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A stochastic symbiosis model with
degenerate diffusion process

by Urszula Skwara (Lublin)

Abstract. We present a model of symbiosis given by a system of stochastic differen-
tial equations. We consider a situation when the same factor influences both populations
or only one population is stochastically perturbed. We analyse the long-time behaviour of
the solutions and prove the asymptoptic stability of the system.

1. Introduction. The aim of this paper is to study the following system
of stochastic differential equations:

dX(t) = ((a1 + b1Y (t)− c1X(t))dt+ ρ1dW (t))X(t),(1)
dY (t) = ((a2 + b2X(t)− c2Y (t))dt+ ρ2dW (t))Y (t).(2)

This is a stochastic version of the deterministic symbiosis model [7] (Gause
and Witt, 1935)

(3) x′ = (a1 + b1y − c1x)x, y′ = (a2 + b2x− c2y)y.

where the functions x(t), y(t) represent, respectively, the size of the first
and the second population at time t. We assume that ai, bi, ci (i = 1, 2) are
positive constants. The coefficients ai (i = 1, 2) are ideal growth rates, bi
(i = 1, 2) are symbiosis rates, ci (i = 1, 2) are death rates.

In the model described by (1) and (2) the stochastic processes X(t),
Y (t) represent, respectively, the first and the second population, W (t) is a
one-dimensional standard Wiener process, the constants ai, bi, ci (i = 1, 2),
as in the deterministic model, are positive, and ρi (i = 1, 2) are diffusion co-
efficients. We assume that fluctuations of the environment randomly change
the reproduction rates of the populations and the random noise is propor-
tional to the number of individuals. We consider two kinds of stochastic
perturbations:

(i) strongly correlated, i.e. ρ1 > 0, ρ2 > 0,
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(ii) only one population is stochastically perturbed; by symmetry, we
assume that the second population is perturbed, i.e. ρ1 = 0, ρ2 > 0.

Case (i) corresponds to the situation when the same factor (like weather
conditions) affects both populations.

We consider system (1), (2) on the assumption that b1b2 < c1c2, because
in the deterministic model (3) we observe that the sizes of both populations
go to infinity if b1b2 ≥ c1c2. The inequality b1b2 < c1c2 has an interesting
biological interpretation, namely it means that the symbiosis coefficients are
smaller than the death rates. The goal of this paper is to study the long-time
behaviour of the solutions of system (1), (2).

We prove that the probability distributions of the process (X(t), Y (t))
are absolutely continuous with respect to Lebesgue measure. Let U(x, y, t)
be the density of the distribution of (X(t), Y (t)). We give a sufficient and a
necessary condition for the asymptotic stability of system (1), (2), i.e. the
convergence of U(x, y, t) to an invariant density U∗(x, y). We also find the
support of U∗(x, y). If the system is not asymptotically stable, we prove that
limt→∞ Y (t) = 0 a.e. We also show that in this case either limt→∞X(t) = 0
a.e., or the probability distribution of the process X(t) converges weakly to
some probability measure.

A model of symbiosis in which stochastic perturbations are weakly cor-
related was considered in [28]. System (1), (2) has similar properties, but
methods of the proof are more complicated. In the same way as in [28] we
prove the existence, uniqueness, positivity and non-extinction property of
the solutions. But it is more difficult to obtain the asymptotic stability, be-
cause the Fokker–Planck equation corresponding to system (1), (2) is of a de-
generate type. We use Hörmander’s theorem ([2], [9], [15], [16], [19]) in order
to show that a semigroup connected with the Fokker–Planck is integral and
has a continuous kernel. Using support theorems ([1], [3], [13], [29]) we find a
set E on which the kernel is positive. Next we prove that E is an “attractor”.
Then we apply some facts concerning integral Markov semigroups ([20], [21],
[24] and [27]) to show that the semigroup connected with the Fokker–Planck
equation satisfies the “Foguel alternative”, i.e. it is either asymptotically sta-
ble or “sweeping”. Finally, we find a Khasminskĭı function which excludes
“sweeping” and in this way we obtain the asymptotic stability.

A similar technique was applied to study properties of a stochastic prey-
predator model [25]. It should be noted that in [28] the proof of the asymp-
totic stability is much easier because the semigroup connected with the
Fokker–Planck equation is integral and has a continuous and strictly positive
kernel. Therefore, in order to obtain the asymptotic stability it is sufficient
to construct a Khasminskĭı function. When system (1), (2) is not asymptoti-
cally stable we prove similar results to those in [28] using the same methods.
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In particular, we show that in this case one of the populations becomes ex-
tinct.

2. Mathematical results and their interpretation. In this section
we formulate the main results of this paper.

Theorem 1. If b1b2 < c1c2 then for any initial condition (X(0), Y (0)) ∈
R2

+ there exists a unique solution (X(t), Y (t)) of system (1), (2) for t ≥ 0
and the solution remains in R2

+ with probability 1, i.e. (X(t), Y (t)) ∈ R2
+

for all t ≥ 0 almost surely.

The proof of this theorem is identical to the case of weakly correlated
perturbations (see Theorem 2 in [28]).

The asymptotic behaviour of system (1), (2) depends on the constants
b1, b2, c1, c2, ρ1, ρ2, ã1 = a1 − ρ2

1/2, ã2 = a2 − ρ2
2/2.

Theorem 2. Let b1b2 < c1c2. If (X(t), Y (t)) is a solution of sys-
tem (1), (2), then for every t > 0 the distribution of (X(t), Y (t)) has a
density U(t, x, y).

(I) Let ã1, ã2 > 0. In case (i), assume that ã1 6= ã2 or ρ1 6= ρ2. Then
there exists a unique invariant density U∗(x, y) such that

(4) lim
t→∞

� �

R2
+

|U(x, y, t)− U∗(x, y)| dx dy = 0.

(II) If ã1, ã2 < 0 then

lim
t→∞

X(t) = 0 a.e. and lim
t→∞

Y (t) = 0 a.e.

(III) Let ã1 > 0, ã2 < 0 and ã1b2 + ã2c1 > 0. Then there exists a unique
invariant density U∗(x, y) such that

(5) lim
t→∞

� �

R2
+

|U(x, y, t)− U∗(x, y)| dx dy = 0.

(IV) Let ã1 > 0, ã2 < 0 and ã1b2 + ã2c1 < 0. Then in case (i) we
have limt→∞ Y (t) = 0 a.e. and the distribution of the process X(t)
converges weakly to the measure with density

f∗(x) = Cx2ã1/ρ21−1 exp(−2c1x/ρ1
2),

where C = (2c1/ρ1
2)2ã1/ρ12

/Γ (2ã1/ρ1
2), while in case (ii) we have

limt→∞ Y (t) = 0 a.e. and limt→∞X(t) = a1/c1 a.e.

In cases (I) and (III) the support of the invariant density U∗ depends on
the coefficients ρ1, ρ2, ã1, ã2. By the support of a measurable function f we
simply mean the set

supp f = {(x, y) ∈ X : f(x, y) 6= 0}.
We have the following result.
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Theorem 3. Let b1b2 < c1c2. If both populations are stochastically per-
turbed then in case (I) we have four subcases:

(a1) If ρ2 > ρ1 and ã2ρ1 > ã1ρ2 then suppU∗ = R2
+.

(b1) If ρ2≤ρ1 and ã2ρ1 > ã1ρ2 then there exists a constant C1 such that

(6) suppU∗ = {(x, y) ∈ R2
+ : x < C1y

ρ1/ρ2}.
(c1) If ρ2 < ρ1 and ã2ρ1 < ã1ρ2 then suppU∗ = R2

+.
(d1) If ρ2≥ρ1 and ã2ρ1 < ã1ρ2 then there exists a constant C1 such that

(7) suppU∗ = {(x, y) ∈ R2
+ : y < C1x

ρ2/ρ1}.
If both populations are stochastically perturbed then in case (III) we have
two subcases:

(a3) If ρ2 < ρ1 then suppU∗ = R2
+.

(b3) If ρ2 ≥ ρ1 then there exists a constant C1 such that

(8) suppU∗ = {(x, y) ∈ R2
+ : y < C1x

ρ2/ρ1}.
If the second population is stochastically perturbed then

(9) suppU∗ = (a1/c1,∞)× R+.

Remark 1. As equations (1), (2) are symmetrical we omit some cases
in the statement of Theorem 2. For example, we do not take into account
the case ã1 < 0, ã2 > 0, ã2b1 + ã1c2 > 0, because it is symmetrical to (III),
and the case ã1 < 0, ã2 > 0, ã2b1 + ã1c2 < 0, symmetrical to (IV).

Remark 2. In order to explain the role of the coefficients ã1, ã2 we
consider the following equation of population growth:

(10) dN(t) = (adt+ ρdW (t))N(t),

where a > 0 is the growth rate, ρ > 0 is a diffusion coefficient, W (t) is
a one-dimensional standard Wiener process, and N(t) is a real stochastic
process. The solution of this equation is of the form

N(t) = N(0) exp{ãt+ ρW (t)},
where ã = a − 1

2ρ
2. The constant ã is called the new growth rate or for

short the growth rate of the population. It is easy to check that if ã > 0
then limt→∞N(t) = ∞ a.e., and if ã < 0 then limt→∞N(t) = 0 a.e. In
other words, the positivity of the new growth rate means that the stochastic
perturbation is small and therefore the size of the population goes to infinity
as in the deterministic case. The negativity of the new growth rate means
that the stochastic perturbation is too large and therefore the population
dies out. Even though we consider more complicated equations, we will call
the coefficients ã1, ã2 the new growth rates or briefly growth rates of these
populations.
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Remark 3. Theorems 2 and 3 have an interesting biological interpreta-
tion.

From Theorem 2 it follows that if the new growth rate of the population
is positive then this population survives. Otherwise, if the new growth rate is
negative then the population may die out. The most interesting is case (III),
because we observe a positive influence of symbiosis. Namely, from (III) it
follows that if the new growth rate for one population is positive and for the
other it is negative, but benefits of symbiosis for the second population are
large, then both populations survive.

Theorem 3 provides us with information about the support of the in-
variant density U∗(x, y). If we have a nondegenerate diffusion process as in
[28] then the support is the whole space, but in our case it may be some
proper subset. Especially interesting are formulas (6)–(9). From Theorem 2
it follows that the distribution of the system (X(t), Y (t)) can converge to an
invariant distribution with some density U∗. Let a pair of variables (X,Y )
have the density distribution U∗. Then, for example, from (6) we obtain
X < C1Y

ρ1/ρ2 . This means that the second population controls the size of
the first.

3. Markov semigroups. In this section we give some facts concerning
Markov semigroups.

Let (X,Σ,m) be a σ-finite measure space. Denote by D the subset of
L1 = L1(X,Σ,m) which consists of all densities, i.e.

D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1}.
A linear mapping P : L1 → L1 is called a Markov operator if P (D) ⊂ D.

The Markov operator P is called an integral operator if there exists a
measurable function k : X ×X → [0,∞) such that

(11) Pf(x) =
�

X

k(x, y)f(y)m(dy)

for every density f . The function k is called the kernel of the operator P .
One can check that from the condition P (D) ⊂ D it follows that

(12)
�

X

k(x, y)m(dx) = 1

for almost all y ∈ X.
A family {P (t)}t≥0 of Markov operators which satisfies:

(a) P (0) = Id,
(b) P (t+ s) = P (t)P (s) for s, t ≥ 0,
(c) for each f ∈ L1 the function t 7→ P (t)f is continuous with respect

to the L1 norm
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is called a Markov semigroup. A Markov semigroup {P (t)}t≥0 is called in-
tegral if for each t > 0, the operator P (t) is an integral Markov operator.

We also need two definitions concerning the asymptotic behaviour of a
Markov semigroup. A density f∗ is called invariant if P (t)f∗ = f∗ for each
t > 0. The Markov semigroup {P (t)}t≥0 is called asymptotically stable if
there is an invariant density f∗ such that

lim
t→∞
‖P (t)f − f∗‖ = 0 for f ∈ D.

A Markov semigroup {P (t)}t≥0 is called sweeping with respect to a set
A ∈ Σ if for every f ∈ D,

(13) lim
t→∞

�

A

P (t)f(x)m(dx) = 0.

Theorem 4 ([25]). Let X be a metric space and Σ be the σ-algebra of
Borel sets. Let {P (t)}t≥0 be an integral Markov semigroup with a continuous
kernel k(t, x, y) for t > 0, which satisfies (12) for all y ∈ X. Assume that
for every f ∈ D,

(14)
∞�

0

P (t)f dt > 0 a.e.

Then this semigroup is asymptotically stable or sweeping with respect to
compact sets.

The property that a Markov semigroup {P (t)}t≥0 is asymptotically sta-
ble or sweeping from a sufficiently large family of sets (e.g. from all compact
sets) is called the Foguel alternative.

4. Properties of trajectories. Now instead of system (1), (2) we con-
sider a simpler system in which the diffusion coefficients are constant. We
substitute X(t) = eξ(t), Y (t) = eη(t). Using the Itô formula we obtain

dξ(t) = (ã1 + b1e
η(t) − c1e

ξ(t))dt+ ρ1dW (t),(15)

dη(t) = (ã2 + b2e
ξ(t) − c2e

η(t))dt+ ρ2dW (t).(16)

The proof of parts (II) and (IV) of Theorem 2 is similar to the case with
weakly correlated perturbations (see [28]). Some differences are in part (IV)
when only the second population is stochastically perturbed and therefore
we prove the following result.

Lemma 1. Let b1b2 < c1c2, ρ1 = 0, ρ2 > 0. If ã2 < 0 and a1b2 + ã2c1 < 0
then

lim
t→∞

ξ(t) = log(a1/c1) a.e. and lim
t→∞

η(t) = −∞ a.e.

Before the proof we recall an obvious theorem on differential equations.
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Theorem 5. Let P ⊂ R be an open interval and h : P × [0,∞)→ R be
a differentiable function. Suppose that for every compact interval P0 ⊂ P ,
h(x, t) converges uniformly to g(x) in P0 as t→∞. Moreover, assume that
the following conditions are satisfied:

(a) there exists β ∈ P0 such that g(x) > 0 for x < β and g(x) < 0 for
x > β,

(b) there exist a, b ∈ P0 with a < β < b such that h(x, t) > 0 for x < a,
t ∈ [0,∞), and h(x, t) < 0 for x > b, t ∈ [0,∞).

Then there exists a solution x(t) of the equation

x′(t) = h(x, t)

for all t > 0, which satisfies the condition

lim
t→∞

x(t) = β.

Proof of Lemma 5. First we show that limt→∞ η(t) = −∞ a.e. Multi-
plying (15) by b2 and (16) by c1 and adding these equations we have

d(b2ξ(t) + c1η(t)) = (a1b2 + ã2c1 + (b1b2 − c1c2)eη(t))dt+ c1ρ2dW (t).

Since b1b2 < c1c2, from the comparison theorem [8, Lemma 4, p. 120] we
have

d(b2ξ(t) + c1η(t)) ≤ (a1b2 + ã2c1)dt+ c1ρ2dW (t).

Consequently,
lim
t→∞

(b2ξ(t) + c1η(t)) = −∞ a.e.

Thus for arbitrarily small ε > 0 there exist t0 and a set Ωε such that
Prob(Ωε) > 1− ε and ξ(t) < −(c1/b2)η(t) for t ≥ t0 and ω ∈ Ωε. It follows
that

(17) dη(t) ≤ (ã2 + b2e
−(c1/b2)η(t))dt+ ρ2dW (t).

Consider the equation

(18) dη̄(t) = (ã2/2 + b2e
−(c1/b2)η̄(t))dt+ ρ2dW (t).

The Fokker–Planck equation corresponding to (18) has a stationary density

f∗(x) = C exp
(

2
ρ2

2

(
ã2

2
x− b22

c1
e−(c1/b2)x

))
,

where C is some constant. From the ergodic theorem [8, Theorem 2, p. 141]
it follows that

(19) lim
t→∞

1
t

t�

0

e−(c1/b2)η̄(s) ds =
∞�

−∞
f∗(x)e−(c1/b2)x dx.
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Since f ′∗(x) = (2/ρ2
2)(ã2/2 + b2e

−(c1/b2)x)f∗(x) we have

(20)
∞�

−∞
f∗(x) e−(c1/b2)x dx = − ã2

2b2
> 0.

From (19), (20) we obtain

(21) lim
t→∞

1
t

t�

0

e−(c1/b2)η̄(s) ds = − ã2

2b2
.

From (17) we have

η(t) ≤ η̄(t) +
ã2

2
t+ C1,

where η̄(t) is a solution of equation (18) and C1 is some constant. Therefore,

η(t) ≤ ã2t+ b2

t�

0

e−(c1/b2)η̄(s) ds+ ρ2W (t) + C1.

From this, (21), and limt→∞W (t)/t = 0 we obtain

lim sup
t→∞

η(t)
t
≤ ã2

2
< 0,

and consequently limt→∞ η(t) = −∞ a.e. The process ξ(t) satisfies the equa-
tion

dξ(t) = (a1 + b1e
η(t) − c1e

ξ(t))dt.

If h(x, t) = a1 + b1e
η(t) − c1e

x, g(x) = a1 − c1e
x then from Theorem 5 we

obtain
lim
t→∞

ξ(t) = log(a1/c1) a.e.

5. Asymptotic stability. Let (ξ(t), η(t)) be a solution of (15), (16)
such that the distribution of (ξ(0), η(0)) is absolutely continuous with den-
sity v(x, y). Then the random variable (ξ(t), η(t)) has the density u(x, y, t)
and u satisfies the Fokker–Planck equation

(22)
∂u

∂t
=

1
2
ρ2

1

∂2u

∂x2
+ ρ1ρ2

∂2u

∂x∂y
+

1
2
ρ2

2

∂2u

∂y2
− ∂(f1u)

∂x
− ∂(f2u)

∂y
,

where f1(x, y) = ã1 + b1e
y − c1e

x, f2(x, y) = ã2 + b2e
x − c2e

y.

Now we introduce a Markov semigroup connected with the Fokker–
Planck equation (22). Let X = R2, Σ be the σ-algebra of Borel subsets of X,
and m be the Lebesgue measure on (X,Σ). Let P (t)v(x, y) = u(x, y, t) for
v ∈ D. Since the operator P (t) is a contraction on D, it can be extended to
a contraction on L1(R2, Σ,m). Thus the operators {P (t)}t≥0 form a Markov
semigroup. Let A be the infinitesimal generator of the semigroup {P (t)}t≥0,
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i.e.

Av =
1
2
ρ2

1

∂2v

∂x2
+ ρ1ρ2

∂2v

∂x∂y
+

1
2
ρ2

2

∂2v

∂y2
− ∂(f1v)

∂x
− ∂(f2v)

∂y
.

The adjoint operator of A is of the form

A∗v =
1
2
ρ2

1

∂2v

∂x2
+ ρ1ρ2

∂2v

∂x∂y
+

1
2
ρ2

2

∂2v

∂y2
+ f1

∂v

∂x
+ f2

∂v

∂y
.

Let P(t, x, y, A) be the transition probability function for the diffusion
process (ξ(t), η(t)), i.e. P(t, x, y, A) = Prob((ξ(t), η(t)) ∈ A) and (ξ(t), η(t))
is a solution of system (15), (16) with the initial condition (ξ(0), η(0)) =
(x, y).

The aim of this section is to prove the asymptotic stability of the semi-
group {P (t)}t≥0, because it implies the convergence in L1 of the densities
u(x, y, t) of the process (ξ(t), η(t)) to the invariant density. Therefore instead
of proving parts (I) and (III) of Theorem 2 we show the asymptotic stability
of this semigroup.

If stochastic perturbations are weakly correlated then the semigroup
connected with the Fokker–Planck equation is an integral Markov semi-
group with a continuous and strictly positive kernel. In our case we use
Hörmander’s theorem on the existence of smooth densities of the transi-
tion probability function for degenerate diffusion processes in order to prove
that this semgroup is integral and has a continuous kernel. Let us recall this
theorem now.

Consider the Stratonovitch stochastic differential equation

dX(t) = σ(X(t)) ◦ dW (t) + σ0(X(t))dt,

where W (t) is an m-dimensional Brownian motion, σ(x) = [σij(x)] is a d×m
matrix and σ0(x) is a vector in Rd with components σi0(x) for every x ∈ Rd.
Let σj(x) (j = 0, . . . ,m) be a vector in Rd with components σij(x) for every
x ∈ Rd. If a(x) and b(x) are two vector fields on Rd then their Lie bracket
[a, b] is the vector field on Rd given by

[a, b]j(x) =
d∑

k=1

(
ak

∂bj
∂xk

(x)− bk
∂aj
∂xk

(x)
)
.

Theorem 6 (Hörmander). If for every x ∈ Rd the vectors

σ1(x), . . . , σm(x), [σi, σj ](x)0≤i,j≤m, [σi, [σj , σk]](x)0≤i,j,k≤m, . . .

span the space Rd then the transition probability function P(t, x,A) has a
density k(t, y, x) and k ∈ C∞((0,∞)× Rd × Rd).

Lemma 2. Let ρ1, ρ2 > 0. If ρ1 6= ρ2 or ã1 6= ã2 then {P (t)}t≥0 is an
integral Markov semigroup with a continuous kernel k.



120 U. Skwara

Proof. Let σ0(ξ, η) = (ã1 + b1e
η − c1e

ξ, ã2 + b2e
ξ − c2e

η) and σ1(ξ, η) =
(ρ1, ρ2). Then

[σ0, σ1](ξ, η) = (c1ρ1e
ξ − b1ρ2e

η, c2ρ2e
η − b2ρ1e

ξ),

[σ1, [σ0, σ1]](ξ, η) = (c1ρ
2
1e
ξ − b1ρ2

2e
η, c2ρ

2
2e
η − b2ρ2

1e
ξ).

If ρ1 6= ρ2 then for every (ξ, η) ∈ R2 the vectors σ1(ξ, η), [σ0, σ1](ξ, η),
[σ1, [σ0, σ1]](ξ, η) span R2. If ρ1 = ρ2 and ã1 6= ã2 then the vectors

σ1(ξ, η) = (ρ1, ρ1), [σ0, σ1](ξ, η) = ρ1(c1e
ξ − b1eη, c2e

η − b2eξ),
[σ0, [σ0, σ1]](ξ, η) = ρ1(ã1c1e

ξ − ã2b1e
η, ã2c2e

η − ã1b2e
ξ)

span R2 for every (ξ, η) ∈ R2. From Hörmander’s theorem it follows that
P(t, x0, y0, ·) has a density k(t, x, y;x0, y0) and k ∈ C∞((0,∞) × R2 × R2).
Thus

P (t)f(x, y) =
∞�

−∞

∞�

−∞
k(t, x, y;u, v)f(u, v) du dv.(23)

This means that {P (t)}t≥0 is an integral Markov semigroup.

Remark 4. Let ρ1, ρ2 > 0. If ρ1 = ρ2 and ã1 = ã2 then considering a
solution of system (15), (16) with initial conditions ξ(0) = x0, η(0) = y0

such that

y0 = x0 + log
b2 + c1

b1 + c2

we obtain

η(t) = ξ(t) + log
b2 + c1

b1 + c2

and the transition density k(t, x, y;x0, y0) does not exist.

Lemma 3. If ρ1 = 0, ρ2 > 0 then {P (t)}t≥0 is an integral Markov
semigroup with a continuous kernel k.

Proof. Let σ0(ξ, η) = (a1 + b1e
η − c1e

ξ, ã2 + b2e
ξ − c2e

η) and σ1(ξ, η) =
(0, ρ2). Since [σ0, σ1](ξ, η) = ρ2(−b1eη, c2e

η), for every (ξ, η) ∈ R2 the vectors
σ1(ξ, η) and [σ0, σ1](ξ, η) span the space R2. Using the same arguments as
in the proof of the previous lemma we conclude that {P (t)}t≥0 is an integral
Markov semigroup with a continuous kernel.

Now we find the support of the kernel k. If a diffusion process is non-
degenerate then the support is the whole space, but in our case we use
support theorems in order to find the set in which the kernel is positive.
Now we describe the method based on support theorems [1, 3, 29]. Fix a
point (x0, y0) ∈ R2 and a continuous function φ : [0, T ] → R. Consider the
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system

x′φ(t) = ρ1φ(t) + f1(xφ(t), yφ(t)), xφ(0) = x0,(24)

y′φ(t) = ρ2φ(t) + f2(xφ(t), yφ(t), yφ(0) = y0,(25)

where f1(x, y) = ã1 + b1e
y − c1e

x, f2(x, y) = ã2 + b2e
x − c2e

y, ρ1 = 0 in
case (ii). Let Dx0,y0;φ be the Fréchet derivative of the function

h 7→ xφ+h(T ) with xφ+h =
[
xφ+h

yφ+h

]
.

If for some φ the derivative Dx0,y0;φ has rank 2 then k(T, x, y;x0, y0) > 0 for
x = xφ(T ) and y = yφ(T ). The derivative Dx0,y0;φ can be found by means
of the perturbation method for ordinary differential equations. Namely, let
Λ(t) = f ′(xφ(t)), where f =

[ f1
f2

]
and f ′ is its Jacobian. Let Q(t, t0), for

T ≥ t ≥ t0 ≥ 0, be a matrix function such that Q(t0, t0) = I, ∂Q(t, t0)/∂t =
Λ(t)Q(t, t0) and v =

[ ρ1
ρ2

]
. Then

(26) Dx0,y0;φh =
T�

0

Q(T, s)vh(s) ds.

Lemma 4. Assume that ρ1, ρ2 > 0, ã1, ã2 > 0 and ã2ρ1 > ã1ρ2. Let
M0 = log((b2 + c1)/(b1 + c2)) if ρ2 = ρ1, and

M0 = log
(
ρ1(b2ρ1 + c1ρ2)
ρ2(b1ρ2 + c2ρ1)

(
ρ2(ã2ρ1 − ã1ρ2)

(ρ1 − ρ2)(b2ρ1 + c1ρ2)

)1−ρ2/ρ1)
if ρ2 < ρ1. Let E = R2 when ρ2 > ρ1, and E = E(M0) when ρ2 ≤ ρ1, where

E(M0) = {(x, y) ∈ R2 : y > (ρ2/ρ1)x+M0}.
Then for each (x0, y0) ∈ E and for almost every (x, y) ∈ E there exists
T > 0 such that k(T, x, y;x0, y0) > 0.

Proof. First, we show that there exists a constant C such that the rank
of Dx0,y0,φ is 2 if y 6= x+C, where x = xφ(T ) and y = yφ(T ). Let ε ∈ (0, T )
and hε = 1[T−ε,T ]. Since Q(T, s) = I +Λ(T )(T − s) + o(T − s), from (26) we
obtain

(27) Dx0,y0;φhε = εv +
1
2
ε2Λ(T )v + o(ε2).

Since v = [ρ1, ρ2] and Λ(T )v = ex[−c1ρ1 + b1ρ2e
y−x, b2ρ1 − c2ρ2e

y−x] there
exists a constant

C = log
ρ1(b2ρ1 + c1ρ2)
ρ2(b1ρ2 + c2ρ1)

such that the vectors v and Λ(T )v are linearly independent if y − x 6= C.
Consequently, Dx0,y0;φ has rank 2.
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Next we substitute

zφ(t) = yφ(t)− ρ2

ρ1
xφ(t)

and replace system (24), (25) by

x′φ = ρ1φ+ g1(xφ, zφ),(28)

z′φ = g2(xφ, zφ)(29)

where

(30) g1(x, z) = ã1 − c1e
x + b1e

zerx, g2(x, z) = αex − βezerx + γ

with α = b2 + rc1 > 0, β = c2 + rb1 > 0, γ = ã2 − rã1 > 0, r = ρ2/ρ1.
Now we check that for any two points (x0, z0), (x1, z1) ∈ E there exist a

control function φ and T > 0 such that xφ(0) = x0, zφ(0) = z0, xφ(T ) = x1

and zφ(T ) = z1. The proof is split into the following cases.

1◦ Suppose r > 1 and E = R2. First we find a positive constant T and
a differentiable function zφ : [0, T ]→ R such that zφ(0) = z0, zφ(T ) = z1,

(31) αex0 − βez0erx0 = z′φ(0)− γ, αex1 − βez1erx1 = z′φ(T )− γ
and

(32) z′φ(t)− γ < α(r − 1)
r

(
α

rβezφ(t)

)1/(r−1)

for t ∈ [0, T ].

In order to do it, we first determine z′φ(0) =: a0 and z′φ(T ) =: aT from (31).
We construct the function zφ separately in the three intervals [0, ε], [ε, T −ε]
and [T − ε, T ], where 0 < ε < T/2. Since γ > 0, r > 1 and

z′φ(0)− γ < α(r − 1)
r

(
α

rβez0

)1/(r−1)

we can construct a C2 function zφ : [0, ε] → R such that zφ(0) = z0, z′φ(0)
= a0, z′φ(ε) = 0 and zφ satisfies inequality (32) for t ∈ [0, ε]. In the same
way we construct zφ : [T − ε, T ] → R such that zφ(T ) = z1, z′φ(T ) = aT ,
z′φ(T −ε) = 0 and zφ satisfies (32) for t ∈ [T −ε, T ]. Taking sufficiently large
T we can extend zφ : [0, ε] ∪ [T − ε, T ]→ R to a C2 function defined on the
whole interval [0, T ] such that z′φ(t) < γ for t ∈ [ε, T − ε], and therefore zφ
satisfies (32). From (32) it follows that we can find a C1 function xφ which
satisfies equation (29) and finally we can determine a continuous function φ
from (28).

2◦ Assume that r = 1. Thus M0 = log(α/β). Let

E = E(M0) = {(x, z) ∈ R2 : z > M0}.
In this case we construct the function φ in the following way. First we find
a positive constant T and a differentiable function zφ : [0, T ]→ R such that
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zφ(0) = z0, zφ(T ) = z1,

(33) ex0(α− βez0) = z′φ(0)− γ, ex1(α− βez1) = z′φ(T )− γ
and

(34) z′φ(t)− γ < 0, α− βez(t) < 0 for t ∈ [0, T ].

In order to do it, we first determine z′φ(0) =: a0 and z′φ(T ) =: aT from (33).
Next let 0 < ε < T/2. Since γ > 0, z0 > M0 and z′φ(0) − γ < 0 we can
construct a C2 function zφ : [0, ε] → R such that zφ(0) = z0, z′φ(0) = a0,
z′φ(ε) = 0 and zφ satisfies (34) for t ∈ [0, ε]. In the same way we construct
zφ : [T − ε, T ] → R such that zφ(T ) = z1, z′φ(T ) = aT , z′φ(T − ε) = 0 and
zφ satisfies (34) for t ∈ [T − ε, T ]. Taking sufficiently large T we can extend
zφ : [0, ε] ∪ [T − ε, T ]→ R to a C2 function defined on [0, T ] such that (34)
holds. From (34) it follows that we can find a C1 function xφ which satisfies
(29) and finally we determine a continuous function φ from (28).

3◦ Assume that r ∈ (0, 1) and E = E(M0) = {(x, z) ∈ R2 : z > M0},
where

M0 = log
(
α

rβ

(
rγ

α(1− r)

)1−r)
.

In this case we construct the function φ in the following way. First, we find
a positive constant T and a differentiable function zφ : [0, T ]→ R such that
zφ(0) = z0, zφ(T ) = z1,

(35) αex0 − βez0erx0 = z′φ(0)− γ, αex1 − βez1erx1 = z′φ(T )− γ,
and

z′φ(t)− γ < α(r − 1)
r

(
α

rβezφ(t)

)1/(r−1)

for t ∈ [0, T ],(36)

α(r − 1)
r

(
α

rβezφ(t)

)1/(r−1)

+ γ > 0 for t ∈ [0, T ].(37)

In order to do it, we first determine z′φ(0) =: a0 and z′φ(T ) =: aT from (35).
Next let 0 < ε < T/2. Since γ > 0, z0 > M0 and

z′φ(0)− γ < α(r − 1)
r

(
α

rβez0

)1/(r−1)

we can construct a C2 function zφ : [0, ε] → R such that zφ(0) = z0, z′φ(0)
= a0, z′φ(ε) = 0 and zφ satisfies (36) and (37) for t ∈ [0, ε]. Analogously, we
construct zφ : [T−ε, T ]→ R such that zφ(T ) = z1, z′φ(T ) = aT , z′φ(T−ε) = 0
and zφ satisfies (36) and (37) for t ∈ [T−ε, T ]. Taking sufficiently large T we
can extend zφ : [0, ε]∪ [T − ε, T ]→ R to a C2 function defined on [0, T ] such
that (36) and (37) hold. Hence we can find a C1 function xφ which satisfies
(29) and finally we can determine a continuous function φ from (28).
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From cases 1◦–3◦ it follows that for any (x0, y0), (x, y) ∈ E there is a
control function φ and T > 0 such that xφ(0) = x0, yφ(0) = y0, xφ(T ) = x
and yφ(T ) = y. From the first part of the proof we now conclude that
k(T, x, y;x0, y0) > 0 if y 6= x+ C.

From Lemma 4 we obtain the following results.

Lemma 5. Assume that ρ1, ρ2 > 0, ã1, ã2 > 0 and ã2ρ1 < ã1ρ2. Let
M0 = log((b2 + c1)/(b1 + c2)) if ρ2 = ρ1, and

M0 = log
(
ρ1(b2ρ1 + c1ρ2)
ρ2(b1ρ2 + c2ρ1)

(
ρ2(ã2ρ1 − ã1ρ2)

(ρ1 − ρ2)(b2ρ1 + c1ρ2)

)1−ρ2/ρ1)
if ρ2 > ρ1. Let E = R2 when ρ2 < ρ1 and E = E(M0) when ρ2 ≥ ρ1, where

E(M0) = {(x, y) ∈ R2 : y < (ρ2/ρ1)x+M0}.
Then for each (x0, y0) ∈ E and for almost every (x, y) ∈ E there exists
T > 0 such that k(T, x, y;x0, y0) > 0.

Lemma 6. Assume that ρ1, ρ2 > 0, ã1 > 0 and ã2 < 0. Let M0 =
log((b2 + c1)/(b1 + c2)) if ρ2 = ρ1 and

M0 = log
(
ρ1(b2ρ1 + c1ρ2)
ρ2(b1ρ2 + c2ρ1)

(
ρ2(ã2ρ1 − ã1ρ2)

(ρ1 − ρ2)(b2ρ1 + c1ρ2)

)1−ρ2/ρ1)
if ρ2 > ρ1. Let E = R2 when ρ2 < ρ1 and E = E(M0) when ρ2 ≥ ρ1, where

E(M0) = {(x, y) ∈ R2 : y < (ρ2/ρ1)x+M0}.
Then for each (x0, y0) ∈ E and for almost every (x, y) ∈ E there exists
T > 0 such that k(T, x, y;x0, y0) > 0.

In case (ii) when only the second population is stochastically perturbed
we have

Lemma 7. Assume that ρ1 = 0, ρ2 > 0. Let E = (log(a1/c1),∞) × R.
Then for each (x0, y0) ∈ E and for almost every (x, y) ∈ E there exists
T > 0 such that k(T, x, y;x0, y0) > 0.

Proof. First, we show that the rank of Dx0,y0,φ is 2. Let ε ∈ (0, T ) and
hε = 1[T−ε,T ]. Since the vectors v = [0, ρ2] and Λ(T )v = eyρ2[b1,−c2] are
linearly independent, from (27) it follows that Dx0,y0;φ has rank 2.

Next we prove that for any (x0, y0), (x1, y1) ∈ E there exist a control
function φ and T > 0 such that xφ(0) = x0, yφ(0) = y0, xφ(T ) = x1 and
yφ(T ) = y1. First we find a positive constant T and a differentiable function
xφ : [0, T ]→ R such that xφ(0) = x0, xφ(T ) = x1,

(38) b1e
y0 = x′φ(0)− a1 + c1e

x0 , b1e
y1 = x′φ(T )− a1 + c1e

x1

and

(39) x′φ(t)− a1 + c1e
xφ(t) > 0 and a1 − c1e

xφ(t) < 0 for t ∈ [0, T ].
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In order to do it, we first determine x′φ(0) =: a0 and x′φ(T ) =: aT from (38).
Next let 0 < ε < T/2. Since c1e

x0 > a1 and x′φ(0) − a1 + c1e
x0 > 0 we can

construct a C2 function xφ : [0, ε] → R such that xφ(0) = x0, x′φ(0) = a0,
x′φ(ε) = 0 and xφ satisfies (39) for t ∈ [0, ε]. In the same way we construct
xφ : [T − ε, T ] → R such that xφ(T ) = x1, x′φ(T ) = aT , x′φ(T − ε) = 0 and
xφ satisfies (39) for t ∈ [T − ε, T ]. Taking sufficiently large T we can extend
xφ : [0, ε] ∪ [T − ε, T ]→ R to a C2 function defined on [0, T ] such that (39)
holds. It follows that we can find a C1 function yφ which satisfies (24) and
finally we can determine a continuous function φ from (25).

Lemma 8. Assume that ρ1, ρ2 > 0, ã1, ã2 > 0, ã2ρ1 > ã1ρ2, and ρ2 ≤ ρ1.
Let E = E(M0). Then for every density f we have

(40) lim
t→∞

� �

E

P (t)f(x) dx dy = 1.

Proof. First we substitute

ζ(t) = η(t)− ρ2

ρ1
ξ(t).

Then we replace system (15), (16) by

dξ(t) = g1(ξ(t), ζ(t))dt+ ρ1dW (t),(41)
dζ(t) = g2(ξ(t), ζ(t))dt,(42)

where the functions g1, g2 are defined by (30). Since for each ε > 0 we have

(43) inf{g2(x, z) : z ≤M0 − ε, x ∈ R} > 0

we obtain lim inft→∞ ζt ≥ M0. We will prove that for almost every ω there
is t0 = t0(ω) such that ζ(t, ω) > M0 for t ≥ t0.

The case ρ2 = ρ1 is obvious, because g2(x,M0) = γ > 0 for all x ∈ R.
Consider the case ρ2 < ρ1. Thus there exists C0 ∈ R such that g2(C0,M0)
= 0. Fix κ > 0 and τ > 0. Consider the solution of system (41), (42) with
initial conditions ξ(0) = C0 + 2κ, ζ(0) = M0 − τ . Let

Aκ,τ = [C0, C0 + κ]× [M0 − τ,M0], Bκ,τ = [C0, C0 + 2κ]× [M0 − τ,M0].

Then from the continuity of g1, g2 it follows that there exist ε, L > 0 such
that g2(x, z) > ε for x ≥ C0 + κ, z ∈ [M0 − τ,M0] and |g1(x, z)| ≤ L for
(x, z) ∈ Bκ,τ . Let ξ̄(t) be a solution of the equation dξ̄(t) = −Ldt+ρ1dW (t)
such that ξ̄(0) = C0+2κ. From the comparison theorem we obtain ξ̄(t) ≤ ξ(t)
and ζ(t) > M0 − τ + εt as long as (ξ(t), ζ(t)) ∈ Bκ,τ \ Aκ,τ . Let t = τ/ε
and Ωτ = {ω : ξ̄(s, ω) ≥ C0 + κ for s ≤ t}. Thus limτ→0 Prob(Ωτ ) = 1 and
ζ(t, ω) > M0 for ω ∈ Ωτ . Now let (ξ(t), ζ(t)) be any solution of system (41),
(42). Then from what has already been proved and from the Markov prop-
erty it follows that if supt>0 ζ(t, ω) ≤ M0 then lim supt→∞ ξ(t, ω) ≤ C0. In
the same way we check that if supt>0 ζ(t, ω) ≤ M0 then lim inft→∞ ξ(t, ω)
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≥ C0. Thus supt>0 ζ(t, ω) ≤ M0 implies limt→∞ ξ(t, ω) = C0. Assume that
limt→∞ ξ(t, ω) = C0 with probability > p0 > 0. Let γ1 = g1(C0,M0). Then
for every ε > 0 there exist t0 > 0 and a set Ω′ such that Prob(Ω′) > p0,
|ξ(t, ω)− C0| < ε and

(44) ρ1dW (t) + (γ1 − ε)dt ≤ dξ(t) ≤ ρ1dW (t) + (γ1 + ε)dt

for ω ∈ Ω′ and t ≥ t0. Then Prob({ω ∈ Ω′ : |ξ(t0 + 1) − C0| < ε}) ≤ O(ε),
which contradicts the assumption that p0 > 0. Consequently, for almost
every ω there exists t0 = t0(ω) such that ζ(t, ω) > M0 for t ≥ t0 and (40)
holds.

From Lemma 8 we obtain the following results.

Lemma 9. Assume that ρ1, ρ2 > 0, ã1, ã2 > 0, ã2ρ1 < ã1ρ2, and ρ2 ≥ ρ1.
Let E = E(M0). Then for every density f we have

lim
t→∞

� �

E

P (t)f(x) dx dy = 1.

Lemma 10. Assume that ρ1, ρ2 > 0, ã1 > 0, ã2 < 0, and ρ2 ≥ ρ1. Let
E = E(M0). Then for every density f we have

lim
t→∞

� �

E

P (t)f(x) dx dy = 1.

Lemma 11. Consider case (ii) when only the second population is stoch-
astically perturbed. Assume that either ã2 > 0, or ã2 < 0 and a1b2+ã2c1 > 0.
Let E = (log(a1/c1),∞)× R. Then for every density f we have

lim
t→∞

� �

E

P (t)f(x) dx dy = 1.

Proof. The process ξ(t) satisfies the differential equation

dξ(t) = (a1 + b1e
η(t) − c1e

ξ(t))dt.

It follows that for every ω there are two cases:

(a) there is t0 = t0(ω) such that ξ(t, ω) > log(a1/c1) for t > t0,
(b) limt→∞ ξ(t, ω) = log(a1/c1) and limt→∞ η(t, ω) = −∞.

Case (b) is impossible because from the assumption a1b2 + ã2c1 > 0 and the
equation

dη(t) = (ã2 + b2e
ξ(t) − c2e

η(t))dt+ ρ2 dW (t)

it follows that there exists ε > 0 such that

dη(t) ≥ εdt+ ρ2dW (t)

for sufficiently large t, which contradicts the fact that limt→∞ η(t, ω) =
−∞.
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Theorem 7. Let b1b2<c1c2. In case (i) assume that ρ1 6=ρ2 or ã1 6= ã2.
If either ã1, ã2 > 0, or ã1 > 0, ã2 < 0 and ã1b2 + ã2c1 > 0, then the
semigroup {P (t)}t≥0 is asymptotically stable.

Proof. From Lemmas 8–11 it follows that it is sufficient to consider the
restriction of the semigroup {P (t)}t≥0 on L1(R2) to the space L1(E). From
Lemmas 2, 3 we can see that {P (t)}t≥0 is an integral Markov semigroup
with a continuous kernel. According to Lemmas 4–7 we have

∞�

0

P (t)f dt > 0 a.e. on E

for every f ∈ D. From Theorem 4 we conclude that {P (t)}t≥0 satisfies the
Foguel alternative. In order to exclude sweeping we construct a Khasminskĭı
function exactly as in [28]. Thus the semigroup {P (t)}t≥0 is asymptotically
stable.
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[9] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119

(1967), 147–171.
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