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Existence results for fractional functional
integrodifferential equations

with nonlocal conditions in Banach spaces

by Zuomao Yan (Zhangye)

Abstract. The paper establishes a sufficient condition for the existence of mild so-
lutions of fractional functional integrodifferential equations with nonlocal conditions in
Banach spaces. Our approach is based on Schaefer’s fixed point theorem combined with
the use of strongly continuous operator semigroups. As an application, we also consider
a fractional partial functional integrodifferential equation.

1. Introduction. In this paper, we consider the existence of mild solu-
tions for the fractional functional integrodifferential equation with nonlocal
condition of the form

Dβx(t) = Ax(t)(1.1)

+ F
(
t, x(σ1(t)), . . . , x(σn(t)),

t�

0

h(t, s, x(σn+1(s))) ds
)
, t ∈ J,

x(0) + g(x) = x0,(1.2)

where J = [0, b], 0 < β < 1, Dβ is the standard Riemann–Liouville fractional
derivative, the state x(·) takes values in a Banach space X with the norm ‖·‖
and A generates a strongly continuous semigroup T (t) in X. The nonlinear
operators F : J × Xn+1 → X, h : J × J × X → X, g : C(J,X) → X,
σi : J → J , i = 1, . . . , n+ 1, are given functions.

Differential equations of fractional order play an important role in de-
scribing some real world problems. This is caused both by the intensive
development of the theory of fractional calculus itself and by applications of
such constructions in various domains of science, such as physics, mechanics,
chemistry, engineering, etc. For details, see [DF], [ES], [H], [IM], [MR], [P],
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[SK] and references therein. Recently, much attention has been paid to ex-
istence results for differential equations with fractional order, for example,
El-Sayed and Ibrahim [EI], Benchohra et al. [BH], Lakshmikantham and
Vastala [L], [LV], and Yu and Gao [YG]. Some classes of evolution equa-
tions have been considered by El-Borai [E] and Muslim [M]. In [JA], the
authors have studied the existence and uniqueness of mild solutions for the
initial value problem for a semilinear integrodifferential equation involving
Caputo’s fractional derivative.

On the other hand, the first results concerning the existence and unique-
ness of mild solutions to abstract Cauchy problems with nonlocal initial
conditions were formulated and proved by Byszewski; see [B], [BL]. Sub-
sequently, many authors studied nonlocal Cauchy problems because they
turned out to be better suited to some applications than the classical Cauchy
problems. For example, see Deng [D], Byszewski and Akca [BA], Ntouyas
and Tsamatos [NT], Lin and Liu [LL], Liang et al. [LX], Aizicovici and
McKibben [AM], G. M. N’Guérékata [N], and Mophou and N’Guérékata
[MN], [MG]. Very recently, Balachandran and Park [BP] have proved the
existence and uniqueness of mild solutions to the abstract nonlocal Cauchy
problem for fractional differential equations in Banach space. The results are
obtained by using the contraction mapping principle and the Krasnosel’skĭı
fixed point theorem. In this paper, we shall investigate the existence of mild
solutions of the nonlocal Cauchy problem (1.1)–(1.2) in Banach spaces by a
different method, using the semigroup theory, the Banach contraction prin-
ciple and Schaefer’s fixed point theorem.

This paper is organized as follows. In Section 2, we briefly recall some
basic definitions and preliminary facts. Section 3 is devoted to the exis-
tence of mild solutions of problem (1.1)–(1.2). Finally, a concrete example
is presented in Section 4 to show the application of our main results.

2. Preliminaries. In this section, we introduce some basic definitions
and lemmas which are used throughout this paper.

Let C(J,X) denote the Banach space of continuous functions from J
into X with the norm

‖x‖∞ = sup{‖x(t)‖ : t ∈ J}

and let L(X) denote the Banach space of bounded linear operators from X
to X.

A measurable function x : J → X is Bochner integrable if and only if ‖x‖
is Lebesgue integrable (for properties of the Bochner integral see Yosida [Y]).
L1(J,X) denotes the Banach space of measurable functions x : J → X which
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are Bochner integrable normed by

‖x‖L1 =
b�

0

‖x(t)‖ dt for all x ∈ L1(J,X).

Now, we recall some definitions and facts about fractional derivatives
and fractional integrals of arbitrary orders (see [H], [MR], [P], [SK]).

Definition 2.1. The fractional primitive of order β > 0 of a function
h : (0, b]→ X is defined by

(2.1) Iβ0 h(t) =
t�

0

(t− s)β−1

Γ (β)
h(s) ds,

provided the right hand side exists pointwise on (0, b], where Γ is the gamma
function.

For instance, Iβh exists for all β > 0 when h ∈ C((0, b], X)∩L1((0, b], X);
note also that if h ∈ C([0, b], X) then Iβh ∈ C([0, b], X), and moreover
Iβh(0) = 0.

Definition 2.2. The fractional derivative of order β > 0 of a continuous
function h : (0, b]→ X is given by

(2.2)
dβh(t)
dtβ

=
1

Γ (1− β)
d

dt

t�

0

(t− s)β−1h(s) ds =
d

dt
Iβ0 h(t).

Definition 2.3. A continuous function x(·) : J → X is called a mild
solution of the problem (1.1)–(1.2) if for all x0 ∈ X, it satisfies the following
integral equation:

x(t) = T (t)[x0 − g(x)] +
1

Γ (β)

t�

0

(t− s)β−1(2.3)

× T (t− s)F
(
s, x(σ1(s)), . . . , x(σn(s)),

s�

0

h(s, τ, x(σn+1(τ))) dτ
)
ds.

Lemma 2.4 (Schaefer’s fixed point theorem [DG]). Let E be a normed
linear space. Let Q : E → E be a completely continuous operator, that is, it
is continuous and the image of any bounded set is contained in a compact
set and let

ζ(Q) = {x ∈ E : x = λQx for some 0 < λ < 1}.

Then either ζ(Q) is unbounded or Q has a fixed point.

Further we assume the following hypotheses:
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(H1) T (t), t > 0, is a compact semigroup and there exists a constant
M ≥ 1 such that

‖T (t)‖ ≤M.

(H2) The function F : J × Xn+1 → X is continuous and there exist
constants L,L1 > 0 such that for all xi, yi ∈ X, i = 1, . . . , n+ 1,

‖F (t, x1, . . . , xn+1)− F (t, y1, . . . , yn+1)‖ ≤ L
[ n+1∑
i=1

‖xi − yi‖
]

and
L1 = max

t∈J
‖F (t, 0, . . . , 0)‖.

(H3) The function h : J × J × X → X is continuous and there exist
constants N,N1 > 0 such that for all x, y ∈ X,

‖h(t, s, x)− h(t, s, y)‖ ≤ N‖x− y‖
and

N1 = max
0≤s≤t≤b

‖h(t, s, 0)‖.

(H4) σi : J → J , i = 1, . . . , n + 1, are continuous functions such that
σi(t) ≤ t, i = 1, . . . , n+ 1.

(H5) The function g(·) : C(J,X) → X is continuous and there exists a
δ ∈ (0, b) such that g(φ) = g(ψ) for any φ, ψ ∈ C := C(J,X) with
φ = ψ on [δ, b].

(H6) There is a constant c > 0 such that

0 ≤ lim sup
‖φ‖→∞

‖g(φ)‖
‖φ‖

≤ c, φ ∈ C,

and

(2.4) MceML(n+Nb)bβ/Γ (β+1) < 1.

3. Main results

Theorem 3.1. If the assumptions (H1)–(H6) are satisfied, then the non-
local Cauchy problem (1.1)–(1.2) has at least one mild solution on J.

Proof. Let L0 > 0 be a constant such that

q := sup
t∈J

LM(n+Nb)
Γ (β)

t�

0

e−L0(t−s)(t− s)β−1 ds < 1,

and we introduce in the space C(J,X) an equivalent norm defined as

‖φ‖V := sup
t∈J

e−L0t‖φ(t)‖.
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Then it is easy to see that V := (C(J,X), ‖ · ‖V ) is a Banach space. Fix
v ∈ C(J,X) and for t ∈ J and φ ∈ V, define

(3.1) (Qvφ)(t)

= T (t)[x0 − g(v)] +
1

Γ (β)

t�

0

(t− s)β−1

× T (t− s)F
(
s, φ(σ1(s)), . . . , φ(σn(s)),

s�

0

h(s, τ, φ(σn+1(τ)))dτ
)
ds.

Since T (·)(x0 − g(v)) ∈ C(J,X), it follows from (H1)–(H4) that (Qvφ)(t)
∈ V for all φ ∈ V. Let φ, ψ ∈ V. We have
e−L0t‖(Qvφ)(t)− (Qvψ)(t)‖

≤ e−L0t

Γ (β)

t�

0

(t− s)β−1

×
∥∥∥T (t− s)

[
F
(
s, φ(σ1(s)), . . . , φ(σn(s)),

s�

0

h(s, τ, φ(σn+1(τ))) dτ
)

− F
(
s, ψ(σ1(s)), . . . , ψ(σn(s)),

s�

0

h(s, τ, ψ(σn+1(τ))) dτ
)]∥∥∥ ds

≤ LM

Γ (β)

t�

0

e−L0t(t− s)β−1

[
‖φ(σ1(s))− ψ(σ1(s))‖

+ · · ·+ ‖φ(σn(s))− ψ(σn(s))‖

+
∥∥∥ s�

0

h(s, τ, φ(σn+1(τ))) dτ −
s�

0

h(s, τ, ψ(σn+1(τ))) dτ
∥∥∥] ds

≤ LM

Γ (β)

t�

0

e−L0t(t− s)β−1
[
‖φ(s)− ψ(s)‖+ · · ·+ ‖φ(s)− ψ(s)‖

+N

s�

0

‖φ(σn+1(τ))− ψ(σn+1(τ))‖ dτ
]
ds

≤ LM

Γ (β)

t�

0

e−L0t(t− s)β−1[n‖φ(s)− ψ(s)‖+Nb‖φ(s)− ψ(s)‖] ds

≤ LM

Γ (β)

t�

0

e−L0(t−s)(t− s)β−1[ne−L0s‖φ(s)− ψ(s)‖

+Nb sup
s∈J

e−L0s‖φ(s)− ψ(s)‖] ds

≤ LM(n+Nb)
Γ (β)

t�

0

e−L0(t−s)(t− s)β−1 ds‖φ− ψ‖V ≤ q‖φ− ψ‖V , t ∈ J.
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Thus
‖Qvφ−Qvψ‖V ≤ q‖φ− ψ‖V , φ, ψ ∈ V.

Therefore, Qv is a strict contraction. By the Banach contraction principle,
Qv has a unique fixed point φv ∈ V and equation (3.1) has a unique mild
solution on [0, b]. Set

ṽ(t) :=

{
v(t) if t ∈ (δ, b],
v(δ) if t ∈ [0, δ].

From (3.1), we have

φev(t) = T (t)[x0 − g(ṽ)] +
1

Γ (β)

t�

0

(t− s)β−1(3.2)

× T (t− s)F
(
s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)
ds.

Consider the map P : Cδ = C([δ, b], X)→ Cδ defined by

(3.3) (Pv)(t) = φev(t), t ∈ [δ, b].

We shall show that P satisfes all conditions of Lemma 2.4. The proof will
be given in several steps.

Step 1. The set Ω = {v ∈ Cδ : v = λP (v) for some λ ∈ (0, 1)} is
bounded.

Indeed, let v ∈ Cδ be a possible solution of v = λP (v) for some 0 < λ < 1.
This implies, by (3.2) and (3.3), that for each t ∈ (0, b],

(3.4) v(t) = λφev(t) = λT (t)[x0 − g(ṽ)] + λ
1

Γ (β)

t�

0

(t− s)β−1

× T (t− s)F
(
s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)
ds.

From (H6), there exist positive constants ε and γ such that, for all ‖φ‖ > γ,

(3.5) ‖g(φ)‖ ≤ (c+ ε)‖φ‖, M(c+ ε)eML(n+Nb)bβ/Γ (β+1) < 1.

Let

E1 = {φ : ‖φ‖ ≤ γ}, E2 = {φ : ‖φ‖ > γ},
C1 = max{‖g(φ)‖ : φ ∈ E1}.

Thus,

(3.6) ‖g(φ)‖ ≤ C1 + (c+ ε)‖φ‖.
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By (H1)–(H4) and (3.6), from (3.4) we have for each t ∈ (0, b], ‖v(t)‖ ≤
‖φev(t)‖ and

‖φev(t)‖ ≤ ‖T (t)[x0 − g(ṽ)]‖+
1

Γ (β)

t�

0

(t− s)β−1

×
∥∥∥T (t− s)F

(
s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)∥∥∥ ds

≤M [‖x0 + g(ṽ)‖] +
M

Γ (β)

t�

0

(t− s)β−1

×
∥∥∥F(s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)∥∥∥ ds

≤M [‖x0 + g(ṽ)‖] +
M

Γ (β)

t�

0

(t− s)β−1

×
[∥∥∥F(s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)

− F (s, 0, . . . , 0)
∥∥∥+ ‖F (s, 0, . . . , 0)‖

]
ds

≤M [‖x0‖+ ‖g(ṽ)‖] +
M

Γ (β)

t�

0

(t− s)β−1

×
{
L
[
‖φev(s)‖+ · · ·+ ‖φev(s)‖+

s�

0

[‖h(s, τ, φev(σn+1(τ)))

− h(s, τ, 0)‖+ ‖h(s, τ, 0)‖] dτ
]

+ L1

}
ds

≤M [‖x0‖+ C1 + (c+ ε)‖ṽ‖] +
M

Γ (β)

t�

0

(t− s)β−1

× {L[n‖φev(s)‖+ b(N‖φev(s)‖+N1)] + L1} ds

≤M∗ +M(c+ ε)‖ṽ‖+
ML(n+Nb)

Γ (β)

t�

0

(t− s)β−1‖φev(s)‖ ds,
where M∗ = M [‖x0‖+C1]+Mbβ(bLN1 + L1)/Γ (β + 1). Using the Gronwall
inequality, we get

‖φev(t)‖ ≤ [M∗ +M(c+ ε)‖ṽ‖]eML(n+Nb)bβ/Γ (β+1).

Consequently,

‖v‖ ≤ [M∗ +M(c+ ε)‖ṽ‖]eML(n+Nb)bβ/Γ (β+1),
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and therefore

‖v‖ ≤ M∗eML(n+Nb)bβ/Γ (β+1)

1−M(c+ ε)eML(n+Nb)bβ/Γ (β+1)
<∞.

Thus the proof of boundedness of the set Ω is complete.

Step 2. P maps bounded sets into equicontinuous sets in Cδ.

For each constant r > 0, let

v ∈ Cr(δ) := {φ ∈ Cδ : sup
δ≤t≤b

‖φ(t)‖ ≤ r}.

Then Cr(δ) is a bounded closed convex set in Cδ. Let v ∈ Cr(δ), δ ≤ t1 <
t2 ≤ b, and ε > 0 be small. Note that∥∥∥F(s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)∥∥∥

≤
∥∥∥F(s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)

− F (s, 0, . . . , 0)
∥∥∥+ ‖F (s, 0, . . . , 0)‖

≤ L
[
‖φev(σ1(s))‖+ · · ·+ ‖φev(σn(s))‖

+
∥∥∥ s�

0

h(s, τ, φev(σn+1(τ))) dτ
∥∥∥]+ L1

≤ L
[
‖φev(s)‖+ · · ·+ ‖φev(s)‖+

s�

0

[‖h(s, τ, φev(τ))− h(s, τ, 0)‖

+ ‖h(s, τ, 0)‖] dτ
]

+ L1

≤ L[n‖φev(s)‖+ b[N sup
s∈[δ,b]

‖φev(s)‖+N1]] + L1

≤ L[(n+Nb) sup
s∈[δ,b]

‖φev(s)‖+ bN1] + L1

≤ L[(n+Nb)r + bN1] + L1 := M∗∗.

We have

‖Pv(t2)− Pv(t1)‖
≤ ‖[T (t2)− T (t1)][x0 − g(ṽ)]‖

+
1

Γ (β)

t1−ε�

0

∥∥∥[(t2 − s)β−1T (t2 − s)− (t1 − s)β−1T (t1 − s)]
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× F
(
s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)∥∥∥ ds

+
1

Γ (β)

t1�

t1−ε

∥∥∥[(t2 − s)β−1T (t2 − s)− (t1 − s)β−1T (t1 − s)]

× F
(
s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)∥∥∥ ds

+
1

Γ (β)

t2�

t1

∥∥∥(t2 − s)β−1

× T (t2 − s)F
(
s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)∥∥∥ ds

≤ ‖[T (t2)− T (t1)][x0 − g(ṽ)]‖

+
M∗∗

Γ (β)

( t1−ε�
0

[(t1 − s)β−1 − (t2 − s)β−1]‖T (t2 − s)‖ ds

+
t1−ε�

0

(t1 − s)β−1‖T (t1 − s− ε)‖ ‖T (t2 − t1 + ε)− T (ε)‖ ds

+
t1�

t1−ε
[(t1 − s)β−1 − (t2 − s)β−1]‖T (t2 − s)‖ ds

+
t1�

t1−ε
(t1 − s)β−1‖T (t1 − s− ε)‖ ‖T (t2 − t1 + ε)− T (ε)‖ ds

+
t2�

t1

(t2 − s)β−1‖T (t2 − s)‖ ds
)

≤ ‖[T (t2)− T (t1)][x0 − g(ṽ)]‖

+
M∗∗

Γ (β)

(
M

t1−ε�

0

[(t1 − s)β−1 − (t2 − s)β−1] ds

+M‖T (t2 − t1 + ε)− T (ε)‖
t1−ε�

0

(t1 − s)β−1 ds

+M

t1�

t1−ε
[(t1 − s)β−1 − (t2 − s)β−1] ds

+M‖T (t2 − t1 + ε)− T (ε)‖
t1�

t1−ε
(t1 − s)β−1 ds+M

t2�

t1

(t2 − s)β−1 ds
)
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≤ ‖[T (t2)− T (t1)][x0 − g(ṽ)]‖+
M∗∗M

βΓ (β)
(
[(t2 − t1 + ε)β − εβ + tβ1 − t

β
2 ]

+ ‖T (t2 − t1 + ε)− T (ε)‖(εβ + tβ1 )

+ [(t2 − t1)β − (t2 − t1 − ε)β + εβ]

+ ‖T (t2 − t1 + ε)− T (ε)‖εβ + (t2 − t1)β
)
.

We see that ‖Pv(t2)− Pv(t1)‖ tends to zero independently of v ∈ Cr(δ) as
t2 − t1 → 0, since the compactness of T (t) for t > 0 implies continuity in
the uniform operator topology. Thus P maps Cr(δ) into an equicontinuous
family of functions.

Step 3. The set {P (v)(t) : v ∈ Cr(δ)} is relatively compact in X.

Let δ < t ≤ s ≤ b be fixed and ε a real number satisfying 0 < ε < t. For
v ∈ Cr(δ), we define

(Pεv)(t) = T (t)[x0 − g(ṽ)] +
1

Γ (β)

t−ε�

0

(t− s)β−1

× T (t− s)F
(
s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)
ds

= T (t)[x0 − g(ṽ)] +
T (ε)
Γ (β)

t−ε�

0

(t− s)β−1

× T (t− s− ε)F
(
s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)
ds.

Using the compactness of T (t) for t > 0, we deduce that the set {(Pεv)(t) :
v ∈ Cr(δ)} is precompact in X for every ε, 0 < ε < t. Moreover, for every
v ∈ Cr(δ) we have

‖(Pv)(t)− (Pεv)(t)‖

≤ 1
Γ (β)

t�

t−ε

∥∥∥(t− s)β−1

× T (t−s)F
(
s, φev(σ1(s)), . . . , φev(σn(s)),

s�

0

h(s, τ, φev(σn+1(τ))) dτ
)∥∥∥ ds

≤ MM∗∗

Γ (β)

t�

t−ε
(t− s)β−1 ds ≤ MM∗∗

βΓ (β)
εβ.

Therefore, there are precompact sets arbitrarily close to the set {Pv : v ∈
Cr(δ)}. Hence the set {Pv : v ∈ Cr(δ)} is precompact in X. It is easy to see
that P (Cr(δ)) is uniformly bounded. Since we have shown P (Cr(δ)) is an
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equicontinuous collection, by the Arzelà–Ascoli theorem, it suffices to show
that P maps Cr(δ) into a precompact set in X.

Step 4. P : Cδ → Cδ is continuous.

From (3.2) and (H1)–(H5), we deduce that for v1, v2 ∈ Cr(δ), t ∈ (0, b],

‖φev1(t)− φev2(t)‖

≤ ‖T (t)[g(ṽ1)− g(ṽ2)]‖+
1

Γ (β)

t�

0

∥∥∥(t− s)β−1

× T (t− s)
[
F
(
s, φev1(σ1(s)), . . . , φev1(σn(s)),

s�

0

h(s, τ, φev1(σn+1(τ))) dτ
)

− F
(
s, φev2(σ1(s)), . . . , φev2(σn(s)),

s�

0

h(s, τ, φev2(σn+1(τ))) dτ
)]∥∥∥ ds

≤M‖g(ṽ1)− g(ṽ2)‖+
LM

Γ (β)

t�

0

(t− s)β−1

×
[
‖φev1(σ1(s))− φev2(σ1(s))‖+ · · ·+ ‖φev1(σn(s))− φev2(σn(s))‖

+
∥∥∥ s�

0

h(s, τ, φev1(σn+1(τ))) dτ −
s�

0

h(s, τ, φev2(σn+1(τ))) dτ
∥∥∥] ds

≤M‖g(ṽ1)− g(ṽ2)‖+
LM

Γ (β)

t�

0

(t− s)β−1
[
‖φev1(s)− φev2(s)‖

+ · · ·+ ‖φev1(s)− φev2(s)‖

+N

s�

0

‖φev1(σn+1(τ))− φev2(σn+1(τ))‖ dτ
]
ds

≤M‖g(ṽ1)− g(ṽ2)‖+
LM

Γ (β)

t�

0

(t− s)β−1[n‖φev1(s)− φev2(s)‖

+Nb‖φev1(s)− φev2(s)‖] ds
≤M‖g(ṽ1)− g(ṽ2)‖

+
LM(n+Nb)

Γ (β)

t�

0

(t− s)β−1 sup
t∈J
‖φev1(s)− φev2(s)‖ ds.

Using again the Gronwall inequality, we see that, for t, v1, v2 as above,

sup
t∈J
‖φev1(t)− φev2(t)‖ ≤MeML(n+Nb)bβ/Γ (β+1)‖g(ṽ1)− g(ṽ2)‖,
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which implies that

‖Pv1 − Pv2‖ ≤MeML(n+Nb)bβ/Γ (β+1)‖g(ṽ1)− g(ṽ2)‖,
for all t ∈ [δ, b] and v1, v2 ∈ Cr(δ). Therefore, P is continuous.

These arguments enable us to conclude that P is completely continuous.
We can now apply Lemma 2.4 to conclude that P has a fixed point ṽ∗ ∈ Cδ.
Let x = φev∗ . Then

(3.7) x(t) = T (t)[x0 − g(ṽ∗)] +
1

Γ (β)

t�

0

(t− s)β−1

× T (t−s)F
(
s, x(σ1(s)), . . . , x(σn(s)),

s�

0

h(s, τ, x(σn+1(τ))) dτ
)
ds.

Note that x = φev∗ = (P ṽ∗)(t) = ṽ∗, t ∈ [δ, b]. By (H5), we obtain

g(x) = g(ṽ∗).

This implies, combined with (3.7), that x(t) is a mild solution of the problem
(1.1)–(1.2), and the proof of Theorem 3.1 is complete.

From the above proof of Theorem 3.1, we immediately obtain the fol-
lowing corollaries:

Corollary 3.2. Suppose that (H1)–(H5) are satisfied together with the
following condition:

(H7) There exist constants b1 and b2, µ ∈ [0, 1) such that

‖g(φ)‖ ≤ b1 + b2‖φ‖µ, φ ∈ C(J,X).

Then the nonlocal Cauchy problem (1.1)–(1.2) has at least one mild solution
on J .

Corollary 3.3. Suppose that (H1)–(H5) are satisfied together with the
following condition:

(H8) There exist constants c1 and c2 such that

‖g(φ)‖ ≤ c1 + c2‖φ‖, φ ∈ C(J,X).

Then the nonlocal Cauchy problem (1.1)–(1.2) has at least one mild solution
on J , provided that

(3.8) Mc2e
ML(n+Nb)bβ/Γ (β+1) < 1.

Remark 3.4. In [AM], [BP], [BL], [B], [BA], [D], [LL], [MN], [MG],
[N], [NT], the authors have discussed a related semilinear nonlocal Cauchy
problem when g satisfies Lipschitz-type conditions, or is convex and compact
on a given ball. In this paper, we consider the case in which g is continuous
but without imposing severe compactness conditions or convexity.
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Remark 3.5. Conditions (H5)–(H6) on g in the above theorem are an
extension of the corresponding conditions in paper [LX].

4. Application. In this section, we give an example to illustrate our re-
sults. Consider the following fractional order partial integrodifferential equa-
tion:

Dβz(t, x) =
∂2

∂x2
z(t, x) + a1(t)z(sin t, x) + sin z(t, x)(4.1)

+
1

1 + t2

t�

0

a2(s)z(sin s, x) ds,

z(t, 0) = z(t, π) = 0,(4.2)

z(0, x) +
1�

δ

[z(s, x) + log(1 + |z(s, x)|)] ds = z0(x),(4.3)

where 0 ≤ t ≤ 1, 0 ≤ x ≤ π, δ > 0, z0(x) ∈ X = L2([0, π]) and z0(0) =
z0(π) = 0.

Let X = L2([0, π]) and let the operator A : X → X be given by Au = u′′

with
D(A) := {u ∈ X : u′′ ∈ X, u(0) = u(π) = 0}.

Then

Au =
∞∑
n=1

n2(u, un)un, u ∈ D(A),

where un(x) =
√

2/π sin(nx), n = 1, 2, . . . , is the orthogonal set of eigen-
functions of A. It is well known that A is the infinitesimal generator of a
compact analytic semigroup T (t), t > 0, in X and is given by

T (t)u =
∞∑
n=1

exp(−n2t)(u, un)un, u ∈ X,

where T (t) satisfies hypothesis (H1).
We assume that the functions ai(·), i = 1, 2, are continuous on [0, 1], and

li = sup0≤s≤1 |ai(s)| < 1, i = 1, 2.
Define F : [0, 1] × X × X → X, h : [0, 1] × [0, 1] × X → X and g :

C([0, 1], X)→ X by

F
(
t, z(σ(t)),

t�

0

h(t, s, z(σ(s))) ds
)

(x) = a1(t)z(sin t, x) + sin z(t, x)

+
1

1 + t2

t�

0

a2(s)z(sin s, x) ds,
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t�

0

h(t, s, z(σ(s)))(x)ds =
1

1 + t2

t�

0

a2(s)z(sin s, x) ,

and

g(z)(x) =
1�

δ

[z(s, x) + log(1 + |z(s, x)|)] , z ∈ C([0, 1], X).

Then equations (4.1–(4.3) take the abstract form (1.1)–(1.2). Moreover, we
can choose some β ∈ (0, 1) such that

(4.4) M(1− δ)eM(1+l1+l2)(1+l2)/Γ (β+1) < 1.

Then condition (H6) in Section 2 holds, and all the other conditions stated
in Theorem 3.1 are satisfied. Hence, problem (4.1)–(4.3) has a mild solution
on [0, 1].
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