let h ∈ PSH(Cn) be a plurisubharmonic function such that h(z)
= −∞ for all z ∈ E. By Lemma 3.1, h ◦ f is either finely subharmonic on U
or ≡ −∞. As it is −∞ on f−1(f(U) ∩ E), it must be identically −∞ on U
by Theorem 2.7. Therefore f(U) ⊂ E∗Cn .



Image of a finely holomorphic map 147

The conclusion of the above proposition remains valid if one assumes that
E contains merely the “boundary of a finely holomorphic curve”.

Proposition 5.2. Let f and E be as above. If f extends by fine conti-
nuity to the fine boundary ∂fU of U and f(∂fU) ⊂ E, then f(U) ⊂ E∗Cn.

Proof. Let h ∈ PSH(Cn) be plurisubharmonic function such that h(z) =
−∞ for all z ∈ E. Let a ∈ ∂fU . By assumption, f has a fine limit at a. Using
Cartan’s theorem (cf. [15, Theorem 10.15]), one can easily find a finely open
neighborhood Va of a such that the usual limit limz→a, z∈Va∩U f(z) exists
and is equal to f(a). Let M > 0. Since h is upper semicontinuous, the set
{z ∈ Cn : h(z) < −M} is open. As f(a) ∈ {z ∈ Cn : h(z) < −M}, one can
find a positive number δa > 0 such that

f(w) ∈ {z ∈ Cn : h(z) < −M}, ∀w ∈ B(a, δa) ∩ Va ∩ U.
Consequently,

f-limsup
z→a, z∈U

h(f(z)) = f-limsup
z→a, z∈Va∩U

h(f(z)) < −M, ∀a ∈ ∂fU,

where f-limsup denotes the upper limit with respect to the fine topology.
As h ◦ f is a finely hypoharmonic function on U (see Lemma 3.1 and its
proof), the fine boundary maximum principle (cf. [10, Theorem 2.3]) shows
that h ◦ f(z) < −M for all z ∈ U . Since M was arbitrary, we conclude that
h ◦ f(U) = −∞. This proves the proposition.

Our results reveal a very close relationship between the pluripolar hulls
of the graphs of holomorphic functions and the theory of finely holomorphic
functions (see also [6]). This leads naturally to the following fundamental
problem.

Problem 1. Let f : Ω → C be a holomorphic function on a simply
connected open subset Ω ⊂ C. Suppose that the graph Γf (Ω) is not complete
pluripolar. Must then (Γf (Ω))∗C2 \Γf (Ω) have a fine analytic structure? That
is, for z ∈ (Γf (Ω))∗C2 \ Γf (Ω), must there exist a finely holomorphic curve
passing through z and contained in (Γf (Ω))∗C2 \ Γf (Ω)?

Obviously, a positive answer to the above problem would, in particular,
solve the following problem posed in [6].

Problem 2. Let f be a holomorphic function in the unit disc D. Suppose
that (Γf (D))∗C2 is the graph of some function F . Is F a finely holomorphic
continuation of f?

It was proved in [1] that one cannot detect “pluripolarity” via intersection
with one-dimensional complex analytic varieties. Since there are, roughly
speaking, many more finely holomorphic curves in Cn than analytic varieties,
one can naturally pose the following
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Problem 3. Let K be a compact set in Cn and suppose that f−1(K ∩
f(U)) is a polar subset of U (or empty) for any finely holomorphic curve
f : U → Cn. Must K be a pluripolar subset of Cn?

Finally, in view of Theorem 2.7, it is natural to ask

Problem 4. Is every finely pluripolar set pluripolar?
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