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The hyper-order of solutions of certain linear complex
differential equations

by Guowei Zhang and Ang Chen (Jinan)

Abstract. We prove some theorems on the hyper-order of solutions of the equation
f (k) − eQf = a(1− eQ), where Q is an entire function, which is a polynomial or not, and
a is an entire function whose order can be larger than 1. We improve some results by
J. Wang and X. M. Li.

1. Introduction and main results. We assume that the reader is
familiar with the basic notions of Nevanlinna’s value distribution theory
(see [6, 9, 15, 17]). It will be convenient to let E denote any set of positive
real numbers of finite linear measure, not necessarily the same at each oc-
currence. For a nonconstant meromorphic function f , we denote by T (r, f)
the Nevanlinna characteristic of f and by S(r, f) any quantity satisfying
S(r, f) = o(T (r, f)) (r →∞, r 6∈ E).

Let f and g be two nonconstant meromorphic functions and let a be
a complex number. We say that f and g share a CM provided that f − a
and g − a have the same zeros with the same multiplicities. Similarly, let
b 6≡ ∞ be a nonconstant meromorphic function such that T (r, b) = S(r, f)
and T (r, b) = S(r, g). If f − b and g − b share 0 CM, we say that f and g
share b CM. In this paper, we also need the following definitions.

Definition 1. For a nonconstant entire function f , the order σ(f),
lower order µ(f), hyper-order σ2(f) and lower hyper-order µ2(f) are defined
by

σ(f) = lim sup
r→∞

log T (r, f)
log r

= lim sup
r→∞

log logM(r, f)
log r

,

µ(f) = lim inf
r→∞

log T (r, f)
log r

= lim inf
r→∞

log logM(r, f)
log r

,
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σ2(f) = lim sup
r→∞

log log T (r, f)
log r

= lim sup
r→∞

log log logM(r, f)
log r

,

µ2(f) = lim inf
r→∞

log log T (r, f)
log r

= lim inf
r→∞

log log logM(r, f)
log r

,

respectively. Here and in what follows, M(r, f) = max|z|=r |f(z)|.
In 1977, L. A. Rubel and C. C. Yang [12] proved that if an entire function

f shares two distinct complex numbers CM with its derivative f ′, then
f = f ′. What is the relation between f and f ′ if the entire function f
shares one complex number a CM with its derivative f ′? In 1996, R. Brück
[2] made a conjecture that if f is a nonconstant entire function satisfying
σ2(f) <∞, where σ2(f) is not a positive integer, and if f and f ′ share one
complex number a CM, then f − a = c(f ′ − a) for some constant c 6= 0.
In [2], R. Brück proved this conjecture for a = 0, and also for a 6= 0 and
N(r, 1/f ′) = S(r, f). In 1998, G. G. Gundersen and L. Z. Yang [5] proved
that the conjecture is true for a 6= 0, provided that σ(f) < ∞. In 1999,
L. Z. Yang [16] proved that if a nonconstant entire function f and one of its
derivatives f (k) share one complex number a ( 6= 0) CM, where σ(f) < ∞
and k is a positive integer, then f−a = c(f (k)−a) for some complex number
c 6= 0. In 2004, J. P. Wang proved the following theorem.

Theorem A (see [14]). Let f be a nonconstant entire function of finite
order, let P be a polynomial of degree p ≥ 1, and let k be a positive integer.
If f − P and f (k) − P share 0 CM, then f (k) − P = c(f − P ) for some
complex number c 6= 0.

Regarding Theorem A, it is natural to ask what can be said if the order
of f is infinite. In [10], X. M. Li and C. C. Gao got the following result.

Theorem B (see [10]). Let Q1 and Q2 be two nonzero polynomials, and
let P be a polynomial. If f is a nonconstant solution of the equation

f (k) −Q1 = eP (f −Q2),

then σ2(f) = degP .

Regarding Theorem B, what can be said if a nonconstant entire function
f and one of its derivative f (k) share an entire function a which is a small
function of f? In [13], J. Wang and X. M. Li proved the following theorem.

Theorem C (see [13]). If f is a nonconstant solution of the differential
equation f (k) − a1 = (f − a2)eQ, where a1 and a2 are two entire functions
such that σ(aj) < 1 (j = 1, 2), k is a positive integer, and Q is a polynomial,
then µ2(f) = σ2(f) = degQ.

From Theorem C, we know that the order of aj (j = 1, 2) must be
less than 1. What can be said if the order of aj is not less than 1 under
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the hypothesis of Theorem C? In this paper, we prove the following theo-
rem.

Theorem 1. If f is a nonconstant solution of the differential equation

(1.1) f (k) − a = (f − a)eQ,

where a is an entire function, Q is a polynomial with degQ < σ(a) < ∞
and k is a positive integer, then µ2(f) = σ2(f) = degQ.

Remark 1. From the proof of Theorem 1, we will see that if Q is a
constant, then degQ = 0, thus, ∞ > σ(a) > 0; if Q is a nonconstant
polynomial, then degQ ≥ 1, thus, ∞ > σ(a) > 1.

From Theorem 1 we get the following corollary which improves Theo-
rem 1 of [5].

Corollary 1. If f is a nonconstant solution of the differential equation
(1.1), where a is an entire function, Q is a nonconstant polynomial with
degQ < σ(a) < ∞ and k is a positive integer, then µ2(f) = σ2(f) =
degQ ≥ 1, and f is an entire function of infinite order.

From Theorem 1 we also get the following two corollaries which improve
Theorem A.

Corollary 2. Let f be a nonconstant solution of the differential equa-
tion (1.1), where a is an entire function, Q is a polynomial with∞ > σ(a) >
degQ and k is a positive integer. If µ2(f) <∞ and µ2(f) is not a positive
integer, then f (k) − a = c(f − a) for some complex number c 6= 0.

Corollary 3. Let f be a nonconstant solution of the differential equa-
tion (1.1), where a is an entire function, Q is a polynomial with∞ > σ(a) >
degQ and k is a positive integer. If µ(f) <∞, then f (k) − a = c(f − a) for
some complex number c 6= 0.

In Theorem 1, Q(z) is assumed to be a polynomial. What can be said
if Q(z) is a transcendental entire function? In [11], the authors proved the
following theorem, assuming that f satisfies a certain additional condition
and a = z.

Theorem D (see [11]). Let Q be a transcendental entire function and k
be a positive integer. If f is a solution of the equation

(1.2)
f (k) − z
f − z

= eQ

and there exists a positive integer l (2 ≤ l ≤ k) such that m(r, 1/f (l)) =
O{log rT (r, f)} (r → ∞, r 6∈ E), where E is a set of finite linear measure,
then σ2(f) =∞.
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We continue this study using the method of [2] and get the following
theorem, assuming that σ(Q) < 1/2.

Theorem 2. Let Q be a transcendental entire function with σ(Q) < 1/2,
a be an entire function of finite order and k be a positive integer. If f is a
solution of the equation

(1.3)
f (k) − a
f − a

= eQ,

then σ2(f) =∞.

From Theorem 2 we get the following corollary.

Corollary 4. Let Q be a transcendental entire function with σ(Q)<1/2
and k be a positive integer. If f is a solution of the equation

(1.4)
f (k) − z
f − z

= eQ,

then σ2(f) =∞.

Comparing Theorem D with Corollary 4 suggests asking about the re-
lationship between the condition m(r, 1/f (l)) = O(log rT (r, f)) (r → ∞,
r 6∈ E) (in Theorem D) and the condition σ(Q) < 1/2 (in Corollary 4). It is
an interesting question for further study.

2. Lemmas. Let f(z) =
∑∞

n=0 anz
n be an entire function. We define

µ(r) = max{|an|rn : n = 0, 1, 2, . . .} and set ν(r, f) = max{m : µ(r) =
|am|rm}, the central index of f (see [5]).

Lemma 1 (see [9]). Let g : (0,∞)→ R and h : (0,∞)→ R be increasing
functions such that g(r) ≤ h(r) outside an exceptional set E of finite linear
measure. Then, for any α > 1, there exists r0 > 0 such that g(r) ≤ h(αr)
for all r > r0.

Lemma 2 (see [8]). If f is an entire function, then

(2.1) σ(f) = lim sup
r→∞

log ν(r, f)
log r

.

Lemma 3 (see [3]). If f is a transcendental entire function, then

(2.2) σ2(f) = lim sup
r→∞

log log ν(r, f)
log r

.

Lemma 4 (see [13]). If f is an entire function of infinite order, then

(2.3) µ2(f) = lim inf
r→∞

log log ν(r, f)
log r

.
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Lemma 5 (see [9]) Suppose that all the coefficients a0(6≡ 0), a1, . . . , an−1

and g ( 6≡ 0) of the nonhomogeneous linear differential equation

(2.4) f (n) + an−1f
(n−1) + · · ·+ a1f

′ + a0f = g

are entire functions. Then all the solutions of (2.4) are entire functions.

Lemma 6 (see [1]). Let h(z) be an entire function of order σ(h) = α <
1/2, A(r) = inf |z|=r log |h(z)| and B(r) = sup|z|=r log |h(z)|. If β < α < 1,
then

(2.5) log dens{r : A(r) > cos(πα)B(r)} ≥ 1− β/α.

Remark 2. In Lemma 6, the lower logarithmic density of a set E is
defined by

(2.6) log densE = lim inf
r→∞

λ(E ∩ [1, r])
log r

,

where λ(E ∩ [1, r]) is the logarithmic measure of E ∩ [1, r].

Remark 3. By the definition of the logarithmic measure and logarith-
mic density of a set E, we know that if log densE > 0, then the logarithmic
measure of E is infinite.

Lemma 7. Let f, a be two entire functions with σ(a) = σ(f) and {zr}
be a sequence of points such that |zr| = r and |f(zr)| = M(r, f). Then

(2.7) 0 ≤ lim
r→∞

∣∣∣∣a(zr)
f(zr)

∣∣∣∣ ≤ A,
where A is a finite positive number.

Proof. Suppose that limr→∞ |a(zr)/f(zr)| = ∞. Then, for any positive
number B, there exists r0 such that

(2.8)
|a(zr)|
M(r, f)

=
∣∣∣∣a(zr)
f(zr)

∣∣∣∣ > B

for |zr| = r > r0. From (2.8) we have

(2.9) BM(r, f) < |a(zr)| ≤M(r, a)

for |zr| = r > r0. By Definition 1 and (2.9), we have σ(f) < σ(a), a contra-
diction. This completes the proof.

Remark 4. The following example shows that limr→∞ |a(zr)/f(zr)| can
be zero in Lemma 7.

Example. Let f(z) = ez and a(z) = e−z. Obviously, f(z) gets the
maximum modulus and a(z) gets the minimum modulus on the circle |z| = r
when z ∈ R+. Thus, we have limrn→∞ |a(zrn)/f(zrn)| = 0 for the sequence
{zrn} ⊂ R+.
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3. Proofs of theorems

Proof of Theorem 1. By Lemma 5, f is an entire function. Suppose that
f(z) is a nonconstant polynomial. Then from (1.1) we have

(3.1) a =
f (k) − eQf

1− eQ
.

Hence σ(a) ≤ degQ, which contradicts the hypothesis. Next we suppose that
f is a transcendental entire function. We discuss the following two cases.

Case 1. Suppose that eQ is a constant, say c 6= 0. Then (1.1) can be
rewritten as

(3.2) f (k) − a = c(f − a).

If σ(f) < ∞, then µ2(f) = σ2(f) = degQ = 0, which yields the conclusion
of Theorem 1.

Next we suppose that σ(f) =∞. Then

(3.3) M(r, f)→∞ as r →∞.

Let M(r, f) = |f(zr)|, where zr = reiθ(r), θ(r) ∈ [0, 2π). From (3.3) and
Wiman–Valiron theory (see [9]), there exists a subset F ⊂ (1,∞) with finite
logarithmic measure such that for some zr satisfying |zr| = r 6∈ F and
M(r, f) = |f(zr)|, we have

(3.4)
f (k)(zr)
f(zr)

=
(
ν(r, f)
zr

)k
(1 + o(1))

as r (6∈ F ) → ∞. From the condition σ(a) < ∞ and Definition 1, we see
that there exists an infinite sequence zrn such that

(3.5) lim
rn→∞

log logM(rn, f)
log rn

= lim sup
rn→∞

log logM(rn, f)
log rn

=∞

and

(3.6) lim
rn→∞

∣∣∣∣a(zrn)
f(zrn)

∣∣∣∣ = lim
rn→∞

|a(zrn)|
M(rn, f)

= 0.

Since (3.2) can be rewritten as

(3.7) c =
f (k)/f − a/f

1− a/f
,

from (3.4)–(3.7) we have

(3.8) c =
(
ν(rn, f)
zrn

)k
(1 + o(1))

as rn ( 6∈ F ) → ∞. Proceeding as in the proof of Lemma 2.5 in [13] and
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applying (3.5), we get

(3.9) lim
rn→∞

log logM(rn, f)
log rn

= lim
rn→∞

log ν(rn, f)
log rn

=∞,

which contradicts (3.8).

Case 2. Suppose that eQ is a nonconstant entire function. Then σ(eQ) =
degQ ≥ 1. We discuss the following two subcases:

Subcase 2.1. Suppose that σ(f) =∞. Then we have

(3.10) σ(f) = lim sup
r→∞

log ν(r, f)
log r

=∞.

Let

(3.11) Q := qnz
n + qn−1z

n−1 + · · ·+ q1z + q0,

where qn (6= 0), qn−1, . . . , q1, q0 are complex numbers.
From (3.11) we get lim|z|→∞ |Q/(qnzn)| = 1. Hence there exists r0 > 0

such that |Q/(qnzn)| > 1/e for |z| > r0. Combining this with (1.1) we get

n log r + log |qn| − 1 < log |log eQ| ≤ |log log eQ|(3.12)

=
∣∣∣∣log log

f (k) − a
f − a

∣∣∣∣ =
∣∣∣∣log log

f (k)/f − a/f
1− a/f

∣∣∣∣
when |z| > r0. Since σ(a) <∞ and σ(f) =∞, from (3.4) and (3.5) we get

(3.13) lim
rn→∞

∣∣∣∣a(zrn)
f(zrn)

∣∣∣∣ = lim
rn→∞

|a(zrn)|
M(rn, f)

= 0.

By substituting (3.4) and (3.13) into (3.12) we have

(3.14) n log |zrn |+ log |qn| − 1 ≤
∣∣∣∣log log

(
ν(rn, f)
zrn

)k
(1 + o(1))

∣∣∣∣,
as |zrn | = rn (> r0)→∞, rn 6∈ F . Since

(3.15) log
(
ν(rn, f)
zrn

)k
(1 + o(1))

= k

(
1− log rn

log ν(rn, f)
− iθ(rn)

log ν(rn, f)

)
log ν(rn, f) + o(1)

as |zrn | = rn → ∞, rn 6∈ F , from (3.4), (3.5), Lemma 3 and the condition
θ(rn) ∈ [0, 2π) we get

n ≤ lim sup
r→∞

|log log(ν(r, f)/zr)k(1 + o(1))|
log r

(3.16)

≤ lim sup
r→∞

log log ν(r, f)
log r

= σ2(f).

From (3.11) we have σ(eQ) = degQ = n. Thus, σ(eQ) = n ≤ σ2(f).
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On the other hand, from (1.1), we have

(3.17) |Q(z)| = |log eQ| =
∣∣∣∣log

f (k)/f − a/f
1− a/f

∣∣∣∣.
Substituting (3.4), (3.5) and (3.13) into (3.17) we get

(3.18) eQ =
(
ν(rn, f)
zrn

)k
(1 + o(1)),

as |zrn | = rn →∞, rn 6∈ F . From (3.18) we get

(3.19) |Q(zrn)| = k|log ν(rn, f)− log rn − iθ(rn)|(1 + o(1))

as |zrn | = rn →∞, rn 6∈ F . By (3.18), we have

(3.20) lim sup
rn→∞

log log
(ν(rn,f)
|zrn |

)k(1 + o(1))

log rn
≤ lim sup

rn→∞

log logM(rn, eQ)
log rn

.

Since

(3.21) lim sup
rn→∞

log log ν(rn, f)
log rn

= lim sup
rn→∞

log log (ν(rn, f)k/|zrn |k)
log rn

and

(3.22)

lim sup
rn→∞

log log (ν(rn, f)k/2rkn)
log rn

≤ lim sup
rn→∞

log log (ν(rn, f)/|zrn |)k(1 + o(1))
log rn

.

From (3.20)–(3.22) and Lemma 3, we get

(3.23) σ2(f) ≤ σ(eQ) = n.

Combining (3.23) with (3.16), we have σ2(f) = degQ = n.
Additionally, from (3.12), (3.18) and the conditions zr = reiθ(r), θ(r) ∈

[0, 2π), |zr| = r, we get

n log |zr|+ log |qn| − 1 ≤ log |Q(zr)|(3.24)

≤ |log log eQ(zr)| (r > r0)

and

log eQ = k(log ν(r, f)− log r − iθ(r) + o(1))(3.25)
= k(log ν(r, f)− log r)(1 + o(1))

as r →∞, r 6∈ F . From (3.24), (3.25) and Lemma 4, we get

(3.26) n ≤ lim inf
r→∞

log log ν(r, f)
log r

= µ2(f).
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Since µ2(f) ≤ σ2(f), we have µ2(f) = σ2(f) = degQ = n. Thus, f satisfies
our conclusion.

Subcase 2.2. Suppose that σ(f) <∞.
If σ(f) > σ(a), from (3.6) we get

(3.27) lim
rn→∞

∣∣∣∣a(zrn)
f(zrn)

∣∣∣∣ = lim
rn→∞

|a(zrn)|
M(rn, f)

= 0.

By a similar argument to Subcase 2.1, we get n ≤ σ2(f) = 0 (see (3.16)).
Since Q is a nonconstant polynomial, we have n ≥ 1. We get a contradiction.

If σ(f) < σ(a), from (3.1) we get σ(a) ≤ max{σ(f), σ(eQ)}. This con-
tradicts our hypothesis.

If σ(f) = σ(a), by Lemma 7 we have

(3.28) 0 ≤ lim
r→∞

∣∣∣∣a(zr)
f(zr)

∣∣∣∣ ≤ A
for any sequence {zr}, where A is a positive number.

Suppose that limr→∞ |a(zr)/f(zr)| 6= 1 for some sequence {zr}. By
(3.12)–(3.16) and (3.28) we have n ≤ σ2(f) = 0. Since Q is a nonconstant
polynomial, we have n ≥ 1, a contradiction.

Suppose now that limr→∞ |a(zr)/f(zr)| = 1 for some sequence {zr}.
Equation (1.1) can be rewritten as

(3.29) f (k) − eQf = a(1− eQ).

Thus,

(3.30)
f (k)

f
− eQ =

a

f
(1− eQ).

So, we have

(3.31) |eQ| <
∣∣∣∣af
∣∣∣∣ ∣∣∣∣1− eQ∣∣∣∣+

∣∣∣∣f (k)

f

∣∣∣∣+O(1).

Since the order of f is finite, by (3.4), Lemma 3 and limr→∞ |a(zr)/f(zr)|
= 1, we get

(3.32)
log log |eQ|

log r
<

log log |eQ|
log r

for the sequence {zr} with |zr| = r (6∈ F )→∞, a contradiction.
Thus, the proof of Theorem 1 is complete.

Proof of Theorem 2. From Lemma 5, we know that f is an entire func-
tion. Suppose that σ2(f) < ∞. If σ(f) < ∞, from (1.3) we have σ(eQ) ≤
max{σ(f), σ(a)} < ∞. Since Q(z) is a transcendental entire function, we
have σ(eQ) = ∞, a contradiction. Hence σ(f) = ∞. As f is a nonconstant
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entire function we have

(3.33) M(r, f)→∞ as r →∞.

From (3.33) and Wiman–Valiron theory (see [9]), there exists a subset
F ⊂ (1,∞) with finite logarithmic measure such that for some points zr
satisfying |zr| = r 6∈ F and M(r, f) = |f(zr)|, we have

(3.34)
f (k)(zr)
f(zr)

=
(
ν(r, f)
zr

)k
(1 + o(1))

as r ( 6∈ F )→∞. By the condition σ(a) <∞ and Definition 1, there exists
an infinite sequence zrn such that

(3.35) lim
rn→∞

log logM(rn, f)
log rn

= lim sup
rn→∞

log logM(rn, f)
log rn

=∞

and

(3.36) lim
rn→∞

∣∣∣∣a(zrn)
f(zrn)

∣∣∣∣ = lim
rn→∞

|a(zrn)|
M(rn, f)

= 0.

From (1.3) and (3.33)–(3.36), we have

(3.37) eQ(zrn ) =
(
ν(rn)
zrn

)k
(1 + o(1)) + o(1),

where ν(rn) is the central index of f . Since σ(f) =∞, Lemma 2 shows that
ν(rn) satisfies ν(rn) ≥ |zrn |N for any sufficiently large positive number N ,
as |zrn | = rn →∞, rn 6∈ F . So we have

|Q(zrn)| ≤
∣∣∣∣log

∣∣∣∣(ν(rn)
zrn

)k
(1 + o(1)) + o(1)

∣∣∣∣∣∣∣∣+ 2π(3.38)

≤ k log ν(rn) + o(1)

as |zrn | = rn →∞, rn 6∈ F . By Lemma 3, we have

(3.39)
log log ν(rn)

log rn
≤ σ2(f) + 1

for sufficiently large rn. From (3.38) and (3.39), we have

(3.40) |Q(zrn)| ≤ rσ2(f)+1 +O(1)

as |zrn | = rn → ∞, rn 6∈ F . By Lemma 6, there exists a set H ⊂ (1,∞)
with infinite logarithmic measure such that

(3.41) |Q(zrn)| ≥M(rn, Q)c

for |zrn | = rn ∈ H, where 0 < c < 1. From (3.40) and (3.41) we have
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(3.42)
M(r,Q)c

rσ2(f)+1
≤ 1

for rn ∈ H \ F and |f(zrn)| = M(rn, f). Since Q is transcendental, we have

(3.43)
M(rn, Q)c

r
σ2(f)+1
n

→∞

as rn →∞, a contradiction. Thus, the proof of Theorem 2 is complete.
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