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Three periodic solutions for a class of higher-dimensional
functional differential equations with impulses

by Yongkun Li, Changzhao Li and Juan Zhang (Kunming)

Abstract. By using the well-known Leggett–Williams multiple fixed point theorem
for cones, some new criteria are established for the existence of three positive periodic
solutions for a class of n-dimensional functional differential equations with impulses of the
form (

y′(t) = A(t)y(t) + g(t, yt), t 6= tj , j ∈ Z,

y(t+j ) = y(t−j ) + Ij(y(tj)),

where A(t) = (aij(t))n×n is a nonsingular matrix with continuous real-valued entries.

1. Introduction. Impulsive delay differential equations may express
several real-world simulation processes which depend on their prehistory and
are subject to short time disturbances. Such processes occur in the theory
of optimal control, population dynamics, biotechnologies, economics, etc. In
recent years, the existence of positive periodic solutions of delay differential
equations with impulsive effects has been an object of active research; we
refer the reader to [4–7, 10–15].

Recently, based on a fixed point theorem in cones, Li et al. ([5]) investi-
gated the periodicity of the following scalar system:

(1.1)

{
ẏ(t) = −a(t)y(t) + g(t, y(t− τ(t)), t 6= tj , j ∈ Z,
y(t+j ) = y(t−j ) + Ij(y(tj)),

where a ∈ C(R, (0,∞)), τ ∈ C(R,R), g ∈ C(R × [0,∞), [0,∞)), a, τ are
ω-periodic functions and g is ω-periodic with respect to its first argument.
It is well known that system (1.1) includes many mathematical ecological
models (see [2, 6]).

Also, in [2], Jiang et al. employed Krasnosel’skĭı’s fixed point theorem
for cones to study the existence of positive periodic solutions of the system
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of functional differential equations

(1.2) ẋ(t) = A(t)x(t) + f(t, xt),

where A(t) = diag[a1(t), . . . , an(t)], aj ∈ C(R,R) is ω-periodic, f is a func-
tion defined on R × BC(R,Rn), and f(t, xt) is ω-periodic whenever x is
ω-periodic, where BC(R,Rn) denotes the Banach space of bounded con-
tinuous functions φ : R → Rn with the norm ‖φ‖ = supθ∈R

∑n
j=1 |φj(θ)|

where φ = (φ1, . . . , φn)T , and ω > 0 is a constant. If x ∈ BC(R,Rn), then
xt ∈ BC(R,Rn) for t ∈ R is defined by xt(θ) = x(t+ θ) for θ ∈ R.

However, to the best of our knowledge, there are few papers published on
the multiple existence of positive periodic solutions for higher-dimensional
functional differential equations with impulses; moreover, the existing re-
sults on the existence of periodic solutions for system (1.2) with or without
impulses all assume that the coefficient matrix A(t) is diagonal. Motivated
by the above, in this paper, we are concerned with the following system:

(1.3)

{
y′(t) = A(t)y(t) + g(t, yt), t 6= tj , j ∈ Z,
y(t+j ) = y(t−j ) + Ij(y(tj)),

where A(t) = (aij(t))n×n is a nonsingular matrix with continuous real-valued
functions as entries and A(t + T ) = A(t); g = (g1, . . . , gn)T is a functional
R×BC(R,Rn)→ Rn, satisfying g(t+ T, yt+T ) = g(t, yt) for all t ∈ R, yt ∈
BC(R,Rn), and if y ∈ BC(R,Rn) then for any t ∈ R, yt ∈ BC(R,Rn)
is defined by yt(s) = y(t + s) for s ∈ R; y(t+j ), y(t−j ) = y(tj) represent
the right and the left limit of y(t) at tj , j ∈ Z, respectively; and Ij =
(I1
j , I

2
j , . . . , I

n
j )T ∈ C(Rn,Rn), j ∈ Z. We assume that there exists an integer

p > 0 such that tj+p = tj+T , Ij+p = Ij , j ∈ Z, where 0 < t1 < · · · < tp < T .
The Leggett–Williams multiple fixed point theorem [3] has proved to be

a successful technique for dealing with the existence of three positive solu-
tions of two, three or multi-point boundary value problems for differential
equations (see [8, 9, 11]). Our main aim is (by using the Leggett–Williams
theorem) to study the existence of at least three positive periodic solutions
of (1.3). In the analysis we use the fundamental solution matrix of

(1.4) y′ = A(t)y

and convert system (1.3) into an integral equation. Then we employ the
Leggett–Williams theorem to show the existence of triple positive periodic
solutions of (1.3). Our methods are different from those used in [2, 5, 8, 9].

In this paper, for each x = (x1, . . . , xn)T ∈ Rn, the norm of x is defined
as |x|0 =

∑n
i=1 |xi|. For matrices A,B, the notation A > B (A ≤ B) means

that each pair of corresponding entries of A and B satisfies the inequality
“>” (“≤”). In particular, A is called a positive matrix if A > 0.

In what follows, we assume that
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(H1) g(t, ϕt) is a continuous functional of t for each ϕ ∈ BC(R,Rn).
(H2) For any L > 0 and ε > 0, there exists δ > 0 such that [ϕ,ψ ∈

BC(R,Rn), ‖ϕ‖ ≤ L, ‖ψ‖ ≤ L and ‖ϕ− ψ‖ ≤ δ] implies that

|g(t, ϕt)− g(t, ψt)|0 < ε, ∀t ∈ [0, T ].

To simplify our description, we introduce the following notations:

gα = lim sup
‖y‖→α

	T
0 |g(s, ys)|0 ds

‖y‖
, Iα = lim sup

‖y‖→α

∑p
j=1 |Ij(y)|0
‖y‖

,

ǧ = inf
δb≤u≤b

T�

0

|g(s, u)|0 ds, Ǐ = inf
δb≤u≤b

p∑
j=1

|Ij(u)|0.

The organization of the rest of this paper is as follows: In Section 2, we
introduce some notations and definitions, and state some preliminary results.
In Section 3, by using the Leggett–Williams multiple fixed point theorem, we
establish the existence of at least three positive periodic solutions of (1.3).

2. Preliminaries. For convenience, we first recall the related definitions
and the fixed point theorem which will be used to prove our main results.

Definition 2.1. Let X be a Banach space and K be a closed, nonempty
subset of X. Then K is a cone if

(i) αu+ βv ∈ K for all u, v ∈ K and all α, β ≥ 0;
(ii) u,−u ∈ K imply u = 0.

Every cone K ⊂ X includes an ordering in X given by x ≤ y if and only
if y − x ∈ K.

Define Kr = {x ∈ K : ‖x‖ ≤ r}. Let α denote a positive continuous
concave functional on K, that is, α : K → [0,∞) is continuous and satisfies

α(λx+ (1− λ)y) ≥ λα(x) + (1− λ)α(y), ∀x, y ∈ K, 0 ≤ λ ≤ 1,

and we set K(α, a, b) = {x ∈ K : a ≤ α(x), ‖x‖ ≤ b}.
The following lemma from [3] is useful for the proof of our main results.

Lemma 2.1 (Leggett–Williams [3]). Let K be a cone of the real Banach
space X and H : K̄c → K̄c be a completely continuous operator, and suppose
that there exist a concave positive functional α with α(x) ≤ ‖x‖ (x ∈ K) and
numbers a, b, d with 0 < d < a < b ≤ c, satisfying the following conditions:

(i) {x ∈ K(α, a, b) : α(x) > a} 6= ∅ and α(Hx) > a if x ∈ K(α, a, b);
(ii) ‖Hx‖ < d if x ∈ Kd;
(iii) α(Hx) > a for all x ∈ K(α, a, c) with ‖Hx‖ > b.

Then H has at least three fixed points x1, x2, x3 ∈ K̄c such that

x1 ∈ Kd, x2 ∈ {x ∈ K(α, a, c) : α(x) > a}, x3 ∈ K̄c\α(K(α, a, c) ∪ K̄d).
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Definition 2.2 ([1, 12]). If the matrix A(t) is T -periodic, then the linear
system

y′ = A(t)y

is said to be noncritical with respect to T if it has no periodic solution of
period T except the trivial solution y = 0.

Throughout this paper it is assumed that system (1.4) is noncritical. Let
Φ(t) be the fundamental solution matrix of (1.4) with Φ(0) = I, where I is
the n× n identity matrix. Then we have the following results [1, 12].

(i) detΦ(t) 6= 0;
(ii) there exists a constant matrix B such that Φ(t+ T ) = Φ(t)eBT , by

Floquet theory;
(iii) system (1.4) is noncritical if and only if det(I − Φ(T )) 6= 0.

Lemma 2.2. Let Φ(t) be the fundamental solution matrix of (1.4) with
Φ(0) = I. Then

(2.1) Φ(t)[(Φ(t)− Φ(t+ T ))−1 − (Φ(t− T )− Φ(t))−1] = I.

Proof. We have

Φ(t)[(Φ(t)− Φ(t+ T ))−1 − (Φ(t− T )− Φ(t))−1]
= [(Φ(t)− Φ(t+ T ))Φ−1(t)]−1 − [(Φ(t− T )− Φ(t))Φ−1(t)]−1

= (I − Φ(t+ T )Φ−1(t))−1 − (Φ(t− T )Φ−1(t)− I)−1

= (I − Φ(t)eBTΦ−1(t))−1 − (Φ(t)e−BTΦ−1(t)− I)−1

= Φ(t)e−BTΦ−1(t)(Φ(t)e−BTΦ−1(t)− I)−1 − (Φ(t)e−BTΦ−1(t)− I)−1

= (Φ(t)e−BTΦ−1(t)− I)(Φ(t)e−BTΦ−1(t)− I)−1 = I.

In order to obtain the existence of periodic solutions of system (1.3), we
make the following preparations.

Define

PC(R,Rn) = {y : R→ Rn | yi|(tj ,tj+1) ∈ C(tj , tj+1), ∃y(t−j ) = y(tj), y(t+j ),
j ∈ Z, i = 1, . . . , n}

and set
X = {y ∈ PC(R,Rn) : y(t+ T ) = y(t) for all t}

with the norm defined by ‖y‖ = supt∈R |y(t)|0 = supt∈[0,T ] |y(t)|0, where
|y(t)|0 =

∑n
i=1 |yi(t)|. Then X is a Banach space.

The following lemma is fundamental to our discussion:

Lemma 2.3. A function y is a T -periodic solution of (1.3) if and only
if y is a T -periodic solution of the integral equation

(2.2) y(t) =
t+T�

t

G(t, r)g(r, yr) dr +
∑

j: tj∈[t,t+T )

G(t, tj)Ij(y(tj)),
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where

(2.3) G(t, u) = Φ(t)(Φ(u− T )− Φ(u))−1 := (Gik)n×n, u ∈ [t, t+ T ).

Proof. If y is a T -periodic solution of (1.3), then for any t ∈ R, there
exists j ∈ Z such that tj is the first impulsive point after t. Let Φ(t) be a
fundamental solution of system (1.4). Since Φ(t)Φ−1(t) = I, it follows that

0 =
d

dt
(Φ(t)Φ−1(t)) =

d

dt
(Φ(t))Φ−1(t) + Φ(t)

d

dt
(Φ−1(t))

= (A(t)Φ(t))Φ−1(t) + Φ(t)
d

dt
(Φ−1(t)) = A(t) + Φ(t)

d

dt
(Φ−1(t)).

This implies that

(2.4)
d

dt
(Φ−1(t)) = −Φ−1(t)A(t).

By (2.4), we have

d

dt
(Φ−1(t)y(t)) =

d

dt
(Φ−1(t))y(t) + Φ−1(t)

d

dt
(y(t))(2.5)

= −Φ−1(t)A(t)y(t) + Φ−1(t)[A(t)y(t) + g(t, yt)]
= Φ−1(t)g(t, yt).

An integration of (2.5) from t to s for s ∈ [t, tj ], j ∈ Z, yields

y(s) = Φ(s)
s�

t

[Φ−1(r)g(r, yr)] dr + Φ(s)Φ−1(t)y(t),

so

y(tj) = Φ(tj)
tj�

t

[Φ−1(r)g(r, yr)] dr + Φ(tj)Φ−1(t)y(t), j ∈ Z.

Again, integrating (2.5) over (tj , tj+1], j ∈ Z, we get

y(s) = Φ(s)Φ−1(tj)y(t+j ) +
s�

tj

Φ(s)Φ−1(r)g(r, yr) dr

= Φ(s)Φ−1(tj)[y(t−j ) + Ij(y(tj))] +
s�

tj

Φ(s)Φ−1(r)g(r, yr) dr

= Φ(s)Φ−1(t)y(t) + Φ(s)
[ tj�
t

Φ−1(r)g(r, yr) dr +
s�

tj

Φ−1(r)g(r, yr) dr
]

+ Φ(s)Φ−1(tj)Ij(y(tj))

= Φ(s)Φ−1(t)y(t) + Φ(s)
s�

t

Φ−1(r)g(r, yr) dr + Φ(s)Φ−1(tj)Ij(y(tj)).
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Repeating the above process for s ∈ [t, t+ T ], we obtain

y(s) = Φ(s)Φ−1(t)y(t) + Φ(s)
s�

t

Φ−1(r)g(r, yr) dr

+
∑

j: tj∈[t,s)

Φ(s)Φ−1(tj)Ij(y(tj)).

Let s = t+ T in the above equality. Then

y(t+ T ) = Φ(t+ T )Φ−1(t)y(t) + Φ(t+ T )
t+T�

t

Φ−1(r)g(r, yr) dr

+
∑

j: tj∈[t,t+T )

Φ(t+ T )Φ−1(tj)Ij(y(tj)).

It follows from y(t+ T ) = y(t) that

(I − Φ(t+ T )Φ−1(t))y(t)

= Φ(t+ T )
t+T�

t

Φ−1(r)g(r, yr) dr + Φ(t+ T )
∑

j: tj∈[t,t+T )

Φ−1(tj)Ij(y(tj)).

So we get

y(t) = (I − Φ(t+ T )Φ−1(t))−1Φ(t+ T )
[ t+T�

t

Φ−1(r)g(r, yr) dr

+
∑

j: tj∈[t,t+T )

Φ−1(tj)Ij(y(tj))
]

= (Φ−1(t+ T )− Φ−1(t))−1

[ t+T�
t

Φ−1(r)g(r, yr) dr

+
∑

j: tj∈[t,t+T )

Φ−1(tj)Ij(y(tj))
]

= Φ(t)(e−BT − I)−1

[ t+T�
t

Φ−1(r)g(r, y(r), y(r − τ(r))) dr

+
∑

j: tj∈[t,t+T )

Φ−1(tj)Ij(y(tj))
]

=
t+T�

t

Φ(t)(e−BT − I)−1Φ−1(r)g(r, yr) dr

+
∑

j: tj∈[t,t+T )

Φ(t)(e−BT − I)−1Φ−1(tj)Ij(y(tj))
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=
t+T�

t

Φ(t)(Φ(r − T )− Φ(r))−1g(r, yr) dr

+
∑

j: tj∈[t,t+T )

Φ(t)(Φ(tj − T )− Φ(tj))−1Ij(y(tj)).

Consequently, let y be a T -periodic solution of (2.2). If t 6= ti, i ∈ Z, then
by (2.2), we have

y(t) = Φ(t)
[ t+T�

t

(Φ(r − T )− Φ(r))−1g(r, yr) dr

+
∑

j: tj∈[t,t+T )

(Φ(tj − T )− Φ(tj))−1Ij(y(tj))
]
.

Therefore, by (2.1), we obtain

y′(t) = Φ′(t)
[ t+T�

t

(Φ(r − T )− Φ(r))−1g(r, yr) dr

+
∑

j: tj∈[t,t+T )

(Φ(tj − T )− Φ(tj))−1Ij(y(tj))
]

+ Φ(t)[(Φ(t)− Φ(t+ T ))−1g(t+ T, yt+T )
− (Φ(t− T )− Φ(t))−1g(t, yt)]

= A(t)Φ(t)
[ t+T�

t

(Φ(r − T )− Φ(r))−1g(r, yr) dr

+
∑

j: tj∈[t,t+T )

(Φ(tj − T )− Φ(tj))−1Ij(y(tj))
]

+ Φ(t)[(Φ(t)− Φ(t+ T ))−1 − (Φ(t− T )− Φ(t))−1]g(t, yt)
= A(t)y(t) + g(t, yt).

If t = ti, i ∈ Z, then by (2.1) and (2.2), we get

y(t+i )−y(t−i ) =
∑

j: tj∈[t+i ,t
+
i +T )

Φ(ti)(Φ(tj − T )− Φ(tj))−1Ij(y(tj))

−
∑

j: tj∈[t−i ,t
−
i +T )

Φ(ti)(Φ(tj − T )−Φ(tj))−1Ij(y(tj))

= Φ(ti)[(Φ(ti)−Φ(ti+T ))−1− (Φ(ti−T )−Φ(ti))−1]Ij(y(tj))
= Ij(y(tj)).

So y is also a T -periodic solution of (1.3).
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Define, for i, k = 1, . . . , n,

A0 := min
0≤t≤u≤T

|Gik(t, u)| > 0, B0 := max
0≤t≤u≤T

|Gik(t, u)| > 0

and

A := min
0≤t≤u≤T

∣∣∣ n∑
i=1

Gik(t, u)
∣∣∣ > 0, B := max

0≤t≤u≤T

∣∣∣ n∑
i=1

Gik(t, u)
∣∣∣ > 0.

Let

(2.6) K = {y(·) = (y1(·), . . . , yn(·))T ∈ X : yi(t) ≥ λ‖yi‖, t ∈ [0, T ],
i = 1, . . . , n},

where λ = A0/B0 ∈ (0, 1) and A0, B0 are defined above. Obviously, K is a
cone in X.

Define a mapping H by

(Hy)(t) =
t+T�

t

G(t, r)g(r, yr) dr +
∑

j: tj∈[t,t+T )

G(t, tj)Ij(y(tj)),(2.7)

for all y ∈ K, t ∈ R, where G(t, u) is defined by (2.3) and

(Hy)(t) = ((H1y)(t), . . . , (Hny)(t))T ,

where

(Hiy)(t) =
t+T�

t

n∑
k=1

Gikgk(r, yr) dr+
∑

j: tj∈[t,t+T )

n∑
k=1

GikI
k
j (y(tj)), i = 1, . . . , n.

Now we claim that

G(t+ T, u+ T ) = G(t, u).(2.8)

In fact,

G(t+ T, u+ T ) = Φ(t+ T )(Φ(u)− Φ(u+ T ))−1

= Φ(t)eBT (Φ(u)− Φ(u)eBT )−1

= Φ(t)(Φ(u)e−BT − Φ(u))−1

= Φ(t)(Φ(u− T )− Φ(u))−1 = G(t, u).

Hereafter, we always assume that

(H3) gkGik > 0 and IkjGik > 0, for all i, k = 1, . . . , n, j ∈ Z.

Then we can easily get

gk

n∑
i=1

Gik > 0, Ikj

n∑
i=1

Gik > 0, ∀k = 1, . . . , n, j ∈ Z.

We now give some lemmas concerning K and H defined by (2.6) and
(2.7), respectively.
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Lemma 2.4. Assume that (H3) holds. Then H : K → K is well defined.

Proof. For any y ∈ K, it is clear that Hy ∈ PC(R,Rn). In view of (2.8)
we obtain

(Hy)(t+ T ) =
t+2T�

t+T

Φ(t+ T )(Φ(r − T )− Φ(r))−1g(r, yr) dr

+
∑

j: tj∈[t+T,t+2T )

Φ(t+ T )(Φ(tj − T )− Φ(tj))−1Ij(y(tj))

=
t+T�

t

Φ(t+ T )(Φ(s)− Φ(s+ T ))−1g(s+ T, ys+T ) ds

+
∑

i: ti∈[t,t+T )

Φ(t+ T )(Φ(ti)− Φ(ti + T ))−1Ii(y(ti))

=
t+T�

t

G(t+ T, s+ T )g(s, ys) ds

+
∑

i: ti∈[t,t+T )

G(t+ T, ti + T )Ii(y(ti))

=
t+T�

t

G(t, s)g(s, ys) ds+
∑

i: ti∈[t,t+T )

G(t, ti)Ii(y(ti)) = (Hy)(t).

That is,
(Hy)(t+ T ) = (Hy)(t), t ∈ R.

So Hy ∈ X.
For any y ∈ K and t ∈ [0, T ], we have

|Hiy| =
∣∣∣ t+T�

t

n∑
k=1

Gikgk dr +
∑

j: tj∈[t,t+T )

n∑
k=1

GikI
k
j

∣∣∣
≤

t+T�

t

n∑
k=1

|Gik| |gk| dr +
p∑
j=1

n∑
k=1

|Gik| |Ikj |

≤ B0

( t+T�
t

n∑
k=1

|gk| dr +
p∑
j=1

n∑
k=1

|Ikj |
)
, i = 1, . . . , n.

So

‖Hiy‖ = sup
t∈[0,T ]

|Hiy| ≤ B0

( t+T�
t

n∑
k=1

|gk| dr +
p∑
j=1

n∑
k=1

|Ikj |
)
, i = 1, . . . , n,
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and by (H3), we get

(Hiy)(t) =
t+T�

t

n∑
k=1

|Gik| |gk| dr +
∑

j: tj∈[t,t+T )

n∑
k=1

|Gik| |Ikj |

≥ A0

( t+T�
t

n∑
k=1

|gk| dr +
p∑
j=1

n∑
k=1

|Ikj |
)

=
A0

B0
B0

( t+T�
t

n∑
k=1

|gk| dr +
p∑
j=1

n∑
k=1

|Ikj |
)
≥ λ‖Hiy‖, i = 1, . . . , n,

i.e., Hy ∈ K. This completes the proof.

Lemma 2.5. Assume that (H1) and (H2) hold. Then H : K → K is
completely continuous.

Proof. We first show that H is continuous. By (H2), for any L > 0 and
ε > 0, there exists a δ > 0 such that [φ, ϕ ∈ BC(R,Rn), ‖φ‖ ≤ L, ‖ϕ‖ ≤ L,
‖φ− ϕ‖ < δ] implies

sup
0≤s≤T

|g(s, φs)− g(s, ϕs)|0 <
ε

2BT
.

And since Ij ∈ C(Rn,Rn), we have

|Ij(φ)− Ij(ϕ)|0 <
ε

2Bp
, j ∈ Z.

If x, y ∈ K with ‖x‖ ≤ L, ‖y‖ ≤ L and ‖x− y‖ < δ, then

|(Hx)(t)− (Hy)(t)|0

=
n∑
i=1

∣∣∣ t+T�
t

n∑
k=1

Gikgk(r, xr) dr +
∑

j: tj∈[t,t+T )

n∑
k=1

GikI
k
j (x(tj))

−
t+T�

t

n∑
k=1

Gikgk(r, yr) dr −
∑

j: tj∈[t,t+T )

n∑
k=1

GikI
k
j (y(tj))

∣∣∣
≤

t+T�

t

n∑
k=1

∣∣∣ n∑
i=1

Gik

∣∣∣|gk(r, xr)− gk(r, yr)| dr
+

∑
j: tj∈[t,t+T )

n∑
k=1

∣∣∣ n∑
i=1

Gik

∣∣∣|Ikj (x(tj))− Ikj (y(tj))|
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≤ B
( T�

0

|g(s, xs)− g(s, ys)|0 ds+
p∑
j=1

|Ij(x)− Ij(y)|0
)

≤ B
(
T

ε

2BT
+ p

ε

2Bp

)
= ε

for all t ∈ [0, T ]. This yields ‖Hx−Hy‖ < ε. Thus H is continuous.
Next, we show that H maps bounded sets in K into relatively compact

sets. We first prove that g maps bounded sets into bounded sets. Indeed,
let ε = min{2BT, 2Bp}. By (H2) and continuity of Ij , for any µ > 0, there
exists δ > 0 such that for x, y ∈ BC(R,Rn), the inequalities ‖x‖ ≤ L,
‖y‖ ≤ L, ‖x− y‖ < δ imply

sup
0≤s≤T

|g(s, xs)− g(s, ys)|0 < 1

and
|Ij(x)− Ij(y)|0 < 1, j ∈ Z.

Choose a positive integer N such that µ/N < δ. Let y ∈ BC(R,Rn) and
define yk(t) = ky(t)/N for k = 0, 1, . . . , N . If ‖y‖ ≤ µ then

‖yk − yk−1‖ = sup
t∈[0,T ]

∣∣∣∣y(t)
k

N
− y(t)

k − 1
N

∣∣∣∣
0

≤ ‖y‖ 1
N
≤ µ

N
< δ.

Thus,
|g(s, yks )− g(s, yk−1

s )|0 < 1

and
|Ij(yk(tj))− Ij(yk−1(tj))|0 < 1, j ∈ Z,

for all s, tj ∈ [0, T ]. This yields

|g(s, ys)|0 = |g(s, yNs )|0 ≤
N∑
k=1

|g(s, yks )− g(s, yk−1
s )|0 + |g(s, 0)|0

< N + |g(s, 0)|0 =: Q

and

|Ij(y(tj))|0 = |Ij(yN (tj))|0 ≤
N∑
k=1

|Ij(yk(tj))− Ij(yk−1(tj))|0 + |Ij(0)|0

< N + |Ij(0)|0 =: R, j ∈ Z.
It follows from (2.6) that

‖Hy‖ = sup
t∈[0,T ]

n∑
i=1

|(Hiy)(t)| ≤
n∑
k=1

B
( T�

0

|gk| ds+
p∑
j=1

|Ikj |
)

= B(|g|0T + p|Ij |0) ≤ B(QT + pR) =: M.
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Finally, for t ∈ R, we have
d

dt
[(Hy)(t)] = A(t)(Hy)(t) + g(t, yt).

So ∣∣∣∣ ddt [(Hy)(t)]
∣∣∣∣
0

≤ |A(t)(Hy)(t)|0 + |g(t, yt)|0 ≤ |A|M +Q,

where |A| = max1≤i≤n supt∈[0,T ]

∑n
j=1 |aij(t)|.

Hence {Hy : y ∈ K, ‖y‖ ≤ µ} is a family of uniformly bounded and
equi-continuous functions on [0, T ]. By the theorem of Ascoli–Arzelà, the
operator H is completely continuous.

3. Main result. Our main result is as follows:

Theorem 3.1. Assume that (H1) and (H2) are satisfied and there exist
a, b > 0 with a < b such that

(i) g0 + I0 < 1/B, and g∞ + I∞ < 1/B;
(ii) ǧ + Ǐ > δb/A for δb ≤ ‖u‖ ≤ b, t ∈ R.

Then system (1.3) has at least three positive T -periodic solutions.

Proof. By the condition g∞ + I∞ < 1/B of (i), we deduce that for

0 < ε <
1/B − (g∞ + I∞)

2
,

there exists a C0 such that
T�

0

|g(s, ys)|0 ds ≤ (g∞ + ε)‖y‖,
p∑
j=1

|Ij(y)|0 ≤ (I∞ + ε)‖y‖,

where y > C0.
Let C1 = C0/δ, where δ = A/B. If y ∈ K and ‖y‖ > C1, then y > C0

and we have

|(Hy)(t)|0 ≤ B
n∑
k=1

T�

0

|gk(s, ys)| ds+B

n∑
k=1

p∑
j=1

|Ikj (y(tj))|(3.1)

= B

T�

0

|g(s, ys)|0 ds+B

p∑
j=1

|Ij(y(tj))|0

≤ B(g∞ + I∞ + 2ε)‖y‖
< B[g∞ + I∞ + (1/B − (g∞ + I∞))]‖y‖ = ‖y‖.

Take KC1 = {y ∈ K : ‖y‖ ≤ C1}. Then KC1 is a bounded set. Since H is
completely continuous, it maps bounded sets into bounded sets and there
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exists a number C2 such that

‖Hy‖ ≤ C2, ∀y ∈ KC1 .

If C2 ≤ C1, we deduce that H : KC1 → KC1 is completely continuous. If
C1 < C2, then from (3.1), we know that for any y ∈ KC2\KC1 , ‖y‖ > C1

and ‖Hy‖ < ‖y‖ < C2 hold. Thus we see that H : KC2 → KC2 is completely
continuous. Now, take c = max{C1, C2}; obviously c > b, so H : Kc → Kc

is completely continuous.
Define a positive continuous concave functional byα(y) = inft∈[0,T ] |y(t)|0.

First, we let a = δb and take y ≡ (a+ b)/2. Then y ∈ K(α, a, b), α(y) > a,
and so {y ∈ K(α, a, b)} 6= ∅. By (ii), if y ∈ K(α, a, b), then α(y) > a, and
we have

α(Hy) = inf
t∈[0,T ]

|(Hy)(t)|0 ≥ inf
t∈[0,T ]

{
A

t+T�

t

|g(s, ys)|0 ds+A

p∑
j=1

|Ij(y(tj))|0
}

≥ A(ǧ + Ǐ) ≥ A δb

A
= a.

Hence condition (i) of Lemma 2.1 holds.
Secondly, by the g0 + I0 < 1/B condition of (i), one can find that for

0 < ε <
1/B − (g0 + I0)

2
,

there exists 0 < d < a such that
T�

0

|g(s, ys)|0 ds ≤ (g0 + ε)‖y‖,
p∑
j=1

|Ij(y(tj))|0 ≤ (I0 + ε)‖y‖,

where 0 ≤ y ≤ d. If y ∈ Kd = {y : ‖y‖ ≤ d}, we have

|(Hy)(t)|0 ≤ B
( n∑
k=1

T�

0

|gk(s, ys)| ds+
n∑
k=1

p∑
j=1

|Ikj (y(tj))|
)

= B

( T�

0

|g(s, ys)|0 ds+
p∑
j=1

|Ij(y(tj))|0
)

< B(g0 + I0 + 2ε)‖y‖
< B(g0 + I0 + (1/B − (g0 + I0)))‖y‖
= ‖y‖ ≤ d.

That is, condition (ii) of Lemma 2.1 holds.
Finally, if y ∈ K(α, a, c) with ‖Hy‖ > b, then by (3.1), we have

b < ‖Hy‖ ≤ B
( T�

0

|g(s, ys)|0 ds+
p∑
j=1

|Ij(y(tj))|0
)
,



182 Y. K. Li et al.

which implies that

α(Hy) = inf
t∈[0,T ]

|(Hy)(t)|0 ≥ A
( T�

0

|g(s, ys)|0 ds+
p∑
j=1

|Ij(y(tj))|0
)

> A
b

B
= δb = a,

which means that condition (iii) of Lemma 2.1 holds.
Therefore, by Lemma 2.1, the operator H has at least three fixed points

x1, x2, x3 ∈ K̄c such that

x1 ∈ Kd, x2 ∈ {x ∈ K(α, a, c), α(x) > a}, x3 ∈ K̄c\α(K(α, a, c) ∪ K̄d).

The proof of Theorem 3.1 is complete.

Remark 3.1. From the proof of Theorem 3.1, one can easily see that if
condition (i) is replaced by

(i′) if g0 = I0 = 0, and g∞ = I∞ = 0,

then the conclusion of Theorem 3.1 remains valid.
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